
Do Software Categories Impact Coupling Metrics?

Lucas Batista Leite de Souza, Marcelo de Almeida Maia

Computer Science Department

Federal University of Uberlândia

Uberlândia, Brazil

lucas.facom.ufu@gmail.com, marcmaia@facom.ufu.br

Abstract—Software metrics is a valuable mechanism to assess

the quality of software systems. Metrics can help the automated

analysis of the growing data available in software repositories.

Coupling metrics is a kind of software metrics that have been

extensively used since the seventies to evaluate several software

properties related to maintenance, evolution and reuse tasks. For

example, several works have shown that we can use coupling

metrics to assess the reusability of software artifacts available in

repositories. However, thresholds for software metrics to indicate

adequate coupling levels are still a matter of discussion. In this

paper, we investigate the impact of software categories on the

coupling level of software systems. We have found that different

categories may have different levels of coupling, suggesting that

we need special attention when comparing software systems in

different categories and when using predefined thresholds

already available in the literature.

Index Terms—Software categories, coupling metrics, Java.

I. INTRODUCTION

One important factor that should be considered during

software design is module coupling, which measures the

dependency level between two modules. According Martin [1],

a design with highly interdependent modules tends to be rigid

and difficult to reuse and maintain. Several studies in the

literature have shown that module coupling directly impacts

maintenance, evolution, and reuse of software components [2],

[3], [4].

Open source software repositories play a major role in

mining software repositories because they offer thousands of

projects, within different domains, opening unprecedented

opportunities for research. One of the most popular repositories

is Sourceforge
1
, accounting for almost 3.5 million registered

users, almost 325,000 projects and approximately 5,000

commits/day
2
. In some repositories, projects are classified in

different categories, which are related to different application

domains. For example, in Sourceforge there are 10 major

categories, each one with several subcategories.

Considering the huge amount of information in software

repositories, software metrics have gained renewed interest

because they can enable automated large-scale quality analysis

of software. Several works have used generic thresholds for

OO metrics to establish evaluation criteria of software, for

example, to detect bad smells. These thresholds are generic in

1 http://sourceforge.net
2 http://sourceforge.net/blog/sourceforge-myths

the sense they were established ignoring the software category

[5], [6], [7], [8], [9]. However, the use of generic thresholds

may not be adequate for the comparison of software systems

belonging to different categories, i.e., a threshold that detect a

bad smell in one category could not be same in other category.

In another work, Ferreira et al. [10] established thresholds

for software metrics comparing software in different categories,

but they did not find difference that could indicate necessity to

consider different thresholds for different categories. This study

was performed in relatively small scale with only 40 Java

projects. Our hypothesis is that a larger scale study with a

careful characterization of samples for different domains could

indicate significant differences between metric values of

different domains. Our scope in this study is limited only to

coupling metrics. We carried out an experiment comparing

Java projects from the 10 major categories of Sourceforge.

This paper is organized as follows. Section II presents the

methodology used to conduct this study. Section III presents

and discusses the results, and Section IV concludes the paper.

II. METHODOLOGY

In this section, we state our research question, review the

coupling metrics used in this study, define the criteria to choose

the sample of projects that will be analyzed, and define the data

analysis strategy that will be performed to answer the research

question.

A. Research Question

We state the following research question for this study:

 RQ1: Does the major category of a software is

related to the coupling level of their modules?

B. Coupling Metrics

There are several coupling metrics for object-oriented

software. In this study, we considered five metrics that were

chosen because each of them is related to different aspects of

the coupling notion. These metrics are described in the sequel.

CBO (Coupling Between Objects): this metric is part of

the well-known Chidamber and Kemerer suite [11]. The

coupling for a class is measured with the number of other

classes to which it is coupled. A class X is coupled to a class Y

if X uses one or more attributes of Y or if X invokes at least

one method of Y.

978-1-4673-2936-1/13 c© 2013 IEEE MSR 2013, San Francisco, CA, USA

Accepted for publication by IEEE. c© 2013 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

217

CBO*: we defined a variant of CBO, which we call CBO*,

where the coupling of a class is the number of attribute uses

and method invocations from this class to other classes.

DAC (Data Abstraction Coupling): proposed by Li and

Henry [12], defines the coupling for a class as the number of

attributes of this class declared with types defined from other

classes.

ATFD (Access to Foreign Data): proposed by Marinescu

[5], [13], this metric consider the coupling of a class equal the

number of external classes from which that class accesses

attributes, directly or via accessor methods.

Afferent Coupling (Ca): proposed by Martin [1], this

metric defines the coupling of a class with the number of other

classes that refer to it.

In this work, we used iPlasma [14] to collect these metric

values for the classes of selected Java projects.

C. Repository / Projects

The repository used in this work was Sourcerer [15], which

contains 18,826 Java projects collected from the following

original repositories: Apache, Java.net, Google Code and

Sourceforge. Several selection criteria were applied in this

repository. First, because our study considers that a software

project should belong to just one category we decided to use

Sourceforge projects because it was possible to retrieve the

major category for each project, from 10 predefined categories.

From the 18,826 Sourcerer projects, 9,969 were collected from

Sourceforge. From these projects we excluded empty projects

which contained no .java file, remaining 6,632 non-empty

projects. From these projects, we excluded more 3,559 projects,

which were in one of the following situations: the iPlasma tool

could not completely collect the metric values; the project

could not be classified in one of the 10 major Sourceforge

categories; or the project belonged to more than one category,

because those projects would interfere in our research question

analysis.

The obtained list included 3,073 projects. The 10 major

categories defined in Sourceforge and considered in this study

are: Science & Engineering (SE), Audio & Video (AV),

Communications (C), Business & Enterprise (BE), Graphics

(Gr), Games (Ga), Development (D), System Administration

(SA), Security & Utilities (Sec), Home & Education (HE).

Each one defines sub-categories not considered in this study.

Table I shows, for each category, the percent number of

projects in each range of size (number of classes). We can

observe that for all categories, most projects contain between

two and 200 classes. In order to consider a more homogeneous

sample between the different categories, we decided to

consider only projects in this range. Table II shows the absolute

number of projects in each category, in the range [2,200].

D. Data Analysis Strategy

We performed data exploration and defined two tests to

answer the research question.

Data Exploration: The goal of this exploration is produce

a descriptive analysis with boxplots of the mean project

coupling for the 10 categories. We calculated the mean

coupling metric value for each project. The five chosen metrics

were considered. For example, the Mean CBO for project P is

the mean of CBO of all classes of this project.

Test I: The goal of this test is to compare the mean

coupling level of one category with the mean coupling level of

the projects from all categories. So, we could observe if the

mean coupling level of projects in one category differs from the

coupling level of the universe of projects.

For each metric, the following procedure was conducted:

 For each project, we calculate the mean value of

metric, as in the data exploration explained before;

 For each category, we calculate the median of the

mean project values;

 For each category, we select the 75 projects whose

means are nearest to the median. We defined this

sample size because it is the number of projects in the

smallest category (Home & Education), so the 10

categories have the same number of projects. This

choice intends to provide fair sampling of the

categories.

 For each category, we apply the Wilcoxon Rank Sum

test, at a stringent significance level of 0.01, to

compare the mean values of the 75 selected projects

from that category with the mean values of all selected

projects (75 projects were selected from each category

and there are 10 categories, so there is a total of 750

selected projects).

The previous process was conducted for each coupling

metric, i.e., five times.

Test II: The goal of this test is to compare mean coupling

metric values of classes from different categories. While the

previous test analyzes the mean metric values of the projects,

this test consider in a category all classes from the 75 projects

in that category. In other words, we assembled classes from

different projects belonging to a same category instead of

directly aggregating them on a project basis. We evaluate the

mean value and standard deviation of the categories.

III. RESULTS

For the data exploration performed, Figures 1 to 5 show the

boxplots of the mean values of each project, with each metric

in a different plot. We can observe that there are differences

between the categories in the maximum, median values and in

the first and third quartiles as well. For all five metrics, the

category Games has shown the highest medians. Considering

the first and third quartiles, the category Games had the highest

values, except for metric ATFD, where Business presented

higher value. Concerning the maximum values, Games present

the highest values for three from five metrics. On the other

side, there are categories that stood out for lower values,

especially Development and Security.

For Test I, Table III shows the results of the Wilcoxon

Rank Sum test. We marked the cell with an `X´ where p-value

< 0.01, i.e., there is a stringent difference in the medians of the

two compared samples (for each cell, the two samples

compared consisted of: 1) 75 projects selected from that

category for a specific metric, and 2) 750 projects obtained

from 75 projects from each category).

218

TABLE I. PERCENT OF PROJECTS BY SIZE RANGE

Category [1,1] [2,200] [201,400] [401,600] [601,800] [801,1000] [1001,1200] ≥ 1201

Science & Engineering 0.01 0.78 0.11 0.04 0.03 0.02 0.00 0.01

Audio & Video 0.00 0.89 0.01 0.04 0.01 0.02 0.02 0.01

Communications 0.01 0.82 0.11 0.04 0.01 0.00 0.00 0.01

Business & Enterprise 0.01 0.73 0.14 0.05 0.04 0.00 0.01 0.02

Graphics 0.00 0.90 0.06 0.03 0.01 0.00 0.00 0.00

Games 0.01 0.82 0.13 0.03 0.01 0.00 0.00 0.00

Development 0.01 0.76 0.12 0.05 0.02 0.02 0.01 0.01

System Administration 0.01 0.93 0.04 0.02 0.00 0.00 0.00 0.00

Security & Utilities 0.00 0.94 0.04 0.00 0.01 0.00 0.00 0.01

Home & Education 0.01 0.88 0.06 0.02 0.02 0.01 0.00 0.00

TABLE II. NUMBER OF PROJECTS BY CATEGORY (SIZE [2,200])

Category Number of Projects

Science & Engineering 179

Audio & Video 80

Communications 164

Business & Enterprise 87

Graphics 101

Games 222

Development 1254

System Administration 221

Security & Utilities 79

Home & Education 75

TOTAL 2462

We can observe that categories Games and Development

had p-value < 0.01 for all coupling metrics. This result is

coherent with boxplots presented in the data exploration

because these categories also have a different characteristic

concerning coupling metrics.

For Test II, Table IV shows, for each metric, the mean

value and standard deviation considering all classes from

projects of the same category. For each metric, the highest

values were marked with `>´, while the lowest values were

marked with `<´. The category Games presented the highest

mean value in all five metrics and the category Development

presented the lowest mean value for four of five metrics.

From the results of the data exploration and the two tests,

we can see that the major category that a software project

belongs can impact on module coupling metrics. Each one of

the conducted analyses contributed with a specific view to get

this answer: the data exploration enabled to compare visually

the mean coupling level of the projects and the differences

could be observed; Test I enabled to compare the coupling

level of a category with the coupling level of the universe of

categories. In this case, we could observe that the categories

Games and Development presented the highest number of

differences, indicating that these categories must be treated

carefully when considering thresholds for quality analysis. Test

II showed that the means of metric values vary between

different categories, as well the standard deviation. This test

was also consistent with the previous analyzes because the

categories Games and Development had higher and lower mean

values, respectively.

Considering that we are conducting an experimental study,

we should consider the threats to validity. The set of chosen

projects represents a threat to external validity. Although we

have produced a reasonably fair set of projects to conduct the

study, which also has a much larger scale compared to related

work [10], the sample could not be the best representative of

those categories.

Another limitation is that we used only Java projects and

the results may not be applied to other languages. Nonetheless,

the coupling metrics used in this project applies to any other

OO language, so the study could also be a strong indicative that

the results would be valid for languages such as C++ and C#,

and the methodology could also be applied to repository of

programs in these languages. Another threat is that our results

rely on metric values extracted with the iPlasma tool, and we

cannot assure that the results are completely accurate for all

data points, although we have verified that the results were

correct for a small sample used in a testing phase.

TABLE III. RESULTS OF WILCOXON RANK SUM TEST

Category ATFD CBO DAC Ca CBO*

Science & Engineering

Audio & Video

Communications X

Business & Enterprise X

Graphics

Games X X X X X

Development X X X X X

System Administration X

Security & Utilities X

Home & Education

TABLE IV. MEAN AND STANDARD DEVIATION FOR CLASSES METRICS

Category ATFD CBO DAC Ca CBO*

Science &

Engineering

2.08

6.26

2.04

3.20

0.63

1.27

3

6.14

5.24

10.49

Audio &Video

1.77

4.80

1.96

3.18

0.6

1.41

2.76

5.47

4.88

10.06

Communications

1.77

5.23

1.91

3.26

0.55

1.14

2.8

5.21

4.76

10.31

Business &

Enterprise

2.34

7.70

2.01

3.17

0.57

1.35

2.55

5.19

5.3

11.13

Graphics

1.97

5.33

2.08

3.39

0.59

1.22

2.78

5.48

5.42

11.21

Games

2.60>

6.65

2.36>

3.76

0.82>

1.61

3.17>

5.32

6.91>

15.98

Development

1.62<

4.69

1.75<

2.85

0.43<

1.00

2.51

5.58

4.09<

9.00

System

Administration

1.94

6.20

1.88

2.91

0.64

1.72

2.36<

4.36

4.78

10.89

Security & Utilities

2.02

5.74

2.06

3.29

0.56

1.41

2.72

5.36

5.26

12.09

Home & Education

2.14

5.08

2.09

3.09

0.61

1.36

2.57

5.01

5.35

10.87

219

Fig. 1. Boxplots for mean Ca per project.

Fig. 2. Boxplots for mean CBO per project.

Fig. 3. Boxplots for mean CBO* per project.

Fig. 4. Boxplots for mean DAC per project.

Fig. 5. Boxplots for mean ATFD per project.

IV. CONCLUSION

The goal of this study was to investigate if there were

differences in the coupling level of projects in different

categories of software. We selected Java projects from the

Sourceforge belonging to 10 distinct categories. We assessed

the coupling level using five different metrics. The results

strongly suggest that there is different coupling level among

different categories. Some categories may have higher coupling

levels and other have lower levels. From the 10 categories

analyzed, the category Games had a higher coupling level,

while the category Development seems to be less coupled than

the others. We conducted a stringent statistical test at

significant level of 0.01 to provide higher confidence on this

conclusion. This result strongly suggests that we need special

attention when considering coupling thresholds when

evaluating systems in the mentioned categories.

As future work, systems in different programming

languages can be investigated, as well as other kind of metrics.

Also, a qualitative analysis that explains the obtained results

would enhance our comprehension on the characteristics of the

categories that produce that difference.

ACKNOWLEDGEMENTS

This work was partially supported by FAPEMIG grant

CEX-APQ-0286-11 and CNPQ grant 475519/2012-4.

REFERENCES

[1] R. Martin, “OO Design Quality Metrics - An Analysis of

Dependencies,” in Workshop Pragmatic and Theoretical Directions in

Object-Oriented Software Metrics, 1994.
[2] G. Gui and P. D. Scott, “Ranking reusability of software components

using coupling metrics,” J. Syst. Softw., vol. 80, pp. 1450–1459, 2007.
[3] G. Kakarontzas, E. Constantinou, A. Ampatzoglou, and I. Stamelos,

“Layer assessment of object-oriented software: A metric facilitating

white-box reuse,” J. Syst. Softw., vol. 86, pp. 349–366, Feb. 2013.
[4] C. McMillan, N. Hariri, D. Poshyvanyk, J. Cleland-Huang, and B.

Mobasher, “Recommending source code for use in rapid software

prototypes,” in Proc. of the ICSE, 2012, pp. 848–858.
[5] R. Marinescu, “Detecting Design Flaws via Metrics in Object-Oriented

Systems” in Proc. of the TOOLS39, 2001, p. 173.
[6] F. Khomh, et al. “A Bayesian Approach for the Detection of Code and

Design Smells,” in Proc of Intl. Conf Quality Softw., 2009, pp. 305–314.
[7] I. Macia, et al., “Are automatically-detected code anomalies relevant to

architectural modularity?” in Proc. of the AOSD, 2012, pp. 167–178.
[8] S. M. Olbrich, D. S. Cruzes, and D. Sjoberg, “Are all code smells

harmful? A study of God Classes and Brain Classes in the evolution of

three open source systems,” in Proc. of the ICSM, 2010, pp. 1–10.
[9] S. Olbrich, D. Cruzes, V. Basili, and N. Zazworka, “The evolution and

impact of code smells: A case study of two open source systems,” in

Proc. of the 3rd ESEM, 2009, pp. 390–400.
[10] K. A. M. Ferreira, et al., “Identifying thresholds for object-oriented

software metrics,” J. Syst. Softw., v. 85, pp. 244–257, 2012.

[11] S. R. Chidamber and C. F. Kemerer, “A Metrics Suite for Object

Oriented Design,” IEEE Trans. Softw. Eng., v. 20, pp. 476–493, 1994.
[12] W. Li and S. Henry, “Object-oriented metrics that predict

maintainability,” J. Syst. Softw., vol. 23, pp. 111–122, Nov. 1993.
[13] R. Marinescu, “Detection Strategies: Metrics-Based Rules for Detecting

Design Flaws,” in Proc. the 20th ICSM, 2004, pp. 350–359.
[14] M. Lanza, R. Marinescu, and S. Ducasse, Object-Oriented Metrics in

Practice. Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2005.
[15] E. Linstead, et al., “Sourcerer: mining and searching internet-scale

software repositories,” Data Min. Knowl. Discov., vol. 18, pp. 300–336,

Apr. 2009.

220

