
On the Use of Feature-Oriented Programming for

Evolving Software Product Lines – A Comparative Study

Gabriel Coutinho Sousa Ferreira1, Felipe Nunes Gaia
1
, Eduardo Figueiredo2 and

Marcelo de Almeida Maia
1

1Federal University of Uberlândia, Brazil
2 Department of Computer Science, Federal University of Minas Gerais, Brazil

{gabriel, felipegaia}@mestrado.ufu.br, figueiredo@dcc.ufmg.br,

 marcmaia@facom.ufu.br

Abstract. Feature-oriented programming (FOP) is a programming technique

based on composition mechanisms, called refinements. It is often assumed that

feature-oriented programming is more suitable than other variability

mechanisms for implementing Software Product Lines (SPLs). However, there

is no empirical evidence to support this claim. In fact, recent research work

found out that some composition mechanisms might degenerate the SPL

modularity and stability. However, there is no study investigating these

properties focusing on the FOP composition mechanisms. This paper presents

quantitative and qualitative analysis of how feature modularity and change

propagation behave in the context of two evolving SPLs, namely WebStore and

MobileMedia. Quantitative data have been collected from the SPLs developed

in three different variability mechanisms: FOP refinements, conditional

compilation, and object-oriented design patterns. Our results suggest that FOP

requires few changes in source code and a balanced number of added modules,

providing better support than other techniques for non-intrusive insertions.

Therefore, it adheres closer to the Open-Closed principle. Additionally, FOP

seems to be more effective tackling modularity degeneration, by avoiding

feature tangling and scattering in source code, than conditional compilation and

design patterns. These results are based not only on the variability mechanism

itself, but also on careful SPL design. However, the aforementioned results are

weaker when the design needs to cope with crosscutting and fine-grained

features.

Keywords: Software product lines, Feature-oriented programming, Variability

management, Design patterns, Conditional compilation.

1 Introduction

Software Product Lines (SPLs) [17] are known to enable large scale reuse across

applications that share a similar domain. The potential benefits of SPLs are achieved

through a software architecture designed to increase reuse of features in several SPL

products. There are common features found on all products of the product line

(known as mandatory features) and variable features that allow distinguishing

between products in a product line (generally represented by optional or alternative

features). Variable features define points of variation and their role is to permit the

instantiation of different products by enabling or disabling specific SPL functionality.

As in any software life cycle, changes in SPLs are expected and must be

accommodated [30]. When it comes to SPLs, these changes have even more impact,

since changes to attend new stakeholder requests [17], may affect several products. In

an ideal scenario, the introduction of new features on an SPL should be conducted by

inserting components that encapsulate new or enhanced features [11], minimizing

ripple effects of changes.

Variability management is a key factor to be considered when evolving SPLs.

Several mechanisms, whether annotative or compositional [34], support variability

management. Examples of variability mechanisms are FOP refinements [12, 14],

conditional compilation [2, 5], and object-oriented design patterns [27]. To be

considered effective, these mechanisms must guarantee the SPL architecture stability

and, at the same time, facilitate future changes. In order to ensure these requirements,

the variability mechanisms should minimize changes and should not degenerate

modularity. In other words, variability mechanisms should support non-intrusive and

self-contained changes that favor insertions and do not require deep modifications in

existent components. These requirements are related to the Open-Closed principle

[42], which states that “software should be open for extension, but closed for

modification”. This principle can be achieved with mechanisms that add new artifacts

to extend the system functionality, but minimize the amount of modifications in

current code.

Our work targets to find out how variability mechanisms behave in terms of

modularity and change propagation on specific SPL change scenarios. In this context,

this paper presents two case studies that evaluates comparatively three mechanisms

for implementing variability on evolving software product lines: conditional

compilation (CC), object-oriented design patterns (DP) and feature-oriented

programming (FOP). This investigation extends our preliminary work [22] and

focuses on the evolution of two software product lines, called WebStore and

MobileMedia (Section 3). We choose these SPLs because they were available to us

and have been used in previous studies with similar purpose [16, 24]. Altogether, we

considered five versions of WebStore SPL and seven versions of MobileMedia SPL.

In this study, we analyzed and compared the implementation of variability

mechanisms to evolve two SPLs, using a pure FOP language (Jak) [14] and other two

OO-based programming techniques. This work evaluated the compositional

mechanisms available in FOP by using the other two variability techniques as

baseline. The SPL implementation assessment was based on modularity and change

propagation metrics recurrently used to quantify separation of concerns and change

impacts [16, 18, 26, 47, 52]. Moreover, our study contributes to build up a body of

knowledge that allows the comparison of AHEAD and other FOP or non-FOP

approaches.

This paper extends the previous SBLP paper with two major contributions, as

follows.

 A new case study using the MobileMedia SPL; our preliminary work relies

only on the WebStore SPL. MobileMedia is larger than WebStore not only in

terms of number of components but also with respect to the variety of change

scenarios. Therefore, this new case study helped us to (i) increase the results

reliability, (ii) come up with new findings, and (iii) reduce threats to study

validity.

 We also provide more detailed data analysis and a deeper discussion about the

new findings. The analyses, that now considered data collected from both

SPLs, reinforced the findings from the first case study and revealed several

new ones. For instance, based on the MobileMedia case study, we observed

that the SoC (Separation of Concerns) metrics tend to be less discriminative on

larger systems.

Therefore, the novel contributions of this extended paper are threefold.

 The development of public benchmark data with 113,152 data points

concerning four feature modularity metrics extracted from two SPLs

implemented with three different variability mechanisms in 12 different

versions.

 The qualitative and quantitative analysis framework for change propagation

and feature modularity metrics that can be reused in further replications of this

study.

 Discussion and observations based on the obtained data about the role and the

singular applicability of each variability mechanism in the context of evolving

software product lines.

The rest of this paper is organized as follows. In Section 2, the implementation

mechanisms used in the case study are revisited. Section 3 presents the study setting,

including the target SPLs and their respective change scenarios. Section 4 analyzes

change measures through different releases. In Section 5, the modularity of WebStore

and MobileMedia SPLs are quantitatively analyzed and discussed. Section 6 presents

the threats to validity of this study. Section 7 presents related work. Finally, Section 8

concludes this paper.

2 Variability Mechanisms for Software Product Lines

This section revisits some concepts about the three techniques evaluated in this study:

conditional compilation (CC), object-oriented design patterns (DP) and feature-

oriented programming (FOP). We choose conditional compilation and design patterns

because these are the state-of-the-practice options adopted in SPL industry [5, 42].

Although there are other approaches that could be used to represent the feature-

oriented paradigm [43], we chose AHEAD because it has been widely studied [8, 10,

12, 14, 34].

2.1 Conditional Compilation (CC)

The CC approach used in this work is a well-known technique for handling

software variability [2, 5]. It has been used in programming languages like C for

decades and it is also available in object-oriented languages such as C++ [31].

Basically, preprocessor directives indicate pieces of code that should be compiled or

not based on the value of preprocessor variables. The pieces of code can be marked at

granularity of a single line of code or to a whole file.

The code snippet in Listing 1 shows the use of conditional compilation mechanism

by inserting the pre-processing directives. In this example, there are some directives

that characterize the CC way of handling variability. The directive //#if

defined(Paypal) in line 5, for instance, indicates the beginning of code belonging

to the Paypal feature. The directive #endif in line 9 determines the end of code

associated to this feature. The identifier Paypal used in the construction of these

directives is associated with a Boolean value defined in a configuration file for each

product of the line. This value indicates the presence of the feature in a product, and

consequently, the inclusion of the bounded piece of code in the compiled product.

1 private ControllerAction selectPaymentMethod(...) {

2 if (paymentType.equals("Default")) {

3 paymentAction = new GoToAction("payment.jsp");

4 }

5 //#if defined(Paypal)

6 if (paymentType.equals("Paypal")) {

7 paymentAction = new GoToAction("paypal.jsp");

8 }

9 //#endif

10 return paymentAction;

11 }

Listing 1. Example of variability management with conditional compilation.

2.2 Object-Oriented Design Patterns (DP)

Object-oriented design patterns became widely used with the Gang of Four book

[27]. Design patterns rely on object-oriented mechanisms, such as dynamic binding

and polymorphism [15], to handle variability in SPLs. The example in Listings 2, 3

and 4 shows classes that implement the Decorator design pattern [27]. The purpose of

this decoration is to provide an entry point to add a feature behavior in a pluggable

way. This pattern was designed so that multiple decorators can be stacked on top of

each other, each time adding new feature functionality to an overridden method.

Optional features were mostly implemented with decorators, following the

aforementioned stack method.

Both classes presented in Listings 2 and 3 implement the Decorator interface,

which contains the init method declaration. Line 5 in Listing 4 presents the init

method in the PaypalControllerDecorator class that decorates the init method

of a concrete component (Listing 2). The decoration is supported by dynamic binding

mechanism and the target class will contain both actions: goToHome and

goToPaypal.

2.3 Feature-Oriented Programming (FOP)

Feature oriented programming (FOP) [45] is a paradigm for software

modularization by considering features as a major abstraction. This work relies on

AHEAD [12, 14], which is an approach to support FOP based on step-wise

refinements. The main idea behind AHEAD is that programs are constants and

features are added to programs using refinement functions. We chose Jak (AHEAD)

because it is a stable language and is widely studied in the literature related to feature-

oriented programming [8, 10, 12, 14, 34]. The code snippets in Listings 5 and 6 show

examples of a class and a class refinement used to implement variation points.

The example in Listing 5 shows an ordinary base class that implements a default

action for a checkout form and Listing 6 presents the respective FOP class refinement

that considers Paypal payment in checkout. Line 1 of Listing 6 is a clause that

indicates a layer of the class refinements. The paypal identifier in line 1 is used to

compose the layers according to some pre-established order in the SPL configuration

script. In general, the composition process of FOP is similar to the behavior of a

pipeline. A base class is refined by one or more refinements in a certain order and the

result is a class containing the source code of the base class and all class refinements

from other features included. The creation of a product is specified in a configuration

script that simply indicates the order of composition of layers.

1 public class ControllerMapper implements Decorator {

2 protected Map actions = new HashMap();

3 public ControllerMapper() {

4 init();

5 }

6 public void addAction(String an, ControllerAction ca) {

7 actions.put(an, ca);

8 }

9 public void init() {

10 addAction("goToHome", new GoToAction("home.jsp"));

11 }

12 public ControllerAction getAction(String an) {

13 return actions.containsKey(an) ? actions.get(an) : null;

14 }

15 }

Listing 2. Example of variability mechanism with the Decorator pattern (Concrete Component)

1 abstract class ControllerDecorator implements Decorator {

2 protected Decorator mapper;

3 protected Map controllerMap = new HashMap();

4 public ControllerDecorator(Decorator m) {

5 this.mapper = m;

6 init();

7 }

8 public abstract void init();

9 public void addAction(String an, ControllerAction ca) {

10 controllerMap.put(an, ca);

11 }

12 public ControllerAction getAction(String an) {

13 return controllerMap.containsKey(an) ?

 controllerMap.get(an) : mapper.getAction(an);

14 }

15 }

Listing 3. Example of variability mechanism with the Decorator pattern (Abstract Decorator)

1 public class PaypalControllerDecorator extends ControllerDecorator {

2 public PaypalControllerDecorator (Decorator m) {

3 super(m);

4 }

5 public void init() {

6 addAction("goToPaypal", new GoToAction("paypal.jsp"));

7 }

8 }

Listing 4. Example of variability mechanism with the Decorator pattern (Concrete Decorator)

1 public class ProcessCheckoutFormAction {

2 private ControllerAction selectPayment(...) {

3 if (paymentType.equals("Default")) {

4 paymentAction = new GoToAction("payment.jsp");

5 }

6 return paymentAction;

7 }

8 }

Listing 5. Example of variability mechanism with FOP (base class)

1 layer paypal;

2 refines class ProcessCheckoutFormAction {

3 private ControllerAction selectPayment(...) {

4 Super(ControllerAction, String).selectPayment(...);

5 if (paymentType.equals("Paypal")) {

6 paymentAction = new GoToAction("paypal.jsp");

7 }

8 }

9 }

Listing 6. Example of variability mechanism with FOP (class refinement)

3 Study Setting

This section describes the study based on the analysis of two evolving software

product lines. One of these SPLs was constructed from scratch and the other was

adapted and implemented in pure Java and AHEAD to complete the infrastructure

setting. The study was developed to answer the research questions described in the

sequel.

3.1 Research Questions

The following research questions were posed in order to better understand the

impact of using feature-oriented programming in the SPL evolution:

RQ1) Does the use of FOP has smoother change propagation impact than CC and

DP during the evolution of an SPL?

RQ2) Does the use of FOP provides more modular and stable design than CC and

DP of the SPL features in evolution?

3.2 Infrastructure Setting

The independent variable of this study is the variability mechanism used to implement

SPLs, namely, Conditional Compilation (CC), Object-oriented Design Patterns (DP)

and Feature-oriented programming (FP). Two subject systems are used to analyze the

behavior of the dependent variables: change propagation measures and modularity

metrics. The study was organized in four phases: (1) construction of two subject SPLs

with complete releases that correspond to their respective change scenarios using the

three techniques aforementioned for each one, CC, DP and FOP, (2) manual feature

assignment of all produced source code, (3) change propagation measurement [52]

and modularity metrics calculation [47] and (4) quantitative and qualitative analysis

of the results.

In the first phase, the first two authors implemented, from the scratch, all the source

code of WebStore SPL. The FOP solution of WebStore was developed first and it

contemplates the five releases already mentioned. The other solutions were

implemented next, using the FOP solution as baseline. The other SPL, MobileMedia

[24], was already used in previous studies. There is a full CC implementation of this

SPL available and, thus, only DP and FOP solutions had to be implemented.

In the second phase, all code was manually assigned according to each SPL feature.

The feature assignment task was performed using the Prune Dependency Rule

proposed in [20]. The concrete result of this phase was text files, one for each source

code file, where each line was marked with the corresponding feature. The feature

assignment task was done so that the developers of a version do not mark their own

produced code. We have considered only source code files in our analysis. Other files,

such as makefiles and configuration scripts, generally represent a minor fraction of

artifacts in maintenance activities. Thus, we have not considered them in our study.

In the third phase, change propagation measures [52] were collected and modularity

metrics related to Separation of Concerns [47] were calculated. We have made all

calculations using the metrics formulas by manually counting the feature lines.

Finally, the results were analyzed in the fourth phase. The next sections present the

analyzed SPLs, WebStore and MobileMedia, and discuss their change scenarios.

3.3 The Evolved WebStore SPL

The first target SPL was developed to represent major features of an interactive web

store. It was developed for academic purpose, inspired by a sample application called

Java Pet Store1, focusing on the key features available in real web store systems. We

decide to use WebStore because Java Pet Store is a public available application and it

was used in a previous study with similar purpose [16]. We have also designed four

change scenarios (the same for all studied techniques – CC, DP, and FOP) that could

exercise the SPL evolution.

WebStore is an SPL for applications that manage products and their categories,

show products catalog and control payments. Table 1 provides some measures about

the size of the SPL implementation in terms of number of components, number of

methods and number of lines of source code (LOC). Classes and class refinements

1 http://www.oracle.com/technetwork/java/petstore1-3-1-02-139690.html

were accounted as components. The number of components varies from 23 (CC) to 47

(FOP).

Table 1. WebStore SPL implementation

CC FOP DP

R.1 R.2 R.3 R.4 R.5 R.1 R.2 R.3 R.4 R.5 R.1 R.2 R.3 R.4 R.5

#Components 23 23 26 26 26 25 35 44 41 47 28 32 38 40 44

#Methods 138 139 165 164 167 150 170 200 198 208 142 147 175 177 182

LOC (aprox.) 885 900 1045 1052 1066 945 1077 1257 1244 1303 915 950 1107 1121 1149

Figure 1 presents a simplified view of the WebStore SPL feature model [13].

Examples of core features are CategoryManagement and ProductManagement. In

addition, some optional features are DisplayByCategory and BankSlip. We use

numbers in the top right-hand corner of a feature in Figure 1 to indicate in which

release the feature was included (see Table 2).

Figure 1. WebStore Basic Feature Model

The WebStore versions are very similar from the design point-of-view, even

though they are implemented using three distinct variability mechanisms. In all

versions the release R1 contains the core of target SPL. All subsequent releases were

designed to incorporate the required changes in order to include the corresponding

optional features and to transform optional features into mandatory. For instance, the

version that uses FOP was developed first, trying to maximize the decomposition of

the features. All components related to features that have not shared any piece of code

were partitioned into one or more parts. This explains why release R1 in FOP contains

more components than release R1 that uses CC. All subsequent scenarios were

incorporated using insertions, modifications or removals of classes and class

refinements.

In CC versions, scenarios were incorporated in the form of new classes and

changes in existing classes. Only code of optional features was marked with CC

directives, such as #ifdef and #endif (Section 2.1). On the other hand, the

WebStore version that uses object-oriented design patterns was implemented mainly

based on two design patterns: Abstract Factory and Decorator [27]. Their roles are to

mimic FOP mechanisms, in order to provide smooth feature code additions and

different product instantiations.

3.4 Change Scenarios

As aforementioned, in the first phase of our investigation we designed and

implemented a set of change scenarios. A total of four change scenarios were

incorporated into WebStore, resulting in five releases. Table 2 summarizes changes

made in each release. The scenarios comprised different types of changes involving

mandatory and optional features. Table 2 also presents which types of change each

release encompassed. The purpose of these changes is to exercise the implementation

of optional and mandatory features to assess variability mechanisms properties in the

context of software product line evolution.

Table 2. Summary of scenarios in WebStore

Release Description Type of Change Extent of Change

R1 WebStore core

R2

Two types of payment

included (Paypal and

BankSlip)

Inclusion of optional

feature

No extensive modification

because the features can be

well localized.

R3

New feature included to

manage category

Inclusion of optional

feature

Required changes in

components related to

Product and insertions of

new components related to

Category.

R4

The management of

category was changed to

mandatory feature and new

feature included to display

products by category

Changing optional

feature to mandatory

and inclusion of

optional feature

The inclusion of the new

feature did not demand

major modifications.

Switching a feature from

optional to mandatory

required extensive

removals in the DP.

R5

New feature included to

display products by nearest

day of inclusion

Inclusion of optional

feature

Since this feature did not

affect other functionalities,

only minor changes and

insertions were required.

In general, it's expected that evolution scenarios provide the increase of variability

of the SPL. But in some cases this may not occur, as it did in release R4 of WebStore

SPL. This kind of evolution was observed in other studies and has been classified as

"New version of Infrastructure". In this case, this evolution scenario leads to a

decrease of the functionality and this can be explained by the fact that some

functionality have a tendency to move from the perimeter of a system towards the

centre [48].

3.5 The Evolved MobileMedia SPL

The second target SPL was originally developed to serve as a benchmark for studies

on aspect-oriented programming [24]. It was designed for academic purpose, but

including diverse changes scenarios that could exercise its evolution.

MobileMedia [24] was developed based on a previous SPL, called MobilePhoto

[53]. Table 3 provides some measures about the size of the SPL implementations in

terms of number of components, number of methods and number of lines of source

code (LOC). Classes and class refinements were accounted as components. LOC were

accounted without considering blank lines. The average number of components varies

from 22 (CC) to 141 (FOP). As occurred in WebStore, FOP requires more

components to implement MobileMedia features. Moreover MobileMedia DP-based

solution uses more lines of code than the FOP implementation, except in release 1. It

is important to notice that DP-based solutions have a larger number of methods than

other solutions. This can be explained by the fact that product configurations in DP-

based solutions are done at runtime, using specific creational methods to permit

variation point’s instantiation. These methods are responsible to stack one or more

feature decorator objects into a base object,

Table 3. MobileMedia SPL implementation

CC

FOP

DP

R.1 R.2 R.3 R.4 R.5 R.6 R.7 R.1 R.2 R.3 R.4 R.5 R.6 R.7 R.1 R.2 R.3 R.4 R.5 R.6 R.7

#Comp. 22 23 23 28 35 44 49 54 63 73 86 106 127 141 34 49 55 74 86 108 135

#Meth. 113 132 135 153 191 227 267 143 177 191 216 285 331 368 132 191 209 275 337 417 518

LOC 971 1147 1214 1380 1852 2334 2926 1142 1356 1458 1629 2163 2498 2827 1064 1430 1544 1936 2440 2952 3682

Figure 2 presents a simplified view of the MobileMedia SPL feature model.

Examples of core features are AlbumManagement and MediaManagement. In

addition, some optional features are Favorite, Sorting, SMS Transfer and CopyMedia.

Similar to Figure 1, numbers on the top right-hand corner of a feature in Figure 2,

were used to indicate in which release the feature was included (see Table 4).

Figure 2. MobileMedia Basic Feature Model

3.6 Change Scenarios

Unlike WebStore, which was developed from scratch, we have a full CC

implementation of MobileMedia available to us [24]. However, we had to design and

implement the corresponding set of change scenarios in FOP and DP. Six change

scenarios were considered in MobileMedia, resulting in seven releases. Table 4

summarizes changes of each release. The scenarios comprised different types of

changes involving mandatory, optional and alternatives features. Table 4 also presents

which types of change each release encompassed. The purpose of these changes is to

exercise the implementation of optional, mandatory and alternative features to assess

variability mechanisms properties in the context of software product line evolution.

Table 4. Summary of scenarios in MobileMedia

Release Description Type of Change Extent of Change

R1 MobileMedia core.

R2

New feature added to

count the number of

times a photo has been

viewed and sorting

photos by highest

viewing frequency.

New feature added to

edit the photo’s label.

Inclusion of optional

and mandatory

features

The feature Sorting required

addition of new components

and change components related

to the use of this feature.

For the feature EditLabel, a

refactoring was conducted

extracting a new

PhotoController from the

BaseController.

R3

New feature added to

allow users to specify

and view their favorite

photos.

Inclusion of optional

feature

The changes were narrowly

localized.

R4

New feature added to

allow users to keep

multiple copies of

photos.

Inclusion of optional

feature

A major refactoring of

BaseController was carried

out producing four new

specialized controllers.

R5

New feature added to

send photo to other

users by SMS.

Inclusion of optional

feature

New controllers had to be

included. New components

related to SMS transfer had to

be included. The

SMSTransfer feature was

designed as a specialization of

the CopyPhoto feature.

R6

New feature added to

play music. The photo

management basic

features were

generalized to manage

media and ViewPhoto

was turned into an

alternative feature.

Changing of one

mandatory feature

into two alternatives

A major refactoring of

PhotoController and

PhotoListController was

carried out producing two new

generic media controllers.

New controllers related to

music operations had to be

included.

R7

New feature added to

manage videos

Inclusion of

alternative feature

New controllers related to

video operations had to be

included.

4 Change Propagation Analysis

This section presents a quantitative analysis to answer RQ1. In particular, we are

interested to know how different variability mechanisms affect changes in software

product line evolution.

Table 5. Summary of scenarios in MobileMedia

 WebStore Releases Mobile Media Releases

 R.2 R.3 R.4 R.5 R.2 R.3 R.4 R.5 R.6 R.7

C
o

m
p

o
n

e
n

ts

Added

CC 0 3 0 0 2 0 5 7 17 6

FOP 4 6 2 4 10 10 23 21 74 14

DP 10 9 8 6 15 6 20 13 79 29

Removed

CC 0 0 0 0 1 0 0 0 8 1

FOP 0 0 0 0 1 0 10 1 53 0

DP 0 0 11 0 0 0 1 1 57 2

Changed

CC 2 3 5 4 7 5 7 7 11 22

FOP 1 1 0 0 10 6 23 10 28 13

DP 4 4 4 1 13 11 29 11 11 27

M
e
th

o
d

s

Added

CC 1 26 0 3 22 3 37 38 103 47

FOP 5 28 2 5 37 14 63 70 190 40

DP 21 30 32 10 60 21 99 63 285 110

Removed

CC 0 0 1 0 3 0 19 0 67 7

FOP 0 0 0 0 3 0 38 1 144 3

DP 1 0 34 0 1 3 33 1 205 9

Changed

CC 2 2 6 2 9 7 10 7 26 30

FOP 1 1 0 0 12 8 24 12 29 13

DP 3 4 3 1 25 11 30 11 37 24

L
in

e
s

o
f

C
o

d
e

Added

CC 15 148 7 14 197 67 538 478 1386 694

FOP 35 160 14 28 243 102 490 551 1534 340

DP 132 181 179 59 390 132 678 511 2189 820

Removed

CC 0 3 0 0 21 0 372 6 904 102

FOP 0 3 0 0 29 0 319 17 1199 11

DP 0 1 192 0 24 18 286 7 1677 90

Changed

CC 1 2 0 0 28 7 32 10 75 102

FOP 1 2 0 0 21 10 83 8 62 19

DP 9 2 3 0 45 13 85 12 75 46

4.1 Results

The quantitative analysis uses traditional measures of change impact [29, 52],

considering different levels of granularity: components, methods, and lines of source

code (Table 5). A general interpretation of these measures is that a lower number of

modified and removed artifacts suggests a more stable solution, possibly supported by

the variability mechanisms. In the case of additions of artifacts, we expect that it

indicates the conformance with the Open-Closed principle. In this case, the lowest

number of additions may suggest that the evolution is not being supported by non-

intrusive extensions.

Figure 3. Additions in WebStore and MobileMedia

Figure 3 shows the relative values of added components, methods and lines of code

in releases of both the WebStore SPL (left) and the MobileMedia SPL (right). In

general, the CC mechanism presents lower number of added components and methods

in both subject systems compared to DP and FOP. This may be a result of how the

insertions in CC have been carried out: by modifying existent components instead of

creating new ones. The lower number of added components of CC is adherent with

the practice for non-open-close systems that introduces changes directly in the

existent components. The number of added components could be higher if, for

example, we simply add conditional compilation directives around a method call that

is declared by a new class. However, this solution, i.e. including more components

artificially in a CC approach, would not be as usual as what programmers do in

practice with annotative approaches, because we are considering that typically

developers annotate in loco to introduce variations. Moreover, this alternative

solution would artificially mislead the measures that are expected to represent the

mechanisms provided by DP polymorphism and FOP extensions that enable the

Open-Closed principle.

Figure 4. Modifications in WebStore and MobileMedia

Concerning MobileMedia, there is no sharp difference between the measures of the

three mechanisms. The number of additions with DP is slighter greater than FOP that

is slightly greater than CC. This behavior can be explained by the fact that product

configurations in DP-based solutions are done at runtime, using specific creational

classes and methods to permit variation point’s implementation. For both SPL, there

is a ratio of about two components using design patterns for each FOP refinement. In

general, to implement a variation point in DP, it is necessary to implement decorator

classes containing the additional behavior (similar to a FOP refinement) and another

concerning the instantiation of the decorator classes.

On WebStore SPL, there is clearly higher number of components, methods and

LOCs with DP than with FOP and CC. Since this LPS is smaller than MobileMedia

SPL, i.e., it has fewer components, the presence of design pattern classes contribute to

considerably increase the difference between the measures values. In release 4, this

difference is even higher. This can be explained because the change of a feature from

optional to mandatory caused several changes at design and architecture levels. These

changes involved the removal of all classes responsible for implementing the optional

feature and also the reinsertion of classes and methods to implement the new

mandatory feature.

Figure 4 shows the relative values of changed components, methods and lines of

code in all releases of both the WebStore SPL (left) and the MobileMedia SPL (right).

The FOP mechanism has clearly a lower number of modified components and

methods in the WebStore SPL compared to DP and CC. This was due to the simple

nature of features implemented. In general, the number of components modifications

in MobileMedia is in accordance with the variability mechanisms implementation.

Both, DP and FOP have a greater number of components when compared to CC.

Thus, it is expected that the number of components changes be proportional to the

number of components. In release 4 of MobileMedia, the number of changed

components is even lower in CC, because the respective versions in FOP and DP have

been thoroughly refactored to support new features that would come in release 5. This

can be verified in release 5 where changes were almost the same.

Figure 5 shows the relative values of removed components, methods and lines of

code in releases 2 to 5 of both the WebStore SPL (left) and the MobileMedia SPL

(right). In the WebStore SPL only in release 4 using DP had a significant difference,

because the number of components, methods and lines removed were significant

higher than in CC and FOP. This is because the feature change from optional to

mandatory, resulting in removing the design pattern components that allowed

enabling this feature. Considering release 4 in MobileMedia SPL, the number of

removed components in FOP release was significantly higher than in DP and FOP.

This can be explained because this version was restructured to better support the

changes of release 5, where several class refinements needed to be removed to

support this restructuring. This behavior was also observed in release 6 of

MobileMedia, where the insertion of alternative features forced major restructuring.

Figure 5. Removals in WebStore and MobileMedia

4.2 Discussion

Considering both systems and releases, the most significant difference noted in the

change propagation is that CC releases have consistently lower number of added

components than DP and FOP. Moreover, the results showed that FOP and DP strive

to accommodate changes that require major features restructuring and usually demand

a greater amount of component removals. Based on components insertions results, we

suggest that CC does not adhere to the Open-Closed principle as FOP and DP adhere.

Depending on how the additions were carried in CC, these values could be

proportional to those presented by FOP and DP. However this would lead to a larger

number of changes and removals in CC, breaking the compliance between the three

mechanisms. We could not observe a significant difference between FOP and DP

mechanisms, because if in the WebStore, DP introduces more components than FOP,

in MobileMedia, we have the inverse situation in three of four change scenarios.

5 Modularity Analysis

This section presents and discusses the results for the analysis of the stability of the

SPLs design throughout the implemented changes. To support our analysis, we used a

suite of metrics for quantifying feature modularity [47]. This suite measures the

degree to which a single feature of the system maps to: (i) components (i.e. classes

and class refinements) – based on the metric Concern Diffusion over Components

(CDC), (ii) operations (i.e. methods) – based on the metric Concern Diffusion over

Operations (CDO) and (iii) lines of code – based on the metrics Concern Diffusion

over Lines of Code (CDLOC) and Lines of Concern Code (LOCC) [21]. We choose

these metrics because they have been applied as benchmark in previous similar

empirical studies concerning design modularity and stability [18, 23, 24, 47].

5.1 A Survey of Feature Modularity Metrics

The metrics presented in this section have a common characteristic that

distinguishes them from traditional software metrics [23]. They capture information

about the realization of features cutting across one or more components, i.e., these

metrics are used for quantifying Separation of Concerns (SoC) [23, 47]. They can be

applied to any kind of software artifact in either object-oriented or feature-oriented

programs. Although these metrics were originally proposed to quantify concern

properties, they can also be used to quantify features properties. The terms concern

and feature are used without distinction in this study.

Sant’Anna et al. [47] defined three metrics that quantify scattering and tangling of

features across a set of components, operations, and lines of code. The metrics

Concern Diffusion over Components (CDC) and Concern Diffusion over Operations

(CDO) quantify the degree of feature scattering at different levels of granularity – i.e.,

components and operations, respectively. The former counts the number of classes,

interfaces and refinements that contribute to the implementation of a feature. The

latter counts the number of methods and constructors realizing a feature. In addition

to these two measures, the authors defined Concern Diffusion over Lines of Code

(CDLOC) that computes the degree of feature tangling. For instance, given a certain

feature F, this metric counts the number of “switches” between F and lines of code

realizing other features [47]. A switch occurs when a code block realizing F is

followed by a code block realizing another feature, and vice-versa. Besides

Sant’Anna, other authors defined additional metrics to quantify properties of features.

For instance, Eaddy and his colleagues [21] proposed a metric called Lines of

Concern Code (LOCC). LOCC counts the total number of lines of code that

contribute to the implementation of a feature. We adapted these metrics considering

the ratio of the measured value to the total value on that release, for instance, CDC

was calculated as the ratio of classes that contributes to the implementation of a

feature to the total number of classes. In addition, our relative CDC represents the

percentage of classes that are used to implement the feature. This relative metrics

enabled us to analyze together the set of metric values for all features. For all the

employed metrics, a lower value implies a better result. Detailed discussions about the

metrics appear elsewhere [21, 23, 26, 47].

5.2 Simple Analysis of the Modularity Metrics

This section presents and discusses the results for the metrics presented in Section 5.1.

We analyzed 11 features from WebStore that include 4 optional and 7 mandatory

features and 15 features from MobileMedia, 3 optional, 3 alternative and 9

mandatory. Optional and alternative features are the locus of variation in the SPLs

and, therefore, they have to be well modularized. On the other hand, mandatory

features also need to be investigated in order to assess the impact of changes on the

core SPL architecture. From the analysis of the measures, interesting situations,

discussed below, naturally emerged with respect to which type of modularization

paradigm presents superior modularity and stability. The data was collected and

organized in one sheet for each metric. For WebStore, each sheet has 4,442 lines, i.e.,

one line for each combination of feature, version, technique, and artifact. For

MobileMedia, each sheet has 23,846 lines. Therefore, 113,152 points were measured

in the whole study.

In this subsection, we present a simple analysis of the modularity metrics based on

the metrics mean values for each version. Figure 6 presents CDC, CDO, CDLOC and

LOCC mean values for each release of the WebStore SPL. The CDC mean values for

FOP were consistently the lowest in all releases. The values for DP stayed in between

FOP and CC. The CDLOC mean values for FOP were also consistently the lowest in

all releases with stronger significant difference. However, for CDLOC, CC has

presented lower values than DP, but the difference of the values tended to decrease in

later releases, being almost the same in release 5. For CDO and LOCC there was no

significant difference between releases or techniques.

Figure 7 presents CDC, CDO, CDLOC and LOCC mean values for each release of

the MobileMedia SPL. The CDC values had similar behavior as those of WebStore.

FOP values were consistently lower than DP values, which were consistently lower

than CC values. For CDLOC mean values, differently from WebStore, there was no

significant difference between FOP and DP, but CC was consistently greater than

FOP and DP. Also, as occurred for WebStore, considering CDO and LOCC there was

no significant difference between FOP, DP and CC. However, interestingly, for

release 3, DP presented the lowest mean values of CDLOC, CDO and LOCC.

Figure 6. Metrics values through WebStore evolution

Figure 7. Metric values through MobileMedia evolution

5.3 Analysis of the Cumulative Distribution Function for the Modularity

Metrics

In this subsection, we present more detailed analysis of the modularity metrics

considering the dispersion of data. Our analysis is based on the empirical cumulative

distribution functions of the data. The analyses were performed using Minitab 16©.

The empirical cumulative distribution function (ecdf) can be used to evaluate the fit of

a distribution to our data and to compare the different distributions of our sample. The

stepped ecdf resembles a cumulative histogram without bars. The distribution that

best fitted our data was 3-parameter Gamma. Our data definitely does not follow a

normal distribution. Indeed, it does not follow a symmetric distribution. The data

values are typically concentrated in smaller values. In order words, the median values

for the metrics are generally smaller than the mean values.

The interpretation of the ecdf is done as follow: the higher is the area under the

curve, the higher is frequency of lower values for the corresponding metrics.

Considering that the lower are the values for feature modularity metrics, the better is

the modularization, we consider that the best metrics curve is the one the presents the

highest frequency of lower values.

Figures 8 and 9 show the empirical cumulative distribution function for the feature

modularity metrics of WebStore and MobileMedia, respectively. One interesting point

is that WebStore and MobileMedia, despite some differences, have presented an

overall similar behavior, especially in CDC, CDO and LOCC. Concerning CDO, we

can observe that FOP outperformed DP and CC in both systems, and DP

outperformed CC. For CDLOC, we can observe that FOP clearly outperformed CC in

both approaches, and clearly outperformed DP in WebStore. In MobileMedia, FOP

just slightly outperformed DP. The fact is that DP had a performance similar to FOP

in WebStore.

 For CDO and LOCC, we could not see significant differences between the three

approaches in both systems. Nonetheless, it is possible to see a slightly better

performance for FOP in both systems.

In Figure 10, we can observe the tendency of the behavior of the metrics for each

version of the system. We can see that, in general, the same global result previously

presented can be observed in all versions. However, this version-based analysis shows

that in the first versions, the CDC and CDLOC metrics have higher frequency of

lower values for FOP. In general, we can observe that the higher is the version, the

lower is the metrics values for all approaches and the lower is the difference between

the approaches, but still discriminative in the case of CDC.

Figure 11 presents the same metric values from the feature point of view. We could

see that independently from the used approaches, some features tend to produce a

similar behavior. Some features have a remarkable worse behavior than all the others

for all metrics, such as AlbumManagement (Black), PhotoManagement (Dashed

Blue). They were followed by Base (Dashed Red), SMS Transfer (Dashed Green).

These features are naturally complex. Concerning CDLOC, we can observe that

besides the aforementioned features, all approaches had not good metric values for

features Sorting (Blue Dashed-Dotted) and Favourites (Lilac Solid-Dotted).

Figure 8. Empirical CDF for all versions of Webstore (3-parameter Gamma)

Figure 9. Empirical CDF for all versions of Mobile Media (3-parameter Gamma)

Figure 10. Empirical CDF per versions of MobileMedia (3-parameter Gamma)

Figure 11. Empirical CDF per features of MobileMedia (3-parameter Gamma)

5.4 Discussion

FOP succeeds in features with no shared code. This situation was observed with six

features of the MobileMedia SPL, namely, CreateAlbum, DeleteAlbum, CreatePhoto,

DeletePhoto, EditPhotoLabel, and ViewPhoto. Some features with no shared code in

WebStore SPL, namely, DisplayByCategory and DisplayWhatIsNew, produced

similar results. The common characteristic of these features is that there is no source

code sharing or overlapping, i.e., they do not share statements, methods or

components with other features. The FOP solution presents lower values and superior

modularity in terms of tangling (CDLOC) and scattering over components (CDC),

which are supported by data in Figures 6 to 11. Figure 11, for instance, shows that the

measured curves of these features are concentrated in lower values with FOP. The

effectiveness of FOP mechanisms to modularize these features is due to the ability to

move the code in charge of realizing the feature from large classes to a set of small

cohesive class refinements. Conditional compilation lacks this ability because it has a

somewhat intrusive effect on the code, due to the need of adding #ifdef and

#endif clauses located at places where features crosscut. The results obtained from

this quantitative analysis corroborate with the common knowledge about feature

refinement mechanisms being more adequate to modularize features with no shared

code. The analysis of the other scattering metrics (CDO and LOCC) did not follow

the same trend of CDC, which can be explained with the fact that the granularity of

the methods and lines of code is lower and the distribution of features occurs in a

proportional fashion over all mechanisms. On the other hand, since the granularity of

components is higher, the respective impact on modularity metrics is more

observable.

When optional features are turned mandatory, DP removal may cause the SPL

architecture destabilization. Another interesting situation that emerged in our

analysis was the behavior of releases using the DP mechanisms on the transition from

release 3 to release 4 of WebStore. For instance, while the FOP solution handles this

particular situation without major issues, we observed the growth of the metrics in the

DP implementation when an optional feature was turned mandatory, as observed in

Figures 4 and 5. This problem can be explained by the fact that the implementation of

an optional feature with DP requires a larger number of components compared to

implement the same feature being mandatory. Therefore, developers have to carefully

design flexible core architecture to allow the inclusion of mandatory features. If the

patterns used to implement optional features are removed when the features become

mandatory, then the architecture may degenerate and become unstable. An alternative

solution would be keeping the features modularized in that patterns and make sure

that the modules are always present in all products. However, this solution would not

be fair to this specific change scenario since by turning an optional feature into

mandatory, we should remove the components responsible for variation, i.e., the

pattern implementation. If we keep pattern modules responsible for an obsolete

variation point, it means that we are keeping needless code in the SPL, which could

adversely affect future evolutions. For instance, the presence of these modules could

turn program comprehension tasks more arduous. Moreover, keeping these DP would

break the compliance between the SPL source code and feature model, since the SPL

source code would contain modules created to support the instantiation of an

inexistent variation point.

Crosscutting features are problematic for all studied approaches. We could see

from Figure 11 that the crosscutting features Sorting and Favourites were not well

handled by the approaches as the majority of the other features. The reason is that the

typical design to introduce these features intrinsically tangles and scatters their code.

The code related to these features is highly tangled in some base components of

MobileMedia, such as ImageData, MediaData, and MedialUtil. Due to this high

coupling, these features are also scattered across the source code of other features.

These components were minimally modularized and, thus, they are almost equally

implemented with the three evaluated mechanisms. In these cases, the use of

aspectual approaches would enhance modularity of these problematic features easing

their code separation [7] [8].

Ratio-based analysis of metrics tends to be less discriminative in larger systems.
The larger is the evaluated software version, the lower are the metrics ratios for all

approaches and the lower is the observable difference between the approaches. Hence,

we should consider that the size of the system can impact on the discriminative

capability of the metrics to evaluate software modularity and stability. We performed

our analysis based on the ratio of the measured values by the number of components.

Since it is necessary to compare different mechanisms, we expect lower differences in

metric values for larger systems due to the greater number of components. This

situation occurs from the intrinsic nature of the studied metrics that evaluates

scattering and tangling related to the whole system.

On the use of a single variability mechanism to construct SPLs. In practice,

developers do not necessarily use only a single mechanism to address all kinds of

features during SPL construction. They often combine two or more variability

mechanisms depending on the kind of feature, feature location and granularity,

quantification level [6, 34, 46]. Recent research shows that there is no silver bullet

when it comes to mechanisms that manage variability in SPLs [6, 46]. We would

introduce more independent variables in the study, for example, with the use of hybrid

approaches. However, there is still lack of data and study about the strength of

individual mechanisms. For this reason, we decided to study the approaches

individually to identify their unique characteristics. For example, annotative

approaches, like CC, are well known to support fine-grained extensions on

statements, parameters, and conditional expressions [31, 34]. On other hand, certain

fine-grained features are very hard, if not impractical, to implement with FOP. All

these points considered, the analysis of individual mechanisms showed that, in

general, FOP refinements provide more benefits related to modularity and changes

propagation when compared to CC and DP. In order to draw more specific

conclusions about the mechanisms, such as to propose programming guidelines to

optimize their use, it is necessary to analyze them in more studies considering

different domains, changes scenarios, and types of features.

6 Threats to Validity

Even with the careful planning of the study, some factors should be considered in the

evaluation of the results validity. We discuss the study validity with respect to its

conclusion, internal, external, and construct validity [51].

Concerning the conclusion validity, since 60264 data points were collected, the

reliability of the measurement process might be an issue. This issue was alleviated

because the measurements were independently checked by one of the authors that had

not collected the respective data. Moreover, analysis may have been affected by

spurious evidence since, for instance, modularity metrics were indirectly used to

answer RQ1. In this particular case, we could only draw plausible conclusions since a

stronger data analysis could not been carried out with such indirect measurement.

Concerning the internal validity, most analyzed versions of the SPLs were

constructed by the authors for the purpose of this study. Different design options

might have produced different results. WebStore was inspired by a previous Java

application, named PetStore [16], developed based on industry-strength technology,

such as Java Server Pages (JSP) and Servlets. Additionally, its successive releases

were discussed between the developers in order carefully developed to employ the

most widely used of each implementation technique. All CC releases of MobileMedia

were designed and implemented in previous studies [24]. Therefore, in this case we

only adapted the available releases to conform to the DP and FOP designs.

Another issue with respect to internal validity is that the modularity metrics

depends on how accurate was the mapping (assignment) of each concern to code

elements. Fortunately, we observed in a previous study [25] that, apart from Concern

Diffusion over Lines of Code (CDLOC), the mapping process does not significantly

impact the modularity metrics used in this paper. Additionally, in order to mitigate

this threat, we relied on concern mappings produced by the original developers.

Whether the concern mapping was fully correct or not, it just reflects how these

metrics would be used in practice.

Concerning the external validity, some other factors limit the generalization of the

results:

 Although the SPLs were carefully designed to be as much general as

possible, it should be considered that WebStore and MobileMedia are special

purpose systems that may not represent all properties of real world systems.

However, both PetStore (predecessor of WebStore) and MobileMedia were

used in research studies with similar purposes of ours [16, 24].

 The evolution scenarios may also not represent the large space of

possibilities in real-world SPL evolution scenarios. For instance, we have not

investigated some intricate situations involving feature interaction that may

appear in larger SPLs.

 Only the Java programming language and the AHEAD environment were

considered in this study. Some of our results could be different if other

languages and environments, such as CaesarJ [43], were used. For example,

different languages may support different types of constructs and the

measures could have some variation.

 Only modularity and change propagation metrics were considered helpful to

point out the variability mechanisms benefits. However, they provide only a

limited view of these benefits, as they do not measure the real effort required

to perform SPL changes. Similar limitation is observed in every study that

relies on metrics.

Finally, concerning the construct validity, one issue is on how much support

change propagation and modularity metrics offer to produce robust answers to our

investigation. As a matter of fact, these proxy metrics offer a limited view on the

design stability and modularity problems, i.e., they only permit us to draw indirect

conclusions about SPL modularity and stability properties. The modularity metrics

are mostly related to separation of concerns properties, which are insufficient to allow

a complete analysis of the benefits of each variability mechanism with respect to SPL

modularity. Change propagation measures were used to complement the modularity

analysis. In fact, we have learned in this study that these two sets of metrics should

not be analyzed in isolation. However, they have shown themselves to be more useful

when analyzed in conjunction with the other used metrics.

7 Related Work

Several studies have investigated variability management on SPLs [3, 4, 11, 49].

Batory and others have reported an increased flexibility in changes and significant

reduction in program complexity measured by number of methods, lines of code, and

number of tokens per class [11]. Simplification in evolving SPL architecture has also

been reported in [38, 44], as consequence of variability management. Other research

work has also analyzed stability and reuse of SPLs [18, 24]. For instance, Figueiredo

and his colleagues [24] performed an empirical study to assess modularity, change

propagation, and feature dependency of two evolving SPLs. Their results suggest that

AOP copes well with the separation of features with no shared code and does not

succeed when mandatory features are the change focus. Their study focused on

aspect-oriented programming (AOP) while, in this study, we analyzed variability

mechanisms available in feature-oriented programming (FOP).

Apel and Batory [8] have proposed the Aspectual Mixin Layers [7] approach to

allow the integration between aspects and FOP refinements. These authors have also

used size metrics to quantify the number of components and lines of code in an SPL

implementation. Similar to ours, their study can be seen as a step towards the proper

use of composition mechanisms available in these languages. Their study, however,

(i) did not consider a significant suite of software metrics, such as change propagation

metrics, and (ii) did not address SPL evolution scenarios and stability.

Dantas and his colleagues [18] conducted an exploratory study to analyze the

support of new modularization techniques to implement SPLs. Their study aimed at

comparing the advantage and drawbacks of different advanced programming

techniques in terms of SPL feature stability and reuse. These authors have compared

essentially three different AOP implementations using two evolving software product

lines: iBatis and MobileMedia. Moreover, they conducted their study considering two

additional stability metrics - Refactoring of Modules (RoM) and Alterations in Code

Elements (ACE). Their work suggests that CaesarJ [43], a hybrid AOP and FOP

approach, provides better stability and reuse of SPL modules. With respect to

modularity, their quantitative analysis, based on the same suite of SoC metrics,

showed that compositional approaches enable further modular decomposition of the

SPL code. Our work also supports this finding and presents new ones for the other

studied mechanisms in the context of SPL evolution, as discussed in Section 5.4.

Kästner and others [34] performed a study to compare other important properties to

be assessed when dealing with variability mechanisms for SPL: feature traceability,

ease of adoption and safety. Their study compared compositional and annotative

approaches, showing that each one has strengths and weaknesses. Their study

supports the synergistic use of both approaches for best results in expressiveness,

granularity and type-safety. Other studies also analyzed granularity and type-safety of

variability mechanisms in the context of SPL [9, 33]. These studies complement our

analysis since they investigate different SPL quality properties.

Several studies focused on challenges in the software evolution field [28, 39, 41].

These works have in common the concern about measuring different artifacts through

software evolution, which relies directly on the use of reliable software metrics. For

instance, Greenwood and others [29] used a similar suite of metrics to assess the

design stability of an evolving application. In general, there is a shared sense about

software metrics on the engineering perspective: they are far from being mature and

are constantly the focus of disagreements [1, 32, 40]. Different from our study,

Greenwood's one did not target at assessing the impact of changes in the core and

variable features of SPLs. Additionally, they used a different application as a case

study, named Health Watcher.

8 Concluding Remarks and Future Work

The use of variability mechanisms to develop SPLs largely depends on our ability to

empirically understand its positive and negative effects through design changes.

Generally speaking, the development of an SPL has to provide means to anticipate

changes. That is why incremental development has been largely adopted. This study

evolved SPLs in order to assess the capabilities of FOP mechanisms to provide SPL

modularity and stability in the presence of change requests. Such evaluation included

two complementary analyses: change propagation and feature modularity.

Our main contributions in this work were the development of an open benchmark

for the evaluation of evolving SPLs, a qualitative and quantitative data analysis

framework and an extensive data analysis of collected metrics using the benchmark

and the framework.

Some interesting results emerged from our analysis. First, the FOP design of the

studied SPLs tends to be more stable than the other traditional widely-used

approaches. This advantage of FOP is particularly true when a change targets optional

features. Second, we observed that FOP class refinements adhere more closely the

Open-Closed principle [42]. Furthermore, such mechanisms usually scale well for

dependencies that do not involve shared code.

The results of Sections 4 and 5 indicate that conditional compilation (CC) may not

be adequate when used in evolving SPLs when feature modularity is a major concern.

For instance, the addition of new features using CC mechanisms usually causes the

increase of feature tangling and scattering. These crosscutting features destabilize the

SPL architecture and make it difficult to accommodate future changes.

The implementations using design patterns and FOP refinements also strive to

accommodate changes that require major restructuring. They usually require a higher

number of components insertions during this kind of SPL evolution, when compared

to CC. The results have shown that the removal of some design patterns makes the

SPL architecture unstable when optional features are turned into mandatory. This kind

of change negatively affects the SPL modularity properties (especially scattering).

This work has revealed evidences for developers and language designers that

although FOP is well-suited for SPL implementation, it still has drawbacks that

require the combination with other mechanisms or the design of constructions to

handle fine-grained, crosscutting and type-safe issues, respectively.

For the future work, the study of different metrics and its relationship to other

quality attributes in SPLs, such as robustness and reuse could be interesting. In

addition, other modularity properties, such as coupling and cohesion, could be

assessed to increase the comprehensiveness of the results presented.

Also, aspects can be used symbiotically with one of the studied variability

mechanism to develop SPLs. These hybrid approaches would permit us to better

understand how they behave in change scenarios, especially because we have pointed

out the crosscutting features are issues that none of studied mechanisms could provide

successful solution (Figure 11).

Finally, a key challenge on the developing of SPLs is to guarantee that only well-

typed programs are generated. It is often hard, if not impractical, to type check all

possible products, especially when the number of feature combinations grows

exponentially with the number of features. The annotative and compositional

approaches studied in this paper do not support modular type checking. However,

there are solutions based on SAT solvers [19, 36, 50] and type-checking non-

preprocessed code [9, 35, 37] proposed to help this problem. Thus, future studies

should analyze the ability of each approach to deal with this problem and increase the

breadth of our study.

Acknowledgments

This work was partially supported by FAPEMIG, grant CEX-APQ-02932-10 and

CEX-APQ-2086-11 and CNPq grant 475519/2012-4. This work was partially

supported by CAPES and CNPq scholarships. We would like to thank the reviewer’s

comments that helped to improve the quality of this work.

References

1. Abran, A., Sellami, A., Suryn, W. Metrology.: Measurement and Metrics in Software

Engineering. In Proceedings of the 9th International Software Metrics Symposium

(Metrics), pp. 2—11. (2003).

2. Adams, B., De Meuter, W., Tromp, H., Hassan, A. E.: Can we Refactor Conditional

Compilation into Aspects? In 8th ACM International Conference on Aspect-oriented

Software Development (AOSD), pp. 243--254. ACM, Virginia, New York (2009)

3. Adler, C. Optional Composition - A Solution to the Optional Feature Problem? MSc

Dissertation, University of Magdeburg, Germany. (2011).

4. Ali Babar, M., Chen, L., Shull, F. Managing Variability in Software Product Lines,

IEEE Software,.27, pp. 89—91. (2010)

5. Alves, V., Neto, A. C., Soares, S., Santos, G., Calheiros, F., Nepomuceno, V., Pires,

D., Leal, J., Borba., P.: From Conditional Compilation to Aspects: A Case Study in

Software Product Lines Migration. In First Workshop on Aspect-Oriented Product

Line Engineering (AOPLE), Portland, USA. (2006)

6. Anastasopoulos, M.: Implementing Product Line Variabilities. In Proceedings of the

2001 Symposium on Software Reusability, pp. 109—117. ACM (2001)

7. Apel, S. et al.: Aspectual Mixin Layers: Aspects and Features in Concert. In

Proceedings of the 28th International Conference on Software Engineering, pp. 122--

131, Shanghai, China. (2006)

8. Apel, S., Batory, D.: When to Use Features and Aspects? A Case Study. In

Proceedings of the 5th International Conference on Generative Programming and

Component Engineering, pp. 59--68. Portland, Oregon (2006)

9. Apel, S., Kästner, C., Größlinger, A. and Lengauer, C.: Type Safety for Feature-

Oriented Product Lines. Automated Software Engineering, pp. 251--300. (2010)

10. Apel, S., Leich, T., Saake, G.: Aspectual feature modules. IEEE Transactions on

Software Engineering., Volume 34, pp.162--180. (2008)

11. Batory, D., Johnson, C., MacDonald, B., Heeder, D. V.: Achieving Extensibility

through Product-Lines and Domain-Specific Languages: A Case Study, ACM

Transactions on Software Engineering and Methodology, Volume 11, pp. 191--214.

(2002)

12. Batory, D., Sarvela, J., Rauschmayer.: Scaling Step-Wise Refinement. IEEE

Transactions on Software Engineering, Volume 30, Issue 6, pp. 355--371. (2004)

13. Batory, D.: Feature models, Grammars, and Propositional Formulas, In Proceedings

of the 9th International Software Product Line Conference (SPLC), pp. 7--20. (2005)

14. Batory, D.: Feature-Oriented Programming and the AHEAD Tool Suite. In

Proceedings of the 26th International Conference on Software Engineering, ICSE’04,

pp. 702--703. IEEE Computer Society, Washington, (2004)

15. Cardelli, L., Wegner, P.: On understanding Types, Data Abstraction, and

Polymorphism. Computing Surveys, 17 (4): pp. 471--522. (1985)

16. Castor Filho, F., Cacho, N., Figueiredo, E., Maranhao, R., Garcia, A., Rubira, C.:

Exceptions and Aspects: The Devil is in the Details. In Proceedings of the 4th ACM

SIGSOFT Symposium on Foundations of Software Engineering (FSE), pp. 152--162.

Portland, USA, (2006).

17. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-

Wesley, (2002)

18. Dantas, F., Garcia, A.: Software Reuse versus Stability: Evaluating Advanced

Programming Techniques. In: 23th Brazilian Symposium on Software Engineering,

SBES’10, pp. 40--49, Salvador, Bahia, Brazil, (2010)

19. Delaware, B., Cook,W., Batory, D.: Fitting the Pieces Together: A Machine-checked

Model of Safe Composition. In Proceedings of the the 7th Joint Meeting of the

European Software Engineering Conference and the ACM SIGSOFT Symposium on

The Foundations of Software Engineering, pp. 243—252, ACM, New York, NY,

USA, (2009)

20. Eaddy, M., Aho, A., Murphy, G.C.: “Identifying, Assigning, and Quantifying

Crosscutting Concerns”. In Proceedings of the 1st International Workshop on

Assessment of Contemporary Modularization Techniques, pp. 2, (2007)

21. Eaddy, M.: An Empirical Assessment of the Crosscutting Concern Problem. Ph.D.

Dissertation. Columbia University. (2008).

22. Ferreira, G., Gaia, F., Figueiredo, E., and Maia, M.: On the Use of Feature-Oriented

Programming for Evolving Software Product Lines: A Comparative Study. In

Proceedings of the 15th Brazilian Symposium on Programming Languages (SBLP),

pp. 29--30. Sao Paulo, Brazil, (2011)

23. Figueiredo, E. et al.: On the Maintainability of Aspect-Oriented Software: A

Concern-Oriented Measurement Framework. In Proceedings of European Conference

on Software. Maintenance and Reengineering, pp. 183--192, Athens (2008)

24. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A.,

Soares, S., Ferrari, F., Khan, S., Castor Filho, F., and Dantas, F.: Evolving Software

Product Lines with Aspects: An Empirical Study on Design Stability. In: 30th

International Conference on Software Engineering, pp. 261--270. ACM, New York

(2008)

25. Figueiredo, E., Garcia, A., Maia, M., Ferreira, G., Nunes, C., Whittle, J. On the

Impact of Crosscutting Concern Projection on Code Measurement. In Proceedings of

the Int'l Conference on Aspect-Oriented Software Development (AOSD), (2011)

26. Figueiredo, E., Sant’Anna, C., Garcia, A. and Lucena, C.: Applying and Evaluating

Concern-Sensitive Design Heuristics. In: Proceedings of the 23rd Brazilian

Symposium on Software Engineering (SBES), pp. 83--93, Fortaleza, Brazil (2009)

27. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of

Reusable Object-Oriented Software. Reading, MA: Addison Wesley (1995)

28. Godfrey, M., German, D.: The Past, Present, and Future of Software Evolution, In

Frontiers of Software Maintenance, pp. 129--138 (2008)

29. Greenwood, P. et al.: On the Impact of Aspectual Decompositions on Design

Stability: An Empirical Study. In Proceedings of the 21st European conference on

Object-Oriented Programming (ECOOP), pp. 176—200. Berlin (2007)

30. Grubb, P., Takang, A. A.: Software Maintenance: Concepts and Practice. World

Scientific Publishing Company, New Jersey (2003)

31. Hu, Y., Merlo, E., Dagenais, M. and Lague, B.: C/C++ Conditional Compilation

Analysis Using Symbolic Execution. In Proceedings of the IEEE International

Conference on Software Maintenance (ICSM), pp. 196, (2000)

32. Jones, C.: Software metrics: Good, Bad and Missing, Computer, Volume 27, Issue 9,

pp. 98--100 (1994)

33. Kästner, C., Apel, S. and Kuhlemann, M. Granularity in Software Product Lines. In

Proceedings of the 30th ICSE’08, pp. 311--320, New York, NY, USA, ACM (2008)

34. Kästner, C., Apel, S., Integrating Compositional and Annotative Approaches for

Product Line Engineering. In: Proceedings of the GPCE Workshop on

Modularization, Composition and Generative Techniques for Product Line

Engineering (McGPLE). pp. 35--40. (2008)

35. Kästner, C., Apel, S., Thüm, T., Saake, G.: Type checking Annotation-based Product

Lines. Transactions on Software Engineering and Methodology, Volume 21, Issue 3,

Article 14 (2012).

36. Kästner, C., Apel, S.: Type-Checking Software Product Lines - A Formal Approach.

In Proceedings of the International Conference on Automated Software Engineering

(ASE), pages 258–267. IEEE CS, (2008).

37. Kenner, A., Kästner, C., Haase, S., Leich, T.:. TypeChef: Toward Type Checking

#ifdef Variability in C. In Proceedings of the 2nd International Workshop on Feature-

Oriented Software Development, ACM, New York, NY, USA, pp. 25--32. (2010)

38. Lee, K., Kang, K. C., Koh, E., Chae, W., Bokyoung, K., Choi, B. W. Domain-

oriented Engineering of Elevator Control Software: A Product Line Practice, in:

Proceedings of the First Conference on Software Product Lines: Experience and

Research Directions, pp. 3--22. Kluwer Academic Publishers, (2000)

39. Maletic, J., Kagdi, H. Expressiveness and Effectiveness of Program Comprehension:

Thoughts on Future Research Directions, In Frontiers of Software Maintenance, pp.

31-- 37. (2008).

40. Mayer, T., Hall, T.: A Critical Analysis of Current OO Design Metrics, Software

Quality Control, Volume 8, pp. 97—110, (1999) .

41. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfield, R., Jazayeri, M.

Challenges in Software Evolution, in: IWPSE’05 : Proceedings of the Eighth

International Workshop on Principles of Software Evolution, IEEE Computer

Society, pp. 13--22, (2005)

42. Meyer, B.: Object-Oriented Software Construction, 1st ed. Prentice-Hall, Englewood

Cliffs (1988)

43. Mezini, M., Ostermann, K. Conquering Aspects with Caesar. In 2nd International

Conference on Aspect-Oriented Software Development (AOSD), Boston, USA,

(2003)

44. Pettersson, U., Jarzabek, S. Industrial Experience with Building a Web Portal Product

Line Using a Lightweight, Reactive Approach. In Proceedings of the 10th European

Software Engineering Conference, pp. 326–335. ACM, (2005)

45. Prehofer, C. Feature-oriented Programming: A Fresh Look at Objects. ECOOP 1997:

pp. 419–443. (1997)

46. Ribeiro, M., Borba, P.: Improving Guidance when Restructuring Variabilities in

Software Product Lines. In Proceedings of the 13th European Conference on

Software Maintenance and Reengineering (CSMR), pp. 79--88, Kaiserslautern,

(2009)

47. Sant’Anna, C. et al.: On the Reuse and Maintenance of Aspect-Oriented Software: An

Assessment Framework. In Brazilian Symposium on Software Engineering (SBES),

pp. 19--34 (2003)

48. Svahnberg, M., Bosch. J.: Evolution in Software Product Lines: Two cases. Journal

of Software Maintenance, Volume 11, Issue 6, pp. 391--422, New York, NY, USA.

(1999)

49. Svahnberg, M., Gurp, J.v., Bosch, J.: A Taxonomy of Variability Realization

Techniques, Software--Practice and Experience, Volume 35, Issue 8, pp. 705--754.

(2005)

50. Thaker, S., Batory, D., Kitchin, D., Cook, W.: Safe Composition of Product Lines. In

Proceedings of the 6th International Conference on Generative Programming and

Component Engineering, GPCE, ACM, New York, NY, USA, pp. 95--104 (2007)

51. Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A.:

Experimentation in Software Engineering. Springer. (2012)

52. Yau, S. S. and Collofello, J. S.: Design Stability Measures for Software Maintenance.

IEEE Transactions on Software Engineering, Volume 11, Issue 9, p. 849--856, (1985)

53. Young, T.: Using AspectJ to Build a Software Product Line for Mobile Devices. MSc

Dissertation, University of British Columbia, (2005)

