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Abstract

Software maintainers frequently strive to locate source code related to spe-
cific software features. This situation is mostly observable when features
are scattered in the code. Considering this problem, several approaches for
feature location using execution traces have been developed. Nonetheless,
the practice of post-mortem analysis based on execution traces is not fully
incorporated in the daily practice of software maintainers. Empirical studies
that reveal strengths and weaknesses on the use of execution traces in main-
tenance activities could better explain the role of execution traces in software
maintenance. This study reports on a controlled experiment conducted with
maintainers performing actual maintenance activities on systems of different
sizes unknown to them. There are benefits from systematic use of execution
traces: the reduction of the maintenance activity time and greater accu-
racy of the activity outcome. Other qualitative observations were the lower
level of activity difficulty perceived by the participants that used execution
trace information and that this kind of information seems to be less useful
in maintenance activities where the problem of feature scattering does not
occur clearly.
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1. Introduction

Maintenance requests are usually triggered by users and can be associated
with software features. The term feature has been used in several contexts.
For example, in the context of feature-oriented programming, features are
usually understood as functional increments in software product lines and
are modularized with special constructions of the programming language [1,
2, 3]. In the context of software maintenance, the term feature is mainly
associated with the problem of feature location. In this case, the term feature
is commonly related to a bug, an enhancement, a patch, or a functionality
that can be described from the user point of view. The seminal work in
this area is that by Wilde and Scully [4], who defined a feature as a concept
that can be related to the source code. Recent work recognized that features
can be functional or non-functional, but in the context of feature location,
functional features are predominant in the relevant literature and we will
consider feature as an observable behavior of the system that can be triggered
by the user [5, 6].

The feature location problem is not trivial because features are not usu-
ally modularized in the source code. The implementation of a feature can
be scattered across several modules and a module can contain code that
implements several features. As a matter of fact, feature-oriented software
development approaches address the modularization problem [1, 7], but they
are not widely adopted. Other kind of solution for feature location would be
the use of traceability information previously documented, which returns the
source code fragments directly related to some features. However, in general,
traceability links are not available in the software documentation, or even
when they are available, they are not necessarily up-to-date. To alleviate
this problem, some automated solutions to traceability recovery have been
proposed, but still there is no widely adopted solution [8, 9]. Generally, these
solutions are based on a post-mortem dynamic analysis that relates a fea-
ture to fragments of source code using the information retrieved from traces
generated during the execution of the feature [4, 5, 10, 11]. However, the
use of dynamic analysis is not a widespread practice of software maintain-
ers. We could raise several hypotheses to explain this situation, for example,
the lack of formal training with these techniques in programming courses or
even the existence of technical difficulties, such as the excessive information
that execution traces produce or the dependency on maintainers choosing
appropriate execution scenarios.
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The goal of this following study is to provide additional understanding
on the impact of using execution trace information in the performance of
maintainers during software maintenance activities. As already reported by
Cornelissen et al. [11], research conducted in the area of program comprehen-
sion using dynamic analysis has been poorly supported by empirical evidence
based on human performance. They showed that controlled experiments with
human subjects are rarely reported in the literature.

Our study is based on an empirical evaluation of approaches that use ex-
ecution trace information to help maintainers perform software maintenance
tasks. The evaluation is supported by a controlled experiment aimed at
assessing the effort required to complete maintenance tasks and the correct-
ness of the results provided the maintainer. Our hypothesis is that the use
of execution traces could enhance the performance of maintainers because
execution traces seem to support feature location, which is a major challenge
during maintenance activities. The experiment was conducted with software
maintainers executing real maintenance tasks on different software systems.
In the experiment, data was collected during the execution of the tasks and
also a questionnaire was filled by each participant to acquire qualitative in-
formation about their task experience.

The paper is organized as follows. In Section 2, we present the related
work. In Section 3, we present the approaches based on the use of execution
trace information that will be object of evaluation in this work. In Section 4
we provide details on the experimental setting. In Section 5, the results are
presented and in Section 6 they are discussed. In Section 7, the threats to
validity of this study are discussed, and finally, in Section 8, the conclusions
are presented.

2. Related Work

One of the first studies of feature location using dynamic analysis is Soft-
ware Reconnaissance [4], which compares traces from different execution sce-
narios to map features to code elements. The execution scenarios are defined
with and without the considered feature. This method focuses on one feature
at a time and does not intend to analyze a set of features. The subsequent
work following the Software Reconnaissance approach was mainly focused on
the approach’s evaluation with legacy code in Fortran and comparison with
other approaches for feature location, such as search with program depen-
dency graph and text search with grep [12, 13, 14].
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Concept analysis has been used to enhance a feature location approach
based on dynamic and static analyses [5, 15]. The approach distinguishes
computational units that are general from those that are specific to the an-
alyzed features. The approach consists in the definition of a scenario set,
where each scenario executes one or more features and one feature can be
executed in one or more scenario. Formal concept analysis is used to pro-
duce a feature-unit mapping. Eisenbarth et al. [5] also have shown that the
combination of static and dynamic analysis are important to produce better
quality mapping that reduces the search space for maintainers.

A technique named Dynamic Feature Traces – DFTs used an heuristic
ranking to determine the relevance of code elements to features [10]. DFTs
are created in three steps: i) developer partitions a test suite, which is re-
quired to be large, to be comprehensive, and to provide a correlation between
features and test cases; ii) the tool performs the trace extraction and analy-
sis; and iii) the tool generates the call sets and the ranks. The rank denotes
how relevant is a code element to a feature. The rank is defined by a heuristic
that considers three criteria: 1) the number of occurrences of a method in
the test case of a feature; 2) the participation of a method in test cases of
different features; 3) the depth of the call, i.e., the deeper the relative depth,
the lower the respective rank. Eisenberg and Volder observed that the tech-
nique produces better results when applied to a large number of scenarios
and that incomplete scenarios can produce poor results. We will adopt, in
the approach evaluated in this work, a similar ranking based on the level of
participation of classes in features.

Greevy et al. [16] combined static models of source code with dynamic
models to map features to source code elements. They proposed views that
help to analyze the evolution of systems, describing changes in a way that
shows how many and which features are impacted by them. They classified
code elements based on their participation level in the feature implemen-
tation, which has some similarity with the rank criteria of Eisenberg and
Volder [10] and is the basis of the class classification schema that will be
shown in the next section.

Simmons et al. [17] conducted an exploratory study to establish the steps
necessary to feature location using known industrial tools. They concluded
that three steps are necessary: dynamic analysis, trace differentiation, and
static analysis. They combined two industrial tools, Metrowerks CodeTEST
and Klocwork inSight, with an academic tool for trace comparison, Trace-
Graph [18]. They reported on problems in the operational details integrating
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the tools but they have shown that the tool combination was effective. The
data were obtained from only two human subjects working on the Apache
system, producing eight data points for analysis.

ConcernMapper [19] was proposed to map manually concerns to the re-
lated source code. In our work, we use ConcernMapper to map features to
the related source code elements (classes and methods), and to enable fur-
ther investigation of these elements using the native functionalities of the
IDE. A complementary work named Concern Graphs [20] was proposed to
locate and document concerns. The approach does not use dynamic analysis
but works on the idea of enhancing the comprehension process providing a
manual mapping between concerns and source code elements.

Revelle and Poshyvanyk [21] presented an exploratory study of 10 feature
location techniques that use several combinations of textual, dynamic, and
static analyses. They observed that there is no approach that outperforms
all others but observed that combining analyses generally improves results,
reinforcing the integrated use of dynamic and static approaches.

Wang et al. [22] investigated feature location techniques based on infor-
mation retrieval and static/dynamic analyses. They executed an exploratory
study consisting of two experiments in which developers were given unfa-
miliar systems and asked to complete feature location tasks. Their results
provided a framework for a feature location process based on phases, which
consists of collections of concrete actions oriented to the purpose of the phase.
They identified 11 types of physical actions and six types of mental actions.
Also, they identified that the actions are not independent of each other, i.e.,
they are organized in patterns.

Quante [23, 24] introduced a technique to extract architectural informa-
tion based on Dynamic Object Process Graphs (DOPGs), which describe the
application control flow from the perspective of an object. In fact, DOPGs
are projections of well-known interprocedural control flow graphs. This tech-
nique was evaluated empirically, with 25 Computer Science students, on the
response time to finish a comprehension task and on the correctness of the
solutions [25]. They concluded that DOPGs do not support program com-
prehension in general because it depends on the subject systems, on the
tasks and on the choice of DOPG objects. Although Quante’s comprehen-
sion approach is fundamentally different from ours, the proposed controlled
experiment has a similar framework, except that they did not establish an
upper-bound time limit to execute each experimental task and the tasks were
only the comprehension of pre-generated graphs, without having neither to
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perform any code modification, nor generating the dynamic information for
further use. Their session time lasted for two hours.

Cornelissen et al. [26] claimed that execution trace visualization is an im-
portant approach for software understanding and created EXTRAVIS [27],
a tool for the visualization of large traces. EXTRAVIS provides a mas-
sive sequence view, which is essentially a large-scale UML sequence diagram
and a circular bundle view that hierarchically projects the structural entities
(packages, classes, methods) of a program on a circle and show their inter-
relationships in a bundled fashion. They conducted an empirical evaluation
with 34 human subjects to assess EXTRAVIS added-value in maintenance
contexts, measuring how the tool affects the time that is needed for typi-
cal comprehension tasks and the correctness of the given solutions. Their
results provided initial evidences on the benefits of EXTRAVIS, showing a
decrease in needed time and an increase in correctness. Similarly to Quante’s
work, the tasks were only for comprehension of using pre-built EXTRAVIS
views, without having neither to collect traces and generate the views nor to
perform any code modification.

There are other approaches for feature location that are not specifically
based on dynamic informatic. Some approaches uses static analysis or in-
formation retrieval methods. Robillard and Murphy [28] propose Concern
Graphs that encapsulates a subset of program elements and a set of rela-
tions between them. The relations are based on static dependencies between
program elements. Robillard [29] introduced an approach for analyzing the
topology of structural dependencies in a program. From this topology, rel-
evant elements are proposed for the developer to investigate. The relevance
criteria are based on previous input set provided by the developer. Marcus et
al. [30] use Latent Semantic Indexing to map feature descriptions expressed
in natural language to source code elements. Zhao et al. [31] present the
SNIAFL approach to feature location, which is based on a information re-
trieval technique and also on static branch-reserving call graph. Dit et al.
[32] has produced a taxonomy and survey about methods for feature location,
where the reader can find a comprehensive coverage of the feature location
area.
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3. An Analysis Approach Based on Execution Traces for Software
Maintenance

To evaluate if execution traces plays an important role during mainte-
nance tasks, we had to choose a dynamic analysis approach based on execu-
tion traces to assess the performance of the maintainer using such approach.
Although there are some possibilities in the literature that could be chosen
for this purpose, we decided not to use an approach as-it-is. Instead, the
choice was to adapt tools and concepts used in other work [33, 19, 10, 16].
Moreover, we do not advocate that this is a novel approach, because in fact,
feature location approaches usually have three common steps: dynamic anal-
ysis, trace differentiation and static analysis [17]. Our approach also has these
steps that are similar to others already shown in the literature [4, 5, 10, 17].

The approach aims at helping maintenance activities using dynamic and
static analyses to facilitate feature location. It is designed for object-oriented
systems and is implemented for Java programs. We decided to separate the
independent variables with three values according the approach used by the
subjects. Below, we briefly show these values, which will be further explained
in Section 4:

• a control approach, which provides only the conventional IDE function-
ality;

• a simple approach, which provides one view for feature location that
associates classes and methods with features, and

• an enhanced approach, which has the same main view as the simple
approach and three additional secondary views: 1) class classification
for a feature group, 2) mapping of features to source code elements
with class classification, and 3) a filtered method call view for a selected
method, containing only methods executed within the specific feature
scenario.

The motivation for this separation is that we could assess if the central
idea (simple approach) based on using the information on which classes and
methods were executed for a specific feature plays an effective role in the
maintainer performance and also we could analyze if the use of more views
related to feature location (enhanced approach) would significantly enhance
the maintainers’ performance.
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Figure 1: Overview of the dynamic and static analysis approach.

The whole approach is organized in several steps, shown in the four swim-
lanes of Figure 1: execution scenario planning (Step 1), execution trace
extraction (Step 2), generation of the aforementioned views (Step 3), and
view-driven static analysis (Step 4).

3.1. Execution Scenario Planning

Post-mortem dynamic analysis requires execution traces related to the
feature being analyzed. These traces are extracted during the execution of
a scenario that represents adequately the feature. The simple approach and
the enhanced approach requires planning a set of feature’s scenarios that
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should be analyzed in group. It is possible that the set of scenarios can be a
singleton.

Scenarios should be carefully specified, otherwise false positive and false
negative source code elements may be mapped to features. The maintainers
should consider a comprehensive set of tasks and input values that should
be defined in the scenarios that are strictly related to the features. However,
it must be considered that, independently of well-designed scenarios, false
positive and false negative elements are expected to occur in some degree.

3.2. Trace Extraction

Every approach based on dynamic analysis needs some mechanisms to
extract data from program executions. Sobreira and Maia [33] proposed a
tool to analyze feature scattering across the code with matrix visualization.
The evaluated approach uses their trace extractor, which instruments the
system with an AspectJ module to capture method-call events generated
during execution. During the extraction process, trace files for each triggered
thread are generated. The method-call event data contains the fully qualified
method name, the system time of the call entry, the stack level of the call,
and the identifier of the associated object or class. In the approach proposed
in this work, only the qualified method name will be used from the collected
traces to be shown in the views. The traces for each thread of a specific
execution scenario are combined using the union operation from set theory.

3.3. View Generation

Four views can be generated after trace extraction. These views will be
described below. In the experiment setting that will be described in Section
4, the maintainers will be responsible to extract the traces and generate the
views according to their corresponding approach group.

Mapping features to code. The mapping of features to their corre-
sponding implementing classes and methods is the main view of this approach
because it is the initial search space for feature location. This view is gen-
erated from traces, extracting method-call events that occurred during the
execution of the respective feature. The result of the extraction is an input file
that can be imported by the ConcernMapper tool [19]. Each feature will be
interpreted as a concern in this tool. Figure 2(a) (Area 1) shows an example
of a feature and some corresponding classes and methods that were mapped
to that feature. For example, the figure shows that for the feature “Change
the size of the comment”, the class “DefaultUndoManager” (among others)
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Figure 2: Views produced with execution trace information

had the methods “addCommand(Command)” and “startInteraction(String)”
executed. Maintainers can have access to further static information of those
classes and methods because ConcernMapper is smoothly integrated in the
Eclipse IDE.

Class classification. This view classifies the classes that implement fea-
tures based on the level of participation of each class in the implementation
of the set of features being analyzed. :The classification is relative to par-
ticipation of a class in that set of different features. The criteria for class
classification are based on previous work [10, 16]. There are four distinct
participation levels and they are calculated from the number of analyzed
features (NOF) and the number of those features implemented by the class
(NOFC).

• Unique feature is a class that participates in the implementation of one
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feature in the set (NOFC = 1). This class is very specific to one feature
implementation.

• Small number of features is a class that participates in more than one
feature but in less than half of the features in the set (NOFC > 1) ∧
(NOFC < NOF / 2).

• Large number of features is a class that participates in half or more of
the features in the set but not in all of them (NOFC > 1) ∧ (NOFC ≥
NOF / 2) ∧ (NOFC ̸= NOF).

• All features is a class that participates in the implementation of all
features in the set (NOFC = NOF). This class usually corresponds to
an utility class.

Figure 2(b) shows an example of the class classification view. Each line
shows the class name on the left side and its corresponding classification on
the right side. It is possible to filter classes according the level of participa-
tion.

Mapping with classification. In the previous view, we have a list of
all classes related to the set of features. In this view, the presentation is orga-
nized by features, i.e., for each feature, their related classes and corresponding
classification are shown. Below, we define the criteria for classification.

• Specific is a class the implements only the feature in the context.

• Shared is a class that implements the feature in the context and other
features, but not all.

• All features is a class that implements all analyzed features.

Figure 2(c) shows an example of mapping with classification. At the top,
we have the feature name and below a list of classes that implement that
feature with the respective classification. It is possible to filter the lines by
a specific classification and for a specific feature.

These views show code elements associated to executed features, thus
reducing the search space for maintainers. Instead of searching the whole
code, the search will be driven by the views, which have a lower number of
code elements compared to the whole system source code.

Filtered method call view For each method shown in the mapping
view of the Concern Mapper, the maintainer can generate the filtered call
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view for these methods. This call view contains both the methods called
from the selected method and the methods that call it, considering only
the executed methods that appeared in the execution trace of a se-
lected feature. Currently, this view is not integrated with the Eclipse IDE.
Figure 2(d) shows an example of the call view generated for the method
AbstractApplication.run() of the JHotdraw system. There are no meth-
ods calling this method because it is top-level in the trace.

3.4. Static Analysis Driven from Dynamic Views

During the comprehension process, maintainers may need static infor-
mation about the system. The integration with the Eclipse IDE provides
an additional support for searching information that may be driven by the
provided dynamic views. Previous work reported on the importance of the
combination of static and dynamic analysis to enhance the comprehension
process [5, 17, 34, 35], because the combination of different types of analyses
possibly reduces the search space.

4. Study Setting

This section describes the experiment that included four main mainte-
nance tasks on different systems. This experiment was conducted with groups
of maintainers, which were not involved in the definition and implementation
of the previously-presented approach. These participants were volunteers.
Qualitative and quantitative data were collected for subsequent analyses.
The process of experimentation was based on Juristo and Moreno’s text-
book [36]. The experiment was developed to answer the research questions
described below.

4.1. Research Questions

We pose the following research questions to better understand if execution
trace information hinders or enhances maintenance activities:

• RQ1) Does the use of the proposed approach reduces the maintenance
effort of a maintainer compared to a free approach without traces?

• RQ2) Does the use of the proposed approach enhance the correctness
of the result provided by a maintainer compared to a free approach
without traces?
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• RQ3) Does the use of the proposed enhanced approach reduces the
maintenance effort of a maintainer compared to the proposed simple
approach?

• RQ4) Does the use of the proposed enhanced approach enhance the
correctness of the result provided by a maintainer compared to the
proposed simple approach?

Next, we describe our null and alternative hypotheses associated with
this study for each research question.

• H0RQ1 - Developers using the proposed approach do not require less
effort to perform the maintenance tasks compared to maintainers using
a control approach without traces on unknown systems for them.

• H1RQ1 - Developers using the proposed approach require less effort to
perform the maintenance tasks compared to maintainers using a control
approach without traces on unknown systems for them.

• H0RQ2 - Developers using the proposed approach would not produce
more correct results during maintenance tasks compared to maintainers
using a control approach without traces.

• H1RQ2 - Developers using the proposed approach would produce more
correct results during maintenance tasks compared to maintainers using
a control approach without traces.

• H0RQ3 - Developers using the enhanced approach would not require less
effort compared to maintainers using the simple approach.

• H1RQ3 - Developers using the enhanced approach would require less
effort compared to maintainers using the simple approach.

• H0RQ4 - Developers using the enhanced approach would not produce
more correct results compared to maintainers using the simple ap-
proach.

• H1RQ4 - Developers using the enhanced approach would produce more
correct results compared to maintainers using the simple approach.
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4.2. Experimental Setting

This section presents four experimental tasks designed to trigger main-
tainers’ behavior to be able to answer the previous research questions and
evaluate our hypothesis. No specific criterion for defining the execution order
of the tasks and sessions was defined because the participation in one experi-
ment should not interfere in participation in the other, because the tasks are
different. In the first task, maintainers had to implement an improvement,
necessarily reusing part of the code of a small Board Games suite. In the
second task, maintainers had to fix a bug in the Undo and Redo functionality
of JHotDraw 7.1, which is a medium-size graphics editing application frame-
work. In the third task, the maintainers had to answer a question involving
the location of code elements related to the evolution of features Undo and
Redo of JHotDraw from versions 5.3 to 7.1. In the fourth task, maintainers
had to implement an improvement in a reasonably large system, ArgoUML
0.26.1.

The dependent and independent variables are the same for all tasks, al-
lowing analyzing the data in the same way, providing a larger number of
observations on the dependent variables and consequently offering a more
robust result than when analyzing each task separately.

The independent variable proposed to answer RQ1, RQ2, RQ3 and RQ4
is the approach used during the maintenance task, which values are one the
following three groups. The data analysis will verify if there are differences
between the results of these three groups.

1. Control Group. This group uses none of the four views. Instead, the
subject are free to use all native functionalities of the IDE Eclipse
Ganymede.

2. Simple Approach Group. This group uses the the native functionalities
of the IDE Eclipse Ganymede and also the mapping view for feature
location. Moreover, the use of the approach includes the execution of
the corresponding four steps defined in Figure 1. These steps are an
overhead compared to the Control Group. The answer to the research
questions RQ1 and RQ3 will say if the provided dynamic information
can make up for this overhead.

3. Enhanced Approach Group. This group uses the native functionalities
of the IDE Eclipse Ganymede and the four views (the same mapping
view from the simple approach, class classification, mapping with clas-
sification and filtered method call view) defined in the proposed ap-
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proach. As in the simple group, the use of the approach includes the
execution of the corresponding four steps defined in Figure 1.

We will also analyze the Simple and Enhanced group together as one
group named Traces group, in order to reinforce the result of the influence
of the availability of dynamic views in general.

The following dependent variables were defined for each research question:

• For RQ1 and RQ3, the elapsed time to execute the maintenance task.

• For RQ2 and RQ4, the rate of correct results provided by maintainers
for the maintenance task. In fact, we should interpret the “correctness”
in the sense of “correctness in the available time frame”, similarly to
school exams.

Group Definition. The selection of human subjects for the experiment
was based on a list of personal and professional contacts of the experimenter,
who is the second author of this work. A number of 27 developers attended
the experimenter’s invitation and voluntarily participated in the experiment.
26 out of 27 participants were professional developers from eight different
companies at Uberlândia-Brazil and one participant is graduate student of
the Post-Graduate Program in Computer Science at Federal University of
Uberlândia. 78% were graduate and 22% were final year undergraduate stu-
dents. It is possible that students were hired before getting their bachelor de-
gree. In our study, only some of the subjects were professionals that were also
still students in the final year or semester. The volunteers were interviewed
and filled a form about their specific knowledge. The criteria for distribut-
ing participants in the groups were randomness, their level of knowledge in
Java development, and their software maintenance experience. They were
classified as beginner, mid-level, or advanced. The classification was based
on the answers to a questionnaire that included questions on the professional
experience and an examination on object-oriented programming with Java.
Each group (Control, Simple, or Enhanced) contained three subjects: one
beginner, one mid-level, and one advanced, randomly selected, providing a
fair balancing. So, as each task is conducted with three groups, nine subjects
performed each task. This organization has resulted in 36 individual observa-
tions. Because we had 27 subjects available, some of them have participated
in more than one observation.

Target Systems. To have more representativeness in the object systems,
we decided to study systems of different sizes. We ran the experiment with
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Table 1: Target systems.

System #Classes #Methods Activity

Board Games 16 72 Reuse

JHotDraw 7.1 466 4078 Fixing and Location

JHotDraw 5.3 215 1793 Location

ArgoUML 0.26.1 2.022 14.038 Improvement

the following systems: Board Games, JHotDraw, and ArgoUML. Some of the
criteria to choose these systems were: implementation in Java with open-
source code, reasonably well-documented, and with different versions. Also,
they have different sizes: the smaller is the Board Games and the larger is
ArgoUML, as shown in Table 1. Moreover, JHotdraw and ArgoUML were
selected because they have been extensively used in other studies and this
choice is interesting because the results could be further used to establish
comparisons with other studies. Also, these systems have non-trivial size
and have active source-code repositories. We decided to use a home-made
system, the Board Games, to have a small system representative. In fact, we
established the choice of those systems when we could define maintenance
activities that could be adequately performed in a reasonable time frame.

Maintenance Tasks. Each task was conducted with different activities
aiming at covering a broad spectrum of common practices in software main-
tenance, which are: code reuse to implement new requirements, bug fixing,
location of code that implement the same feature in different versions, indi-
cation of the changes that has occurred to a feature in different versions, and
improvement of an existent feature.

The activities were jointly chosen with the systems. We needed repre-
sentative systems that would provide representative activities. There are
reports pointing out that roughly half of the maintenance effort is related to
program comprehension and also that one of the most important task dur-
ing program comprehension is feature location [37, 38]. Moreover, in a study
with 487 organizations, Lientz and Swanson reported that 70% of the type of
maintenance activities are corrective and perfective ones [39]. So, we decided
to define tasks that included bug localization, improvement, and reuse-based
improvement. These tasks are detailed below.

Task 1 - Reuse. The target system was Board Games. There are two
games in the suite: Connect and Tic-Tac-Toe. The game Connect has a side
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menu with the following functionalities: Count Games, Count Points, Main
Menu, New Game, but the game Tic-Tac-Toe does not have such functional-
ities. The activity consists in reusing the Connect code to introduce the same
side menu in Tic-Tac-Toe. A correct result should provide a new program
running according to a predefined test case.

Task 2 - Bug Fixing. The target system was JHotDraw. A bug in version
7.1 was selected from the list of fixed bugs in the official site. This bug was
Text Area Tabs and is related with Undo and Redo that does not work for the
TextTool functionality. The task consisted in fixing this bug. A correct result
should provide a new version of the program running without the respective
failure and pass in the test case predefined by the experimenter. The choice
of the bug used in the experiment was not completely random. In fact, the
criterion used to choose the bug was that the bug should not be too easy and
not too difficult to find, so it could be corrected by the subjects during the
time frame defined in the experiment with possibly some variation in time.
Moreover, the bug was a real bug (ID 639124), already corrected, extracted
from the bug repository at Sourceforge.

Task 3 - Evolution Location. The target system was JHotDraw, versions
5.3 and 7.1. Substantial changes have occurred in version 7.1, including the
Undo and Redo features. The subjects had to answer the following questions:
(Q1) Which classes are related to Undo and Redo in JHotdraw 7.1? A correct
answer to this question should have a correct list of classes. The subjects
would receive a partial grade relative to a partial correct list of classes. (Q2)
Which classes are related to Undo and Redo in JHotdraw 5.3? A correct
answer to this question should have a correct list of classes. (Q3) Describe
the overall implementation change that occurred with Undo and Redo from
version 5.3 to version 7.1. We considered a correct answer to this question
any answer that mentioned that the package structure of the system was
restructured to simplify the design.

Task 4 - Improvement. The target system was ArgoUML. The activity
is the improvement of the feature Comment in diagram drawing. In the
selected version, when the user inserts a comment in a diagram, the object
automatically adapts its size to the size of the text. If the text is too large,
this comment may increase indefinitely. The requested improvement is to
limit the size of the comment object, so that the text should have at most
160 characters. A correct answer to this question should provide a new
version of the program running with the respective functionality according
to a predefined test case.
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Experiment Activities. To get a reasonable control of the experiments,
the participants were instructed and trained, the laboratory was prepared
to offer the same condition for everyone, the solutions were checked and a
questionnaire was applied to acquire qualitative information about their task
experience.

Preparatory Training and Session Instruction. The participants of
the groups Simple and Enhanced were trained to use correctly their respec-
tive dynamic approach for maintenance. The maintainers were able to use
the trace extractor, the Concern Mapper and the other views because of this
previous special training session. All maintainers in the same group had the
same corresponding training.Before each experiment session, the participants
were instructed about tasks that they should perform and about the target
system. They received the same printed descriptive material that was ex-
plained by the experimenter, which was the same in all experiment sessions.
The participants could also warm-up with their corresponding approach.

Infrastructure. The experiment was conducted in a specific laboratory
of the Faculty of Computing at Federal University of Uberlândia. The com-
puters were previously configured and tested with the same hardware and
software configuration. The access to the Internet was blocked.

Experiment execution. The experiment session was executed in a
fixed time. The activities of tasks 1, 2, and 3 were executed in a limit of
four hours, including 50 minutes used for instruction and adaptation. The
activity of task 4 was executed in a limit of four hours too, but the partic-
ipants were instructed and warmed-up with the tools in 30 minutes. The
instruction time reduction for task 4 was necessary because the effort for
this activity was known to be greater than for the others. After finishing
the execution of the tasks, the participants showed the solutions to the ex-
perimenter, who recorded the data and evaluated the results. After that,
all participants answered a questionnaire. The questionnaire of the groups
Simple and Enhanced had some specific questions concerning the use of the
approach.

5. Results

In this section, the results directly related to the research questions are
presented: the time used by subjects in the execution of tasks and the cor-
rectness of their results. Other qualitative results, such as utility of the
approach, search space, and difficulty level, are presented in the following
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section to provide a deeper understanding of the quantitative results. The
results of time and correctness will be presented in two steps: the first will
show the global results considering all tasks together and the second will
consider each task individually.

5.1. Time to Execute the Tasks

This section shows the results obtained for the dependent variable: the
elapsed time to execute the maintenance tasks. To produce a global sample
with data points from all tasks, the data points were normalized: for each
task, the greatest execution time among all groups was normalized to the
value one (1), and the other execution times within the task received a pro-
portional value R, where 0 ≤ R ≤ 1. Because there were four tasks, there
should be at least four values one (1) for the relative time R. All data points
R were in the range 0 ≤ R ≤ 1. The normalization procedure enabled the
comparison of times between different tasks.

To have more confidence in the results, a statistical test was conducted
to assess the support to answer if the task execution time of maintainers
using trace information was significantly lower than those not using this
kind of information. The samples were tested to know if they follow a normal
distribution. The relative time of the Control group did not follow a normal
distribution, either with Kolmogorov-Smirnov test or with the Shapiro-Wilk
test because the p-values were respectively, 0.0033 and 0.0015. So, we chose
the non-parametric Mann-Whitney test. Table 2 shows the results of this
test. The results of the test Mann-Whitney show that the groups Simple,
Enhanced, and the union of these two groups, Traces, have a lower median
than the Control group. There is no significant difference between the Simple
and Enhanced groups.

Figure 3 shows the mean of relative times to execute all tasks with 95%
confidence interval. Although the mean time of the Control group was greater
than the other groups, the confidence interval does not strictly support that
the mean relative time of the Control group is greater than the other groups.
So, we can see a stronger difference for the median time than for the mean
time.

Figure 4 shows the boxplot for the absolute time (in seconds) for the
36 data points (nine in each graph). The boxplot connects the medians in
the graph. Except, for the Localization graph, the connecting line follows a
downward trend. In principle, this result seems surprising because feature
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Table 2: Mann-Whitney Tests for Relative Task Times R

.

Control Control Control Simple
x x x x

Traces Simple Enhanced Enhanced

H0 R̃C = R̃T R̃C = R̃S R̃C = R̃E R̃S = R̃E

H1 R̃C > R̃T R̃C > R̃S R̃C > R̃E R̃S ̸= R̃E

P value 0.0158 0.0302 0.0364 0.7290
Exact or approx. p? Gauss Appr. Gauss Appr. Gauss Appr. Gauss Appr.
Reject H0 (p < 0.05)? Yes Yes Yes No
One- or two-tailed P? One-tailed One-tailed One-tailed Two-tailed

Sum of ranks 286.5, 379.5 183, 117 181.5, 118.5 156.5, 143.5
Mann-Whitney U 79.50 39.00 40.50 65.50

Figure 3: Means of relative time with 95% confidence interval

location approaches did not performed so well in the specific Localization
task. We will discuss in more detail this result in the next section.

In the first task (Reuse), the groups that used the approach presented a
lower mean time compared to the group Control with a better performance
for the Enhanced group. In the second task (Bug Fixing), the groups that
used traces also presented a lower mean time compared to the group Con-
trol. The mean time of group Simple was 34.21% better than group Control.
Considering the third task (Location), the mean time of the groups that used
traces was higher compared to the group Control. However, considering the
variation of the data there is little support to confirm that the group Con-
trol had significantly better performance, either in Bug Fixing or in Location
tasks. In the fourth task (Improvement), both groups that used the ap-
proach had a lower mean time compared to the group Control. Both groups
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Figure 4: Time results per Task.

that used traces had significantly better performance than group Control. It
is important to consider that all participants in group Control reached the
upper-bound time limit allowed for the task without concluding the activity.

5.2. On the Rate of Correct Results

This section shows the results obtained for the dependent variable: the
rate of correct results provided by maintainers for the maintenance activity.

A statistical test was conducted to know if there is support to answer
if the correctness of the tasks outcomes using trace information was signif-
icantly greater than those not using this kind of information. The samples
were tested to know if they follow a normal distribution. The samples of
correctness values of all groups did not follow a normal distribution with
the Shapiro-Wilk test because the p-values for groups Control, Traces, Sim-
ple, Enhanced, were respectively, 0.013, <0.0001, 0.0003 and <0.0001. So,
we chose the non-parametric Mann-Whitney test. Table 3 shows the re-
sults of this test. The results have shown that the groups Simple, Enhanced,
andTraces had significant greater correctness median values than the Con-
trol group. Similarly to the time evaluation, there is no significant difference
between the Simple and Enhanced groups.

Figure 5 shows the means of correctness values of all tasks with 95% confi-
dence interval. The shown confidence interval clearly supports that the mean
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Table 3: Mann-Whitney Tests for Correctness C

.

Control Control Control Simple
x x x x

Trace Simple Enhanced Enhanced

H0 C̃C = C̃T C̃C = C̃S C̃C = C̃E C̃S = C̃E

H1 C̃C > C̃T C̃C > C̃S C̃C > C̃E C̃S ̸= C̃E

P value 0.0005 0.0034 0.0031 0.9726
Exact or approx. p? Gauss Appr. Gauss Appr. Gauss Appr. Gauss Appr.
Reject H0 (p < 0.05)? Yes Yes Yes No
One- or two-tailed p? One-tailed One-tailed One-tailed Two-tailed

Sum of ranks 130.5, 535.5 104.5, 195.5 104, 196 149, 151
Mann-Whitney U 52,50 26,50 26,00 71,00

of correctness of the Control group is lower than other groups, supporting
the results of the non-parametric test.

Figure 5: Means of Correctness with 95% confidence interval

The results of the four tasks are presented in boxplot shown in Figure 6.
Considering the first task (Reuse), in the groups that used traces, all partic-
ipants have concluded the activity with success while in the group Control
one out of three participants did not conclude the activity.

Considering the second task (Bug Fixing), in the group Control, nobody
had completed the activity with success while all participants of both groups
Simple and Enhanced had completed with success. This is an interesting
result. However, it is important to clarify that we considered that a task was
successful when the bug was completely fixed. In the post questionnaire, the
participants could show the code elements that could be fixed, when they did
not conclude successfully the task. In fact, all participants of group Control
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Figure 6: Correctness results per task

answered the post questionnaire indicating correctly which code elements
should be fixed, but they were not sure about their answer. It is possible
that if they had had more time, they could have completed the task, but this
would impact the dependent variable elapsed time.

Considering the third task (Location), the participants did not have to
change the code, but should answer questions about the corresponding fea-
ture. The evaluation of the participant answers has shown that (Q3) was
correctly answered by all participants in the study. All participants that
answered that a reorganization in the package structure has occurred to sim-
plify that structure have acquired the maximum grade in this task. Some
have provided more details, but we required just to describe the overall im-
plementation change and we accepted more general answers. For (Q1) and
(Q2), the results did not provide a significant difference among the groups.
However, the groups that used the approach had a slightly better result,
especially the group Simple.

Considering the fourth task (Improvement), the mean rate of correct
results for groups that used the dynamic approach was better, compared
to the group Control. On the rate of correct results, we must clarify that
nobody in the group Control had completely finished the activity. However,
they produced some results that received a relative grade that corresponds to
the median rate of 30% shown in the plot. In groups Simple and Enhanced,
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66.7% of the participants in each group had completely finished the activity.
For those that had not completed, but produced some results, they also
received a relative grade with the same criteria of the group Control. The
group Simple had a reasonably significant better result, compared to the
group Control. The groups Simple and Enhanced had better results than
group Control.

5.3. On the Utility of Dynamic Views

This section presents the results obtained for answers on the utility of
the dynamic views perceived by maintainers. This section and the following
provide qualitative analysis to reinforce the understanding of the quantitative
results. The results are based on post-questionnaire answers. 95.3% of the
participants that used traces answered they were satisfied with it. 100%
answered that the approach was useful for the tasks because it has driven
the location process. On the utility of the several views, 100% answered that
the main feature location view, Mapping View, was useful for the tasks. The
other three views of the Enhanced approach were considered useful by only
25% of the participants in that group.

5.4. On the Difficulty Degree of Maintenance Activities

The difficulty degree of the maintenance activities perceived by partici-
pants was answered after performing the tasks. Figure 7 shows the results.
The plot in the top is the result of all groups Control, and the plot in the
bottom shows the result for groups Simple and Enhanced (Traces).

The groups that used the approach (Traces) mostly classified the per-
formed activity as median or easy. Only 17% of the participants of this
group classified the activity as hard for tasks 2, 3 and 4. For the group Con-
trol, except in task 1, nobody has classified the performed activity as easy.
Moreover, in tasks 2 and 4, most of participants classified it as hard, 100%
and 67%, respectively. This is an interesting finding because in tasks 2 and
4, the group Control had worse performance in correctness, suggesting that
their poor performance is related to the difficult nature of the task and not
to the insufficient time.

5.5. On the Search Space

We analyzed the impact of the initial search space reduction provided by
dynamic approaches. Figure 8 presents the mean number of methods in the
views of the groups Simple and Enhanced, which the subjects have used as

24



Figure 7: Difficulty level of activities as perceived by participants.

starting point. Because there is no previous view prepared to group Control,
we will not consider the percentage of the search space that they had to
search.

For example, in task 1 (Reuse), 45.83% of all methods were shown for the
group Simple and 50.93% for the group Enhanced. This task had the lowest
search space reduction. This can be explained because the target system is
small and the defined scenario executed nearly half of the existent methods.

Tasks 2 - Bug Fixing and 4 - Improvement had higher search space reduc-
tion. It is interesting to see that the elapsed time and the rate of correction
of these tasks were correlated with this observation. The search space reduc-
tion in the mean number of classes of task 3 - Location was not significant
as 2 and 4 and the elapsed time was slightly worse for the participants in
groups Simple and Enhanced.

The quality of the search space concerning false negatives were analyzed
to understand if they had interferred in the effort and correctness of results for
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Figure 8: Search space (mean number of methods)

those maintainers that use the approach. In Figure 9, we show the number of
false negatives classes, which were calculated by the experimenter. The task
Location presented the higher rate of false negatives, either in the Simple or
in the Enhanced approach. The tasks Bug Fixing and Improvement did not
present false negatives, indicating that the subjects produced representative
execution scenarios that captured all relevant method calls. This result can
also be related to the fact that in these tasks, the Traces group had a better
performance compared to the Control group.

6. Discussion

6.1. On the Time to Execute the Tasks

Our hypothesis was that when the proposed approach, either simple or
enhanced, is applied to the maintenance of unknown systems, feature location
activities would be faster because they are partially automated by the use of
execution trace information and, consequently, the response to a task that
requires the feature location would also be faster. Feature location using
dynamic analysis would reduce and organize the search space for maintainers,
especially for those features that are scattered across the code.
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Figure 9: False negative classes.

On the dependent variable related to RQ1, the elapsed time to execute
the maintenance task has shown a significant gain for the execution traces
approaches concerning the median time, but concerning the mean time the
results were not conclusive, denoting an important variation between sub-
jects.

There is an interesting fact to consider in Location task. Considering all
groups, the mean time of this task is systematically lower than that of the
others, suggesting that this task is the easiest one, at least concerning effort.
Moreover, another point that we must consider is that, differently from other
studies [26, 25], the time of the groups using execution traces also include
the time to plan and extract the execution traces. So, when we have a small
task time, the influence of the time to plan and to extract the traces plays
a major role, and would hinder the performance of the Trace groups. For
medium-sized or large-sized tasks, the benefits of trace-based approaches is
likely to make up for the spent time in executing the necessary steps.

The Location task was to identify classes that implement the selected
features and to describe changes that occurred from one version to another.
Unlike the other tasks, this task did not require changes to source code. The
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mean time for groups Simple and Enhanced were 70 and 90 minutes, respec-
tively, including the time to plan the execution scenarios, extract the traces
and analyze the generated views. The participants in the group Control ini-
tiated the activity directly with code analysis. An important fact is that
JHotDraw has a good modularization for the analyzed features Undo and
Redo, because they are explicitly modularized into specific packages, which
facilitated feature location. Also, the search (on Eclipse) for terms undo and
redo returned good results, since 92.85% of the classes that implement these
features have these terms in the suffix or prefix of their names.

Considering the tasks Bug Fixing and Location, the results were different,
despite the functionality and target system being the same in both tasks.
Feature location in the Location task was easier than Bug Fixing for the
Control group because of the adequate modularization and naming of classes
present in the Location task. However, this point seemed not to help in the
Bug Fixing task because the classes and methods that should be corrected
did not have names directly related to the feature and were not part of its
representative package. The subjects that used dynamic analysis approach
could find straightforwardly the problematic methods using trace differenti-
ation.

Concerning RQ1, we can answer that, in most of the analyzed situations,
the use of the approach (Traces group = Simple + Enhanced) significantly re-
duces the median maintenance effort. The approach did not reduce the effort
in cases where the feature location is not a challenging task for maintainers.
These cases occur when the feature is well-modularized in the implementa-
tion and has intuitive code elements names, facilitating textual search. We
believe that we have used a more realistic approach in our experiment, com-
pared to other works in the literature [25, 26], when we included the time to
plan and extract the traces in the data used in our analyses, despite produc-
ing a less significative gain, because there was no significative difference in
the mean time of the groups. This observation that trace-based approaches
had major impact in the median than in the mean could indicate that the
use of trace-based approaches produce better result for the individuals than
considering the whole maintenance time in organization.

Considering the RQ3 that compares the Simple and the Enhanced ap-
proaches, no one outperformed the other because one approach had better
performance in two tasks and the other approach had better performance in
the other two tasks. Moreover, the medians and means shown in the previous
section had no significant difference.
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In our experimental setting, we defined an upper-bound limit for exe-
cuting the tasks. Although, this restriction was not strictly necessarily, an
unbound session time would impose practical difficulties when running the
sessions. So, we also need to carefully interpret the task execution time when
the maintainer reached that upper-bound limit. So, when the task could not
be completed, which occurred for the Control group, we must carefully com-
pare the times because the probable time to complete the task would be
longer. However, as we mentioned in Section 5.2, during the correction of
the task results, the experimenter could analyse the partial work produced
by maintainers and verify that for some of those tasks that could not be
completed, they had almost been completed. Moreover, most of the un-
completed tasks occurred in the control group in task 4, so having a larger
accounted time for this group would not modify our conclusions, but indeed
would reinforce the conclusion.

Another point concerns the absolute time to complete the tasks. Other
experimental studies on the effectiveness of dynamic information for compre-
hension [25, 26] have only accounted for the comprehension time, not includ-
ing the time to generate the dynamic information views, neither the time
to complete a maintenance task. In Quante’s [25] work, the worst time to
answer the considered question was less than 25 minutes and in Cornelissen’s
work [26] the limit time was 90 minutes to complete all eight comprehension
tasks. These absolute experimental times are much lower than ours because
they included only comprehension activities. Moreover, our experiment is
different from others [25, 26], where the independent variable is the availabil-
ity of the view, because they consider neither the time to obtain the view nor
the inherent variability of the human subjects obtaining those views. So, our
study would be much susceptible to individual variations. In fact, we have
adopted a more realistic approach concerning the independent variable and
the results concerning alternative hypothesis can be considered even stronger.

6.2. On the Rate of Correct Results

Our hypothesis was that the provided views induce maintainers to find
the appropriate classes and methods that should be considered in the main-
tenance tasks and, consequently, they would produce all the appropriate
modifications while maintainers using traditional approach may not consider
all necessary modifications if they miss related code elements.

The results on the dependent variable correctness clearly answer RQ2.
Considering all tasks together the groups Simple and Enhanced provided bet-
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ter correctness results than the group Control, confirmed by Mann-Whitney
significance test and confidence intervals of the means. Moreover, in the tasks
Bug Fixing and Improvement, the correctness was even better for the Traces
group.

Similarly to RQ1, the approach did not provide better results in cases
where the feature location is not a challenging task for maintainers, which
can occur in situations where the maintenance tasks are easy or the features
are well-modularized in the implementation.

We suggest that the better correctness results of the Traces groups was
influenced by the inherent good recall of dynamic analysis, which have re-
trieved the classes and methods involved in each executed feature. Because
the maintainers were driven to investigate those classes, they did not incur
in errors related to missing some important class/method of the analysis.
These results are coherent with those observed in [26].

Concerning the task 4 that could not be completed by none of the partici-
pants in the Control group and by 33% of the Traces groups, we observed that
the main difficulty of maintainers to conclude the task was concerned with
locating and understanding of where should the modifications take place,
in other words, a feature location problem. This information was obtained
from a qualitative analysis of the post-questionnaires answered by the sub-
jects. We can clearly see a better accuracy of the group Traces in the task
4, which can be explained by the support offered by execution trace in the
feature location problem.

Considering the RQ4, similarly to the time results, the groups Simple and
Enhanced did not present significatively different correctness performance.

6.3. On the Utility of Dynamic Views

The results on utility of the view help to answer if information provided
by the dynamic views were considered useful during the maintenance tasks.
We can answer that the Mapping view was effectively considered useful, but
there is no support to say the other views were effectively useful. The subjects
answered that the mapping has driven the comprehension process because
they intuitively studied the elements related to the feature implementation.

The views Class Classification, Method Call, and Mapping with Clas-
sification were considered useful only by 25% of the participants in group
Enhanced. We suggest that either this information did not have an impor-
tant impact to contribute with the task execution or the maintainers did not
use it because they did not grasp entirely the purpose of that information.
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It is important to mention that the group Enhanced also had access to the
Mapping view, which already had useful available information that would
suffice for them.

Another point is that the functionalities of the IDE Eclipse were useful
to refine and complement the information obtained by the dynamic view.
Moreover, it was observed that only the Mapping view is not sufficient to
complete the activities, so the navigation in the source code provided by the
IDE static analyses was considered essential.

6.4. On the Difficulty Degree of Maintenance Activities

The results on the difficulty degree perceived by the users have clearly
shown that the users in the group Control encountered more difficulty than
the other groups, particularly in tasks Bug Fixing and Improvement. This
result is important even to validate the representativeness of the proposed
tasks in this study. If the perceived difficulty were similar for every group,
maybe the tasks were all very difficult or very easy.

Another point is that the task Reuse seems to be the easiest. One probable
reason would be that the target system (Board Games) was the smallest,
facilitating the analysis of whole system. Nonetheless, this task still had
provided significant information to the analysis of the execution time.

Other interesting finding is that results on the difficulty perceived by the
maintainers are consistent with the results on the correctness variable.

6.5. On the Search Space

6.5.1. Space Reduction

Our initial hypothesis was that dynamic analysis information drives the
comprehension process because there is some search-space reduction. As we
can observe in Figure 8, in the four tasks the search-space considering the
whole system has been reduced. In fact, in the tasks Reuse and Location,
the reduction was not large as in the other tasks. Moreover, this smaller
reduction in the Reuse task would be expected because the system is the
smaller and proportionally a larger part of the system was necessary for the
task completion. In the case of Location, this smaller reduction also helps to
explain the weaker time performance of the Traces group in this task. The
other two tasks Bug Fixing and Improvement, which had greater reduction,
also had compatible performance.

In the case of the task Location, the Control group used the package
names as an effective hint for search-space reduction, because the features to
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be analyzed were well located in specific packages.This situation can explain
the good performance of the Control group in this task.

Finally, we suggest that if the space reduction provided by dynamic anal-
ysis is significant and the feature is not well-modularized in the system, then
that space reduction has a significant impact.

6.5.2. False Negatives

The false positives (code elements that should not be in the views but
are) and false negatives (code elements that should be in the views but are
not) may occur in a dynamic analysis approach when scenarios are poorly de-
fined or invisible events to users may be triggered during the execution. False
positive elements usually can be recognized by the users, but false negative
elements cannot. We tried to investigate if the false negative elements inter-
fere in the performance of maintainers. The false negatives were measured
in the post-questionnaire.

Interestingly, in the tasks Bug Fixing and Improvement, there was no
occurrence of false negatives, which helps to explain a better time and cor-
rectness performance of the Traces group. In the tasks Reuse and Location,
even with some rate of false negatives, it seems that it did not affect sig-
nificatively the correctness but impacted the execution time, which can be
consistently explained by the static analyses that follow the provided true
positive elements. Another point is that, as we could expect, the number
of false negatives were highly sensitive to the quality of execution scenarios
planned by maintainer.

7. Threats to Validity

Even with the careful planning and formal procedures applied during
the execution of the experiments, some threats should be considered in the
evaluation of the results validity.

7.1. Internal Validity

Some threats are important to consider when analyzing the answers for
our research questions because they could interfere in the time and/or cor-
rectness of the tasks.

• Individual differences among the participants. The actions to minimize
these differences were the analysis and classification of the capability of
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each participant to generate fairly balanced groups and also a random
selection of the group in which the participant should be included.

• The participants’ understanding about the dynamic approach may vary
during the training. We tried to minimize this using the same printed
material for everybody and practicing with tools and approach before
the experiment session.

• Subjectivity degree in the definition of which code elements are relevant
for an activity. The result of some maintenance activities does not have
a unique and correct answer. Developers may propose different, but
correct results for the same activity. Our criteria for changes in source
code was that the changed program should pass in a predefined test
case.

• Inexperienced participants concerning the proposed approach. The
comparison of the performance of the Control group, which followed
a traditional Eclipse-based approach with the performance of groups
that do not have the long term experience of using a new approach
may not be totally fair. We can consider that the results could be even
better for Traces groups if these groups had more experience with the
tools.

• Human-related issues such as, the participant enthusiasm in the exper-
iment day, the participant expectation on the experiment.

7.2. External Validity

Some other factors limit the generalization of the results like:

• The number of participants in each group for an activity. As in any
statistical study, the larger and more representative is the sample, the
stronger are the evidences. In fact, if the results were only analyzed
separately for each activity, then this threat would be more sensitive.
However, the results were analyzed considering the set of four tasks
with a normalized metric. This setting accounts for 12 observations
for each group and 36 observations for the whole study. Moreover,
the impact of the use of trace information (Simple or Enhanced) were
analyzed with 24 observations. These numbers are significant consid-
ering related work. Cornelissen et al. [11] showed that only six out of
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the 114 selected papers in the above area were published using empir-
ical evalution based on human subjects. From these six papers, only
Quante’s work has used more than nine human subjects in the exper-
iment [25]. In Quante’s work, 25 students have participated in the
main experiment. In our work, 27 subjects have participated in the
main experiment.

• The representativeness of target systems. Although the system used
in the first task is a home-made system, JHotdraw and ArgoUML are
well-known systems widely used in other studies. The number and
domain of the used system limit the generalization of our results.

• The selected maintenance tasks. Although the maintenance tasks were
chosen to be quite different from each other, it is not possible to gener-
alize for any possible maintenance task. Nonetheless, our results have
shown a reasonable level of variability in the tasks results that enabled
the qualitative discussion of important points.

• Only the Java programming language and Eclipse development envi-
ronment were considered in this study. Some of our results would be
different if other languages and environments were used. For exam-
ple, different languages may support different types of dependencies;
different development environments may summarize and present code
differently.

7.3. Construct Validity

Concerning our measurement framework there some issues to be pointed:

• The experimenter also has defined the dynamic approach being evalu-
ated. However, the experimenter had the care to adopt an impartial
behavior during the experiment, being as formal as possible during the
execution of the planned experimental activities.

• The use of a time frame to execute the maintenance tasks. Because
we are measuring the time elapsed during the execution of a mainte-
nance task, maybe the measured time can be greater than it could be
in reality, because maintainers could manage to use all the available
timeframe. To minimize this effect, the subjects were instructed to use
only the necessary time to complete the task and not to perform un-
necessary activities during task execution. Moreover, the time frame
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implies in an upper-bound time limit for the execution of the task.
When maintainers reached this time, we have to consider that the real
execution time could be greater than what was measured.

• The use of an internally adapted execution trace approach. Although,
the tool suite has been tested and verified, it still could remain some
undetected bug just as occurs with any software. There is no widely
recognized and adopted tool support for this kind of approach, so any
other adopted solution would incur a similar threat. We tried to min-
imized this issue using well-known tools and concepts during the defi-
nition of our the studied approaches.

8. Conclusions

This paper presented a controlled experiment to evaluate an approach
to help maintenance tasks using dynamic and static analysis for the feature
location problem. An experiment with real maintenance tasks performed
by human subjects was conducted aiming at assessing the impact of this
approach on the subjects’ performance during maintenance activities. The
controlled experiment was conducted with three distinct groups (Control,
Simple approach and Enhanced approach), adding up 36 individual observa-
tions.

From the study, we have concluded that:

• The use of either Simple or Enhanced approaches led to a reduction
in the time to complete a task compared to a traditional approach
confirmed by a Mann-Whitney test for the median times, but not con-
firmed with a confidence interval analysis for the mean times. This
observation on the major impact in the median than in the mean could
indicate that the use of trace-based approaches produce better result
for the individuals than when considering the whole maintenance time
in organization. Moreover, this reduction occurs more clearly in sit-
uations where the analyzed features are not completely modularized
in specific units and do not have intuitive names for code elements.
Even in situations where the system is well packaged and named, dy-
namic analysis is useful when the desired target is not located in the
representative package of the feature.
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• The rate of correct results achieved by participants using either Simple
or Enhanced approach is better than traditional approach supported
by statistical tests.

• In tasks where the search-space reduction is higher or the activity is
considered harder, the use of Simple or Enhanced approach produced
better results than the use of the Control approach.

• The low difficulty perceived by the participants of the Simple or En-
hanced groups are related with their better performance, indicating
that even if the task is difficult, the approach facilitates maintainers’
work.

• The results suggested that there is no quantitative evidence about the
difference of the Simple and Enhanced approaches. Moreover, the par-
ticipants qualitatively suggest that the Mapping view is the most im-
portant, reinforcing this lack of difference.

Concerning our hypothesis, this study has shown that the use of a dynamic
approach for feature location does not necessarily reduce the effort and en-
hances the correctness of results in all cases. The approach was best suited
when the maintainers perceived the maintenance tasks as being difficult. A
factor that can help maintainers to identify if the maintenance task will be
hard or not is feature scattering across the code. The results also indicated
that the usefulness of the approach for feature location probably occurs be-
cause of an organized reduction of the initial search space. Furthermore,
participants who used either the simple or the enhanced approach indicated
a decreased level of difficulty in the proposed activities, when compared to
group Control, for tasks with the scattering problem of source code. The
questionnaire results also reported that the approach should be seamlessly
integrated into the IDE and this is part of the future work that has to be
done.

Concerning the possibility of wide adoption of the use of execution traces
in daily practice of maintainers, our results suggest that the adoption would
require an additional preliminary effort to use this kind of approach. In
situations where the system is well-known, or the activity seems to be easy,
or the features are well-modularized, then this effort seems not to provide
significative gain. If the previous situations do not appear in the software
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maintenance context then the use of execution trace information proved to
be effective.

Some future work still remains to be done. Since our results indicated
that trace-based feature location produces better results when maintenance
tasks are considered harder or the selected feature is scattered across the
code, an useful approach should help developers to predict in which main-
tenance tasks, the execution trace information would provide better perfor-
mance results. Our experimental setting did not consider an industrial-scale
environment, which could reduce several threats identified in this work. Al-
though, it is a challenging task conducting these kind of experiment in such
environment, the results that were shown in this work indicates a feasible
opportunity for the adoption of trace-based feature location techniques in an
industrial setting.
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