
Ranking Crowd Knowledge to Assist Software
Development

Lucas B. L. de Souza, Eduardo C. Campos, Marcelo de A. Maia
Department of Computer Science
Federal University of Uberlândia

Uberlândia, MG, 38400-902, Brazil
{lucas.facom.ufu, eduardocunha11}@gmail.com, marcmaia@facom.ufu.br

ABSTRACT
StackOverflow.com (SO) is a Question and Answer service
oriented to support collaboration among developers in order
to help them solving their issues related to software devel-
opment. In SO, developers post questions related to a pro-
gramming topic and other members of the site can provide
answers to help them. The information available on this
type of service is also known as “crowd knowledge” and cur-
rently is one important trend in supporting activities related
to software development and maintenance.

We present an approach that makes use of “crowd knowl-
edge” available in SO to recommend information that can
assist developers in their activities. This strategy recom-
mends a ranked list of pairs of questions/answers from SO
based on a query (list of terms). The ranking criteria is
based on two main aspects: the textual similarity of the pairs
with respect to the query (the developer’s problem) and the
quality of the pairs. Moreover, we developed a classifier to
consider only “how-to” posts. We conducted an experiment
considering programming problems on three different topics
(Swing, Boost and LINQ) widely used by the software devel-
opment community to evaluate the proposed recommenda-
tion strategy. The results have shown that for 77.14% of the
assessed activities, at least one recommended pair proved
to be useful concerning the target programming problem.
Moreover, for all activities, at least one recommended pair
had a source code snippet considered reproducible or almost
reproducible.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Tech-
nique—Software libraries
; H.3.1 [Information Storage and Retrieval]: Content
Analysis and Indexing—Indexing methods

General Terms
Documentation, Experimentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICPC ’14, June 2–3, 2014, Hyderabad, India
Copyright 2014 ACM 978-1-4503-2879-1/14/06 ...$15.00.

Keywords
Q&A services, crowd knowledge, recommendation systems

1. INTRODUCTION
In the last decade, concomitantly with the emerging of

Web 2.0, a new software development behavior emerged and
is changing the characteristics of software development. This
change is the result of an extensive accessible structure of
social media (wikis, blogs, questions and answers sites, fo-
rums) [18]. Similar to the way that open source development
has changed the traditional process of software development
[16], these new forms of collaboration and contribution have
the potential to redefine how developers learn, preserve and
share knowledge about software development.

One important example of social media is SO that is a
Question and Answer (Q&A) website which uses social me-
dia to facilitate knowledge exchange between developers by
mitigating the pitfalls involved in using code from the In-
ternet. Its design nurtures a community of developers, and
enables crowd sourced software engineering activities rang-
ing from documentation to providing useful, high quality
code snippets [1]. The set of information available on this
social media services is called “crowd knowledge” and often
become a substitute for the official software documentation
[26].

Mamykina et al. conducted a statistical study of the entire
SO corpus to find out what is behind the immediate success
of it. Their findings showed that a majority of the questions
will receive one or more answers (above 90% very quickly
- with a median answer time of 11 minutes) [14]. In [26],
Treude et al. pointed out that SO is particularly effective
for code reviews, for conceptual questions and for novices.

SO has on its website, a search engine that allows users to
query for textual content (for example: “how to sort a vector
using Boost”). The result of a search is a set of discussions
(threads), each one composed by a question and a series of
answers. Users can sort threads according a number of cri-
teria such as: the number of votes the question received; the
relevance to the search query. However, considering only one
criterion may bring some trouble to the user, for example:
the search can return threads to the user that despite having
relevance to the search query, have a negative rating by the
community, or may return threads that despite being well
voted by the community, are not very relevant to the de-
veloper’s query. Thus, considering more than one criterion
seems to be more appropriate in a recommendation strategy.

In this paper, we present a recommendation strategy that
makes use of the information available on SO to suggest

question/answer pairs that may be useful to the program-
ming task that a developer needs to solve. In this approach,
we try to recommend pairs considering two aspects. The first
concerns the textual similarity that the question/answer pair
has with the task that the developer has at hand. The rea-
son behind this criterion is that other developers may have
had similar doubts in the past and posted questions on SO,
so the answers to those past questions may be reused. The
second criterion considers the score of the questions and an-
swers from SO to try to recommend only Q&A pairs that
were well evaluated by the crowd. The result of the recom-
mendation process is a set of question/answer pairs that can
be accessed by the developer via browser.

We made experiments to evaluate the recommendation
strategy. The programming problems used in the experi-
ments were extracted randomly from cookbooks for three
topics widely used by the software development community:
Swing, Boost and LINQ. The results have shown that for
27 of the 35 (77.14%) activities, at least one recommended
pair proved to be useful to the target programming problem.
Moreover, for all the 35 activities, at least one recommended
pair had a reproducible or almost reproducible source code
snippet.

The rest of this paper is organized as follows. Section 2
presents a Logistic Regression classifier used in this study
to classify Q&A pairs into domain categories. Section 3
presents the experimental setting of our work. In Section
4 we present the results that are discussed in Section 5. In
Section 6 we present the Related Work. In Section 7 we
draw our conclusions.

2. CLASSIFICATION OF Q&A PAIRS
On SO, users ask many kind of different questions. Ac-

cordingly to Nasehi et al. [17] “SO question types can be
described based on two different dimensions. The first di-
mension deals with the question topic: It shows the main
technology or construct that the question revolves around
and usually can be identified from the question tags that
the questioner can add to the question to help others (e.g.,
potential responders) find out about what the question is
about”. Thus, if our goal is to recommend Q&A pairs for
the topic Swing, we only consider in our approach Q&A pairs
belonging to threads of discussion in which the question has
the tag “swing” among its tags (a question on SO can have
up to five tags). Yet accordingly to Nasehi et al. “ques-
tions from SO can also be classified in a second dimension
that is about the main concerns of the questioners and what
they wanted to solve”. In this dimension, we considered the
following five categories:

• How-to-do-it: The questioner provides a scenario and
a question about how to implement it (sometimes with
a given technology or API) [17];

• Conceptual: Conceptual questions on a particular topic
(e.g., definition of concepts, best practices for a given
technology). The questioner is waiting for an explana-
tion of a particular subject or justification on certain
behavior;

• Seeking-something: The questioner is looking for some-
thing more objective (e.g., book, tutorial, tool, frame-
work, library) or more subjective (e.g., an advice, an
opinion, a suggestion, a recommendation);

• Debug-corrective: Questions that deal with problems
in the development code, such as errors at run time,
notifications or unpredictable behavior. The questioner
usually looks for revision in his code;

• Miscellaneous: The questioner has many different in-
terests. Thus, he asks several questions. This usually
leads to a mixture between the other categories (e.g.,
the questioner may be looking for a book and want a
recipe for a problem).

The How-to-do-it category is very close to scenario in
which a developer has a programming task at hand and need
to solve it. For this reason, in our approach, we only con-
sider Q&A pairs that are classified as How-to-do-it. In order
to automate the selection of this kind of pairs, we developed
a classification strategy to obtain only that type of Q&A
pairs, which is shown on subsection 2.1.

2.1 Classification Algorithm
We performed a comparison between different classifica-

tion algorithms to find the one that best classifies Q&A pairs
from SO. In the classification process, we used seven classi-
fication algorithms: Logistic Regression (LR) [19, 11], Naive
Bayes (NB) [13], Multilayer Perceptron (MLP) [9], Sup-
port Vector Machine (SVM) [13], J4.8 Decision Tree (J4.8)
[13, 24], Random Forest (RF) [12] and K -Nearest Neighbors
(KNN) [13].

We decided to classify the Q&A pair instead of classifying
only the question body because we observed that in some
cases the answer body provides relevant information to help
to make decision of the Q&A pair category (e.g., differen-
tiate between pairs of How-to-do-it and Debug-Corrective
categories).

2.2 Definition of Attributes
We defined 10 attributes to characterize SO Q&A pairs.

Out of these 10 attributes, 6 are related to the number of
occurrences of terms, that are in a predefined keywords set,
in the “title”, “question body” and “answer body” of a pair.
The remaining 4 attributes are boolean attributes and they
are related to the presence or absence of source code or links
in the question body and answer body for a given pair. We
carried out a Feature Selection with Information Gain [28,
7] Filter to reduce the feature space and eliminate the least
relevant attributes. The filter process selected 5 attributes.

We adopted a weighting criterion because there are key-
words that seems to be more important than others. Thus,
each keyword has its weight (1 or 5). Keywords with weight
1 are less important and are counted only once, while the
keywords with weight 5 are more important and are counted
5 times when appeared in a Q&A pair.

The attributes that were selected using Information Gain
Filter are shown below in decreasing order of Information
Gain Value (the higher the value of Information Gain, the
better the attribute contributes to the classification process):

• conceptualQty: Terms and expressions used to de-
scribe a pair in the category Conceptual (e.g., Weight
1: “lesson”, “understand”, “how much”, etc.; Weight 5:
“explain”, “clarify”, “difference between”, etc.);

• lookingForQty: Terms and expressions used to describe
a pair in the category Seeking-something (e.g., Weight

1: “idea”, “suggestion”, “guide”, etc.; Weight 5: “look-
ing for”, “searching around”, “seeking”, etc.).

• howQty: Terms and expressions used to describe a pair
in the category How-to-do-it (e.g., Weight 1: “algo-
rithm”, “implement”, “function”, etc.; Weight 5: “how
to”, “how can”, “how does”, etc.);

• answerHasCode: Boolean value that indicates whether
exists source code in the answer.

• questionHasCode: Boolean value that indicates whether
exists source code in the question.

2.3 SO Dataset
We downloaded a release of SO public data dump1 (the

version of March 2013) and imported the data into a rela-
tional database in order to classify the SO Q&A pairs. The
“posts” table of this database stores all questions posted by
questioners in the website until the date the dump was built.
This table also stores all answers that were given to each
question, if any.

We randomly selected from this relational database a batch
of 400 Q&A pairs and manually classified them. In the clas-
sification process of each pair, we considered five categories:

Table 1 shows the results of manual classification per-
formed on 400 selected Q&A pairs.

Table 1: Manual classification of 400 selected Q&A
pairs.

Category #Classified Q&A pairs

How-to-do-it 109
Conceptual 106
Seeking-something 121
Debug-Corrective 10
Miscellaneous 54

As the number of Q&A pairs of the Debug-corrective cat-
egory was only 10, this category was not considered in the
construction process of the dataset. Until the moment, no
practical application was found for Miscellaneous category.
Therefore this category was not considered in the construc-
tion process of the dataset. Obviously, all Q&A pairs classi-
fied as Debug-corrective or Miscellaneous were not used for
training/testing the classifiers.

In the next step, we generated a ARFF file (Attribute-
Relation File Format), containing the labeled instances and
the information of attributes. This file was loaded into
Weka [8] interface for the tests. We conducted an exper-
imental study with 336 SO Q&A pairs divided into three
domain categories: How-to-do-it, Conceptual and Seeking-
something. The experiments were performed with Weka us-
ing a 10-fold-cross validation technique.

The best results were obtained with a Logistic Regression
(LR) classifier with an overall success rate of 76.19% and
79.81% on How-to-do-it category. Table 2 shows the clas-
sification results obtained and has the following structure:
Classifier, Success Rate (%), Correctly Classified Instances
(Correct) and Incorrectly Classified Instances (Incorrect).
In this work, we used the LR classifier to find out which are
Q&A pairs of How-to-do-it category.

1http://blog.stackoverflow.com/category/cc-wiki-dump/

Table 2: Results with selected attributes.
Classifier Success Rate Correct Incorrect

LR 76.1905% 256 80
NB 72.9167% 245 91

MLP 75.8929% 255 81
SVM 70.2381% 236 100
J4.8 69.6429% 234 102
RF 71.7262% 241 95

KNN (k = 5) 69.9405% 235 101

3. EXPERIMENTAL SETTING
In this section, we state our research goal, present the

three topics considered in the experiments, explain how our
recommendation approach works and details the experiment
design and evaluation.

3.1 Research Goal
The aim of this paper is to recommend Q&A pairs to assist

developers in their development tasks, considering that the
recommended Q&A pairs should have textual similarity with
the development task and they should be well evaluated by
the SO community. A thread of discussion on SO is formed
by a question and a series of answers to that question. We
decided to recommend Q&A pairs instead of entire threads
because the answers for the same question can have different
scores, i.e., some answers can be better than others. We
consider that a score of a pair (i.e., the number of upvotes
minus the number of downvotes) is a indicative of its quality,
because it’s the main way that the SO community has to
evaluate its content. So, we expect that recommended pairs
are highly relevant in the context of the user task.

3.2 Considered Topics
We conducted our experiments on three topics for different

programming languages (Java, C++ and .NET languages,
respectively) widely used in the software development indus-
try: Swing, Boost and Language Integrated Query (LINQ).

Swing is a toolkit created to enable enterprise develop-
ment in Java. Therefore, developers can use Swing to create
large-scale Java applications with a wide array of powerful
components [6, 5].

Boost is a collection of C++ libraries. Each library has
been reviewed by many professional developers before being
accepted to Boost. Libraries are tested on multiple plat-
forms using many compilers and the C++ standard library
implementations [20].

LINQ (Language Integrated Query) is a Microsoft .NET
framework programming model, which adds query capabili-
ties to the .NET programming languages. These extensions
provide shorter and expressive syntax to manipulate data
[10].

3.3 Index Construction
We used the search engine Apache Lucene [2] to index the

data. For a given topic (e.g., Swing) we obtain all threads
from our database in which the question has a specific tag
(e.g., “swing”). Then, from that set of threads, we obtain all
Q&A pairs (e.g., if a thread has a question and n answers,
we generate n Q&A pairs for that thread). Table 3 shows
the number of Q&A pairs obtained for each topic considered
in this paper.

The next step is to classify Q&A pairs in order to con-
sider only How-to-do-it pairs. Table 4 shows the result of the
pair’s classification. For each Q&A pair classified as How-to-
do-it, we remove its HTML tags, parse it, remove stop words
and perform stemming on its content (text of title, question
and answer, excluding the code snippets) using the Porter
Stemming algorithm [22]. As questions and answers from
SO can have source code snippets that are not appropriate
to be parsed using the Lucene parser (because it is primar-
ily a natural language parser) we treat those snippets in a
different way. For Swing library we developed regular ex-
pressions to obtain the names of classes/interfaces/methods
that are being created or called. For instance, suppose that
the name of a method being declared is“addActionListener”.
As the Camel Case coding pattern is the most used pattern
in Java, we split that names in its component terms. For
the term “addActionListener” we obtain the words “add”,
“action” and “listener”. We add into the Q&A pair docu-
ment both the original term and its constituent terms, after
performing stemming on them (in the example we would add
to the Q&A pair document the terms “addActionListener”,
“action”, “add”and“listener”(after removing stop words and
stemming it). The reason to add to the document the name
of classes/interfaces/methods being declared or used is that
sometimes the asker wants to perform a specific task using
a particular element of that API (e.g., “How to open a file
using JFileChooser”), so including that information on the
document could help our approach finding a pair that is ad-
herent to those terms. For Boost we also developed regular
expressions in order to identify the classes/methods/structs
being declared or used. For LINQ, it is somewhat different
because it is not a classical API: we checked if the source
code snippet is using one of its operators (e.g., “OrderBy-
Descending”, “SelectMany”) and perform similar processing
as described for Swing on the name of those operators. The
corpus of documents created is used to build a search index
using Lucene. In the next subsection we present how we use
this index to search Q&A pairs. For each API considered
in this paper, we created an index following the previous
approach. Table 5 shows the number of documents used to
build the index for each topic. Observe that the number
of documents is the same of Q&A classified in the category
“How-to-do-it”. This is explained because for each Q&A
pair classified in that category is generated a document that
composes the corpus used to build the index. Table 5 also
shows the number of different terms in the documents for
each topic.

Table 3: Total of Q&A pairs by topic.
Topic Programming Language Total of Q&A pairs
Boost C++ 14,558
Swing Java 45,239
LINQ C# 60,035

Table 4: Results of classification by topic.
Topic How-to-do-it Conceptual Seeking-something
Boost 7,125 4,112 3,321
Swing 26,374 10,629 8,236
LINQ 39,592 13,962 6,481

Table 5: Indexes Information by topic.
Topic Number of documents Number of terms
Boost 7,125 55,383
Swing 26,374 187,914
LINQ 39,592 263,502

3.4 Searching in Lucene Indexes
The Lucene’s index built for a topic can be used to search

Q&A pairs that are relevant to a given query for that topic.
We perform two types of search on this index, that we call
Scenario A and Scenario B.

Scenario A corresponds to the situation where a developer
has a task at hand, which will be solved using a particular
API (e.g., “Boost”), but he does not know which API ele-
ment (e.g., class or method) could help him solve his prob-
lem. For example, a developer could need to “read a text file
using Boost”. The title of the task (in this example “read
a text file using Boost”), after being pre-processed (removal
of stop words and stemming) is used as a search query to
retrieve Q&A pairs.

Scenario B corresponds to the situation where a devel-
oper needs to solve a programming task using a particular
element of the API. For example: someone could need to
use the Swing library to “change the color of a JButton”,
where JButton is a widget class from Swing. In this case,
the developer already knows which element has to be used.

We search Q&A pairs in Scenario B in a similar way of
what we described for Scenario A. The difference is that we
append to the task’s title a string corresponding to a class
name (in the case of Swing and Boost) or a operator name
(in the case of LINQ) that we considered crucial in the so-
lution presented in the cookbook for that problem. As we
show later, the tasks considered in the experiments were ex-
tracted from cookbooks related to the topics. For example,
for Swing one of the tasks selected for the experiment has the
title “Action Handling: Making Buttons Work”. The class
“ActionListener” is important in the solution of the task.
Thus, we append to the title the string “ActionListener”,
and the resulting string “Action Handling: Making Buttons
Work ActionListener” is used as input to search on Lucene’s
index (after the removal of stop words and stemming of its
content).

The result of a search on Lucene index is a ranked list of
documents (i.e., Q&A pairs), in which the first one is the
more similar to the search query and the last one is the less
similar. Each pair in this ranking has a numeric value that
we call Lucene’s score that represents its similarity to the
query. Thus, the first pair of the ranking has the greater
Lucene’s score and the last one has the smallest value.

3.5 Ranking Q&A Pairs by SO Score
Using the ranking returned for a search on Lucene’s index,

we can obtain pairs that have textual similarity with the
input query but we cannot ensure nothing about its quality,
i.e., among the pairs returned for a query may exist pairs well
evaluated and pairs poorly evaluated by the SO community.
Here we consider that a post’s (question or answer) score
is a proxy for its quality because the voting mechanism on
SO is the main feature that allows SO members evaluate its
content. Because each individual post on SO has its own
score and our recommendation strategy will suggest Q&A
pairs, being each pair composed by a question and an answer

to that question, we needed to define a metric that indicates
the quality of the pair as a whole. One possible approach to
achieve this, is to consider the mean value of the question’s
score and answer’s score of a pair. However, we decided
to consider the score of pair as the weighted mean value
between the individual scores of its answer and question.
We arbitrarily defined the values 7 and 3 for the weights of
the answer and question from a pair. The reason to use this
approach is because the answer seems to be more important
than its belonging question, since the answer usually carries
more information about the problem. We call this weighted
mean as SO score of a pair.

Given a topic (e.g., Swing), we can calculate the SO score
of each How-to-do-it pair that belong to that topic. In the
next subsection, we will combine the SO score of a pair and
its Lucene’s score to build a ranking of pairs that will be
used in our recommendation strategy.

3.6 Combining Scores to Rank Q&A Pairs
The Lucene’s score of a pair indicates how much it is

textually similar to a given search query, while its SO score
indicates how much it was well voted by the SO crowd. Both
of these aspects are considered in our recommendation, since
we wanted to provide to the user of our system pairs that are
at the same time related to the problem that he/she wants
to solve and have good quality.

In order to combine both metrics in a single measure,
we had to perform a normalization step. We normalize the
Lucene’s score of each pair returned for a query using min-
max normalization technique. After this process, all pairs
returned by a search on Lucene index have Lucene’s score
value in the range [0,1]. For those pairs, we also normal-
ize it’s SO score in the range [0,1]. The reason to normalize
both of Lucene’s score and SO score is because generally the
SO score of a pair is much greater than its Lucene’s score,
i.e., those metrics have different nature. After this normal-
ization step, we calculate the arithmetic mean of each pair.
This mean is called Final Score and is used to rank the
pairs in descending order. The top 10 pairs of this ranking
are recommended to the user that queried the system.

3.7 Evaluation Criteria
In this section, we present the criteria used to evaluate the

result of a recommendation made by our system. We defined
two criteria in order to evaluate each pair recommended by
our approach.

The first criterion is called Relevance (in short, Relev).
This criterion is used to check to which extension the infor-
mation contained in a pair can be used to help a developer
solving the task that was queried on our system. The grade
given in this criterion ranges from 0 to 4. The value 0 means
that the recommended pair is not related at all to the task
queried. The value 4 means that information contained in
the pair can be used to completely solve the user’s problem.
This metric is not boolean because sometimes the informa-
tion in a pair can be used to partially solve a problem.

The second criterion is called Reproducibility (in short,
Reprod). This criterion is used to evaluate to which exten-
sion the source code snippets available on the question and
answer bodies of a recommended pair can be easily com-
piled and executed. While the criterion Relev has a seman-
tic aspect, i.e., its main goal is to check if the task can be
solved using the information recommended, Reprod is a syn-

tactic metric because it evaluates how easily the snippets can
be compiled and executed, regardless if it is related to the
search query at all. The grade also ranges from 0 to 4. The
value 0 means that the recommended pair does not have
source code snippets or its snippets cannot be compiled at
all. The value 4 means that the snippets can be easily com-
piled and executed mostly without adaptation. This met-
ric is not boolean because sometimes the pairs have source
code snippets that although they cannot be directly exe-
cuted, they could be compiled after some adjustments (e.g.,
many snippets are incomplete because they are missing a
variable declaration, but if we declare the missing variable,
the snippets becomes complete and could be compiled).

3.8 Experimental Design
We present an evaluation composed of experiments with

the three considered topics to address the question whether
our recommendation strategy can actually help developers
in their development tasks. We consider a total of 35 devel-
opment tasks: 12 for Swing, 12 for Boost and 11 for LINQ.

The Swing tasks were extracted from chapter 13 of Java
Cookbook [5], that contains only tasks related to GUI (Graph-
ical User Interfaces) technologies. There are 14 tasks on that
chapter and we randomly selected 12 of them.

The Boost tasks were extracted from a Boost Cookbook
[20]. We randomly selected 12 of 91 tasks available on this
cookbook.

The LINQ tasks were extracted from a blog2 developed by
the Visual Basic Team from Microsoft. There are 12 tasks on
that blog, however we only selected 11 of them because one
task just had instructions on how to configure a database
that is used in other tasks described on the blog, and thus it
is not appropriate to be used in a experiment to recommend
pairs for LINQ, since it is much more related to a generic
database field than to LINQ.

We made a qualitative manual analysis of the recommen-
dation for all 35 tasks. Figure 1 shows the design of our
experiment. For each topic (Swing, Boost and LINQ) we
made experiments to test Scenario A and Scenario B. From
the 12 tasks previously selected for Swing, we randomly se-
lected 6 for Scenario A and 6 for Scenario B. The same was
done for Boost. For LINQ, as we had only 11 tasks, we ran-
domly selected 6 and 5 tasks for Scenario A and Scenario B
respectively. The input query for Scenario A was the title of
the tasks (after stemming and removal of stop words). The
input for Scenario B was a string formed by the title of a
task appended with a name of a class (in the case of Swing
or Boost) or operator (in the case of LINQ) that was im-
portant in the solution presented in the original cookbooks
from where the tasks were extracted.

Table 7 shows for Swing, the 12 tasks selected for the
experiment. The first 6 were included in Scenario A and
the remaining 6 in Scenario B. The tasks for Scenario B
are already shown with its title modified. For example, the
title of the task 13.5 is originally “Action Handling: Making
Buttons Work”. In the table we present its title as “Action
Handling: Making Buttons Work ActionListener”, because
“ActionListener” was the class name chosen to be append to
the title, since it’s a key class used in the solution for that
problem. After removing stop words (if it has some) and
stemming, the resulting string is used as a search query to

2http://blogs.msdn.com/b/vbteam/archive/tags/linq+
cookbook/

Figure 1: Experimental Design with distribution of the tasks per topic.

retrieve Q&A pairs. Similar tables are shown for Boost and
LINQ (Tables 12 and 17 respectively). In those tables, the
name of classes or operators used for Scenario B are shown
in italic.

The first two authors of this paper (let’s say Author A and
Author B) individually evaluated for each of the 35 tasks,
the 10 first recommended pairs. For each pair, they graded
the two criteria previously described. In the Table 6, the
column “Kappa Before” shows the Weighted Kappa [3] cal-
culated to measure the agreement among the two evaluators.
In that table, each row represents a triple “Topic/Scenario/
Criterion”. Thus, in the first row the Weighted Kappa was
calculated to compare the Relev grades given by the two
authors for the pairs returned for the 6 tasks selected for
Scenario A for Swing (so each row represents a comparison
between 60 values, since the authors analyzed the first 10
pairs recommended for each task).

Table 6: Weighted Kappa - Agreement Comparison
Topic/Scenario/Criterion Kappa Before Kappa After

Swing/A/Relev 0.6 0.89
Swing/A/Reprod 0.84 0.95
Swing/B/Relev 0.58 0.92

Swing/B/Reprod 0.86 0.98
Boost/A/Relev 0.54 0.95

Boost/A/Reprod 0.94 0.95
Boost/B/Relev 0.81 0.94

Boost/B/Reprod 0.67 0.98
LINQ/A/Relev 0.95 0.97

LINQ/A/Reprod 0.81 0.93
LINQ/B/Relev 0.68 0.92

LINQ/B/Reprod 0.87 0.94

In a next step, the evaluations of the two authors were
compared. The pairs in which the difference of the grades
given by the authors was greater than or equal to 2 were
marked for posterior discussion (e.g., Author A graded Relev
as 4 for a pair and Author B graded Relev as 1 for the same
pair). The reason to consider only the differences greater
than or equal to 2 is because we don’t consider a difference
of 1 (e.g., Author A graded Relev of a pair as 3 and Author
B graded it as 4) as a significant disagreement among the
evaluators.

After marking those pairs with major divergence, the eval-
uators discussed each one and came to an agreement about
them. After modifying the grades in this discussion step,
the Weighted Kappa was calculated again and is shown in
column “Kappa After” of Table 6. Comparing the values be-
fore and after this step, we can see that the agreement has
been improved (a Weighted Kappa value“1”means a perfect
agreement). Since we have obtained high overall agreement,
we decided to consider only the evaluations made by Author
A.

4. RESULTS
In this section, we present the results of the proposed ex-

periment. Tables 8, 9, 10, 11, 13, 14, 15, 16, 18, 19, 20
and 21 have the same column structure: the task identi-
fier and the first 10 ranking positions (P1 to P10). Each
ranking position corresponds to a recommended pair. The
tables show the ranking obtained for each task, considering
the topic (Swing, Boost or LINQ), the scenario (A or B) and
the criterion (Relev or Reprod).

For example in Table 8, in the first line of data, we have
the results for task 13.14. We can observe that the best
ranked pair (column P1) had received grade 2 (neutral).
Moreover, we can see highly relevant pairs at P3 and P6.

We used the Normalized Discounted Cumulative Gain
(NDCG) metric to have a numerical assessment of the rank-
ing of pairs recommended in the experiments. NDCG is
generally used to evaluate retrieval results from search en-
gines and uses a multi-valued notion of relevance [15]:

NDCG(Q, k) =
1

|Q|

|Q|∑
j=1

Zkj

k∑
m=1

2M(j,m) − 1

log2(1 + m)
(1)

k is the size of the result set. In our experiments k =
10, because we recommend 10 pairs to the user. M(j,d) is
the metric value gave to document d for query j. Since we
considered two criteria in our experiments, M(j,d) can be
Relev or Reprod. We calculated NDCG value for both of
those criteria. Zkj is the normalization factor calculated
such that NDCG is equal to 1.0. We followed the same ap-
proach used in a related work [21] to calculate this factor.
In that approach, this factor is calculated in the scenario
in which all documents retrieved have the maximum grade

Table 7: Swing Tasks
Task Task Title
13.14 Program: Custom Font Chooser
13.13 Changing a Swing Program’s Look and Feel
13.11 Choosing a Color from all the colors available on

your computer
13.3 Designing a Window Layout
13.1 Choosing a File
13.8 Dialogs: When Later Just Won’t Do
13.12 Centering a Main Window JFrame
13.2 Adding and Displaying GUI Components to a win-

dow JFrame
13.9 Getting Program Output into a Window PipedIn-

putStream
13.4 A Tabbed View of Life JTabbedPane
13.5 Action Handling: Making Buttons Work ActionLis-

tener
13.6 Action Handling Using Anonymous Inner Classes

ActionListener

Table 8: Swing - Scenario A (0 = Not Relevant, 4
= Highly Relevant)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
13.14 2 2 4 2 2 4 2 2 2 2
13.13 0 4 4 4 3 3 1 3 3 4
13.11 1 2 2 0 2 2 3 0 1 2
13.3 3 0 0 2 0 0 2 3 0 0
13.1 4 4 0 3 3 4 4 4 2 3
13.8 3 1 2 3 4 2 2 2 1 4

Table 9: Swing - Scenario A (0 = Not Reproducible,
4 = Highly Reproducible)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
13.14 0 0 4 3 0 3 4 3 2 0
13.13 3 0 0 4 4 0 0 0 4 3
13.11 0 0 0 3 3 3 4 4 3 0
13.3 0 4 0 0 0 0 4 0 0 0
13.1 4 4 4 4 4 4 4 0 3 3
13.8 0 0 0 3 4 3 0 4 4 4

Table 10: Swing - Scenario B (0 = Not Relevant, 4
= Highly Relevant)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
13.12 4 2 3 3 4 0 2 0 2 2
13.2 3 1 2 1 4 4 1 0 0 2
13.9 4 4 4 1 1 0 0 4 0 0
13.4 4 2 2 2 3 2 1 3 3 3
13.5 4 2 4 2 2 2 2 2 2 3
13.6 2 4 4 3 3 3 3 3 4 4

Table 11: Swing - Scenario B (0 = Not Repro-
ducible, 4 = Highly Reproducible)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
13.12 0 0 0 4 3 3 4 0 2 0
13.2 4 0 0 0 0 0 4 0 2 2
13.9 4 4 4 3 4 4 4 4 0 0
13.4 4 0 0 3 4 4 0 4 4 4
13.5 0 4 0 0 0 4 0 0 0 3
13.6 3 4 3 3 4 4 4 4 4 4

Table 12: Boost Tasks
Task Task Title
2.8 Parsing date-time input
3.1 Doing something at scope exit
12.5 Using portable math functions
12.7 Combining multiple test cases in one test module
10.7 The portable way to export and import functions

and classes
3.5 Reference counting pointers to arrays used across

methods
7.7 Using a reference to string type string ref
10.2 Detecting RTTI support type index
1.11 Making a noncopyable class noncopyable
9.2 Using an unordered set and map unordered set
7.2 Matching strings using regular expressions regex
8.8 Splitting a single tuple into two tuples vector

Table 13: Boost - Scenario A (0 = Not Relevant, 4
= Highly Relevant)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
2.8 3 2 3 3 3 2 2 2 3 3
3.1 1 2 0 0 0 0 0 0 0 1
12.5 1 0 0 0 4 0 4 4 4 4
12.7 2 4 0 0 0 2 2 2 4 0
10.7 3 2 0 1 2 0 0 0 0 0
3.5 3 2 2 2 3 2 2 3 2 3

Table 14: Boost - Scenario A (0 = Not Repro-
ducible, 4 = Highly Reproducible)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
2.8 2 4 4 4 4 0 4 4 4 4
3.1 4 4 4 0 4 1 0 2 0 0
12.5 0 0 0 0 4 0 4 4 0 0
12.7 0 0 0 3 4 0 0 4 3 4
10.7 4 0 4 0 4 0 3 4 4 0
3.5 4 0 4 0 0 4 0 0 0 4

Table 15: Boost - Scenario B (0 = Not Relevant, 4
= Highly Relevant)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
7.7 2 0 0 0 0 0 1 1 0 0
10.2 2 2 1 0 0 0 0 0 0 1
1.11 3 1 3 1 1 3 3 2 2 1
9.2 2 1 1 1 3 1 3 1 1 0
7.2 4 4 4 4 3 4 0 2 2 4
8.8 1 1 1 1 1 1 1 1 1 1

Table 16: Boost - Scenario B (0 = Not Reproducible,
4 = Highly Reproducible)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
7.7 4 0 4 1 4 2 4 4 4 4
10.2 4 0 0 2 4 4 0 0 0 0
1.11 0 3 0 4 2 0 4 4 4 2
9.2 0 4 0 3 4 4 3 4 2 2
7.2 0 4 4 4 4 4 4 4 0 4
8.8 4 4 4 4 2 4 3 3 3 4

Table 17: LINQ Tasks
Task Task Title

2 Find all capitalized words in a phrase and sort by
length (then alphabetically)

10 Pre-compiling Queries for Performance
1 Change the font for all labels on a windows form
5 Concatenating the selected strings from a

CheckedListBox
11 Desktop Search Statistics
12 Calculate the Standard Deviation
3 Find all the prime numbers in a given range Count
7 Selecting Pages of Data from Northwind Skip
4 Find all complex types in a given assembly Distinct
9 Dynamic Sort Order OrderByDescending
8 Querying XML Using LINQ Contains

Table 18: LINQ - Scenario A (0 = Not Relevant, 4
= Highly Relevant)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
2 0 0 0 2 2 0 2 0 0 0
10 1 2 4 1 1 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
5 2 0 2 1 2 2 2 2 0 2
11 0 0 0 0 0 0 2 0 0 0
12 4 4 4 4 1 4 3 1 3 0

Table 19: LINQ - Scenario A (0 = Not Repro-
ducible, 4 = Highly Reproducible)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
2 3 0 3 4 4 4 4 0 3 3
10 0 0 3 3 2 0 3 0 0 0
1 4 1 0 0 2 2 2 4 4 0
5 3 2 4 0 3 4 3 3 3 3
11 3 4 4 4 4 4 4 4 3 0
12 3 3 3 3 0 3 4 2 4 0

Table 20: LINQ - Scenario B (0 = Not Relevant, 4
= Highly Relevant)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
3 1 1 2 1 4 1 0 2 1 1
7 4 2 2 4 4 4 4 4 4 4
4 0 1 2 0 3 0 1 0 0 0
9 2 4 4 2 2 4 4 1 4 2
8 0 2 1 2 1 0 0 3 4 3

Table 21: LINQ - Scenario B (0 = Not Reproducible,
4 = Highly Reproducible)

Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
3 4 4 4 4 3 3 3 4 4 2
7 3 4 4 3 2 3 3 2 4 3
4 3 0 3 3 4 3 0 0 0 0
9 3 4 4 3 3 4 3 2 3 2
8 3 0 0 0 2 0 0 0 4 0

(value 4 in our case). We also decided to have an evaluation
with this metric, because we could partially compare the re-
sults of both works (not totally because with use top-10 and
they used top-15). However, using NDCG for this evaluation
seems to be inadequate because only queries that had most
of the 10 pairs with relevance close to four will have very high
NDCG value, and this seems to be extremely stringent. We
are mostly interested that there are some relevant pairs best
ranked, i.e., not necessarily all 10 pairs need to be highly
relevant because if the first encountered highly relevant pair
resolves your problem, then it suffices. The normalization
factor we calculated using this approach is Zkj ≈ 0.01. |Q|
= 35 because we considered 35 tasks in the experiments.

The NDCG calculated was 0.3583 and 0.5243 for Relev
and Reprod respectively.

Considering that it is desirable to have highly graded pairs
in the top-10 pairs, we decided to analyze the number of
pairs recommended by our approach having Relev or Re-
prod greater than or equal to 3. For this analysis, we use
the graphics shown in Figure 2. The three graphics in the
first line of the figure consider the criterion Relev, while the
remaining three in the second line consider criterion Reprod.

Each graphic consider the activities selected for Scenario
A (diamond symbol) and the ones for Scenario B (square
symbol). The activities appear in the graphics in the order
shown in Tables 7, 17 and 12. Thus, in the first graphic of
the figure (graphic “Boost - Relev”), the first activity corre-
sponds to“Parsing date-time input”(Scenario A) and“Using
a reference to string type string ref” (Scenario B). Besides
considering the value 4 for criterion Relev we also consid-
ered the value 3 because, although not being the best case,
the pairs evaluated with grade 3 for Relev could be used to
almost solve the entire problem represented by the search
query. Similarly, pairs with Reprod equal to 3, had code
snippets almost complete. As we can see in the graphics, all
activities for Swing had pairs with Relev ≥ 3. Only eight of
the 35 tasks didn’t have pairs with Relev ≥ 3 among the 10
recommend pairs. All the 35 activities had at least one pair
with Reprod ≥ 3.

5. DISCUSSION
We partially compared our results with the results pre-

sented by Ponzanelli et al. [21] to evaluate our work. In
their work they developed a plugin for Eclipse IDE called
SEAHAWK in order to recommend content from SO to help
developers solve programming problems. The main differ-
ences of both works are:

• Our recommendation approach considers two aspects
to suggest content: the textual similarity that the pairs
have with the search query and the their score. In their
approach, only the textual relevance is considered.

• The tasks used in both works are different: while in
our approach we randomly selected the tasks consid-
ered in the experiment from cookbooks, in their paper
they selected the activities from a Java programming
course. When using tasks from cookbooks instead of a
programming course, we focus more on practical tasks
that a developer can face daily than on didactic items
used to teach a topic.

• We performed a classification step to obtain the How-
to-do-it pairs. Only those pairs are considered in the

Figure 2: Numbers of pairs having Relev ≥ 3 (First Line) and Reprod ≥ 3 (Second Line).

recommendation process. Ponzanelli et al. consider all
kind of questions in their recommendation approach.
We consider this classification step important, since
we can discard pairs that are more theoretical than
practical (e.g., pairs in the categories Conceptual or
Seeking-something).

• In their experiments, only Java tasks were considered.
Here, we tested our approach using tasks from three
different topics (Swing, Boost and LINQ) that are re-
lated to different programming languages (Java, C++
and .NET languages respectively).

• In their paper, they recommended entire SO threads.
Here, we recommend individual Q&A pairs, since for a
question can exist well voted answers and poor voted
answers. The reasoning behind this approach is to
recommend only the portions of a Q&A threads that
are well evaluated by the SO crowd.

• We defined two different criteria that were used in
our experiments Relevance and Reproducibility. Pon-
zanelli et al. only used the Relevance criterion.

• In our experimental design, we presented an evaluation
made by two different subjects. Ponzanelli et al. did
not present in their paper the manner in which their
results were assessed (e.g., by one or two authors).

• Ponzanelli et al. developed a plugin for Eclipse. We
intend in a future work implement our approach in the
form of a plugin for an IDE.

• SEAHAWK recommends 15 Q&A threads. In the ex-
periments presented, we recommend only 10 Q&A pairs,
although this number could be adjusted to the user
needs.

Although those many differences, the NDCG obtained for
criterion Relev here is far superior than the one obtained
by Ponzanelli et al. (0.3583 and 0.0907 respectively), which
suggests that our approach outperforms theirs.

Analyzing Figure 2, we can see that for Relev, Swing ob-
tained better results over Boost and LINQ since for all tasks
it had at least one pair with Relev ≥ 3 for both Scenarios A
and B. For LINQ, 2 of the 6 tasks had recommended pairs
with Relev ≥ 3 in the case of Scenario A and for Scenario
B all 5 tasks had at least one pair having Relev ≥ 3. For
Boost, 5 tasks from Scenario A and 3 from Scenario B had
pairs with at least one recommended pair having Relev ≥ 3.

There could be two main reasons to explain the low num-
ber of pairs with Relev ≥ 3 for some tasks. First, our ap-
proach uses the title of a task as a input in the search engine.
Some tasks do not have a precise information on its title. For
instance, the task “Desktop Search Statistics” for LINQ has
the goal to search the file system of a computer and count
the number of items that are documents, images or e-mails.
Using only the title information, we cannot know that. In
other words, some tasks do not have sufficiently specific ti-
tle. Another reason that could justify that some tasks did
not had recommended pairs with Relev ≥ 3 is the absence
of information related to that task in the SO’s crowd knowl-
edge. For the 35 tasks, 27 had at least one recommended
pair with Relev ≥ 3 and 19 had at least one recommended
pair with Relev = 4. Maybe if we run the experiment in
the future, the dataset will have more posts and those tasks
could had been covered by the SO crowd.

All 35 tasks had at least one recommended pair with Re-
prod ≥ 3 and 34 tasks had at least one recommended pair
with Reprod = 4, indicating that our strategy has good per-
formance in recommending snippets that are reproducible or
can become reproducible with minor adjustments. The two
main reasons found that explains that difficulty to reproduce
some source code snippets are:

• The use of a variable that was not declared. For in-
stance, consider a recommended Q&A pair related to
Swing API, whose answer has a code snippet that uses
a widget object (e.g., a button), but does not show
how to create the object. Although create a button in
Swing is very simple for most people who have some
experience in programming GUIs, it could be not triv-
ial for someone new to GUI programming.

• The omission of some lines of code (e.g., some answers
use “...” to indicate that some lines are omitted in a
code snippet). Again, this lack of information makes
it difficult to use the code snippet in a programming
environment like an IDE.

Although not shown in Figure 2, 26 of the 35 tasks have
at least one recommended Q&A pair which has both crite-
ria Relev, Reprod ≥ 3. This is an important metric because
there are no value about Q&A pairs which are very repro-
ducible, but are not relevant to the developer problem.

5.1 Threats to Validity
The classification process of SO Q&A pairs into categories

is subjective. Therefore, exist the possibility of disagreement
among people about the category of a Q&A pair.

Another aspect to note is that Q&A pairs of Miscellaneous
or Debug-corrective categories will be incorrectly classified
by the classifier on one of the other 3 categories: How-to-
do-it, Conceptual or Seeking-something.

The choice of keywords for each attribute of the classifier is
also subjective, because each person could define a different
keywords set. The values of the weights used to differentiate
between the least relevant terms (weight equals to 1) and the
most relevant terms (weight equals to 5) are arbitrary and
different values could produce different classification results.

The values of the weights (7 and 3) used to calculate
SO score of a pair were arbitrarily defined. However, we
achieved reasonable results with this choice.

A qualitative analysis involving manual inspection of the
recommendations was necessary to obtain rich interpreta-
tion. However, this detailed interpretation is subjective.
Notwithstanding the inherent subjectivity of the process,
many factors contribute to the robustness of the evaluation.
The evaluation of the recommended pairs was done in two
phases. First, each of the two evaluators made an individual
assessment. Then, a consensual assessment was done to di-
minish the bias (i.e., the Weighted Kappa values improved
after this discussion step).

Another threat to validity concerns the classes selected to
compose the queries for task in Scenario B, since this is
subjective and different choices could lead to different re-
sults.

6. RELATED WORK
Treude et al. [26] analyzed data from SO to categorize the

kinds of questions that are asked and to explore which ques-
tions are answered well and which ones remain unanswered.
Their preliminary findings indicate that Q&A sites are par-
ticularly effective for code reviews and conceptual questions.
They analyzed the titles and body texts of 385 SO ques-
tions and found the following categories, ordered by their
frequency: how-to, discrepancy, environment, error, decision
help, conceptual, review, non-functional, novice, noise. They
also posed questions regarding the impact of social media on
software development knowledge, and how it could influence
the habits of developers.

Ponzanelli et al. [21] presented an integrated and largely
automated approach to assist developers who want to lever-
age the crowd knowledge of Q&A services. They imple-
mented SEAHAWK, a recommendation system in the form
of a plugin for the Eclipse IDE to harness the crowd knowl-
edge of SO from within the IDE. This plugin automatically

formulates queries from the current context in the IDE, and
presents a ranked and interactive list of results. SEAHAWK
lets users identify individual discussion pieces and import
code samples through simple drag & drop.

Sawadsky et al. presented FISHTAIL [23], an Eclipse plu-
gin which assists developers in discovering code examples on
the web relevant to their current task. FISHTAIL suggests
codes examples according to the most changed program en-
tity’s name. In some of the activities (Scenario B) used to
test our approach we also focused on entities name (e.g.,
classes name) since this name was part of the search used to
query our system. In our approach we perform code retrieval
on SO. Since we rely on SO, the code samples are already
assessed by the community. Thus, the developer has not to
assess their validity.

HIPKAT [27] is a recommender system developed to sup-
port newcomers in a project by recommending items from
problem reports, newsgroup, and articles. Our approach
focus on recommend content from SO instead of providing
resources from in-project knowledge.

Cordeiro et al. [4] presented an Eclipse plugin to help
developers in problem solving tasks. Based on an exception’s
stack trace gathered from the IDE’s console, they suggest
related documents from SO. Instead of focusing on stack
traces, we focus on the task title to query an index previously
created and retrieve Q&A pairs.

Takuya et al. presented SELENE [25], a source code rec-
ommendation tool based on an associative search engine.
It spontaneously searches and displays example programs
while the developer is editing a program text. Our work
also lies in the field of search engines, but we suggest Q&A
pairs taken from SO to enrich the information provided by
code snippets.

7. CONCLUSIONS
We presented a novel approach to leverage the Q&A crowd

knowledge. This strategy recommends a ranked list of pairs
of questions/answers from SO. The ranking criteria take into
account the textual similarity of the pairs with respect the
developer’s problem and the quality of the pairs. We devel-
oped experiments considering 35 programming problems dis-
tributed on three different topics (Swing, Boost and LINQ)
widely used by the software development community.

We made a qualitative manual analysis of the recommended
Q&A pairs considering two criteria: Relevance and Re-
producibility. We obtained a NDCG value of 0.3583 for
the first criterion and 0.5243 for the second criterion. The
results have shown that for 27 of the 35 (77.14%) activities,
at least one recommended pair proved to be useful to the
target programming problem. Moreover, for all the 35 ac-
tivities, at least one recommended pair had a reproducible
or almost reproducible source code snippet. These results
suggests that our approach outperforms the results obtained
in a related work [21].

As future work, the implementation of our approach in
the form of a plugin for an IDE can disseminate the use of
the approach.

8. ACKNOWLEDGMENTS
This work was partially supported by FAPEMIG grant

CEXAPQ-2086-11 and CNPQ grant 475519/2012-4.

9. REFERENCES
[1] O. Barzilay, C. Treude, and A. Zagalsky. Facilitating

Crowd Sourced Software Engineering via Stack
Overflow, pages 297–316. Springer, New York, 2013.

[2] A. Bialecki, R. Muir, and G. Ingersoll. Apache lucene
4. In SIGIR 2012 Workshop on Open Source
Information Retrieval, pages 1–8, 2012.

[3] J. Cohen. Weighted kappa: nominal scale agreement
with provision for scaled disagreement or partial
credit., 1968.

[4] J. Cordeiro, B. Antunes, and P. Gomes.
Context-based recommendation to support problem
solving in sof. development. In Proceedings of 3rd Int.
Workshop on RSSE), pages 85–89, 2012.

[5] I. F. Darwin. Java Cookbook. O’Reilly Media,
Sebastopol, CA, USA, 2004.

[6] R. Eckstein, M. Loy, and D. Wood. Java Swing.
O’Reilly Media, Sebastopol, CA, USA, 1998.

[7] G. Forman, I. Guyon, and A. Elisseeff. An extensive
empirical study of feature selection metrics for text
classification. Journal of Machine Learning Research,
3:1289–1305, 2003.

[8] M. Hall, E. Frank, G. Holmes, B. Pfahringer,
P. Reutemann, and I. H. Witten. The weka data
mining software : An update. SIGKDD Explorations,
pages 10–18, 2009.

[9] S. Haykin. Neural Networks: A Comprehensive
Foundation. Prentice Hall, PTR Upper Saddle River,
NJ, USA, 1998.

[10] J. Hilyard and S. Teilhet. C# 3.0 Cookbook. O’Reilly
Media, Sebastopol, CA, USA, 2007.

[11] S. le Cessie and J. van Houwelingen. Ridge estimators
in logistic regression. Applied Statistics, 41(1):191–201,
1992.

[12] V. Lempitsky, M. Verhoek, A. Noble, and A. Blake.
Random forest classification for automatic delineation
of myocardium in real-time 3D echocardiography. In
Functional Imaging and Modeling of the Heart, pages
447–456. Springer Berlin Heidelberg, 2009.

[13] M. Linares-Vasquez, C. McMillan, D. Poshyvanyk,
and M. Grechanik. On using machine learning to
automatically classify software applications into
domain categories. Empirical Software Engineering,
pages 7–8, 2009. Published by Springer US.

[14] L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak,
and B. Hartmann. Design lessons from the fastest q&a
site in the west. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems,
pages 2857–2866, New York, NY, USA, 2011. ACM.

[15] C. D. Manning, P. Raghavan, and H. Schütze.
Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA, 2008.

[16] A. Mockus, R. T. Fielding, and J. Herbsleb. A case
study of open source software development: the
apache server. In Proceedings of the 22nd international
conference on Software engineering, ICSE ’00, pages
263–272. ACM, 2000.

[17] S. Nasehi, J. Sillito, F. Maurer, and C. Burns. What
makes a good code example? A study of programming
Q&A in Stack Overflow. In Proceedings of the 28th
IEEE International Conference on Software
Maintenance (ICSM), pages 25–34, 2012.

[18] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey.
Crowd Documentation: Exploring the Coverage and
the Dynamics of API Discussions on Stack Overflow.
Georgia Tech, Tech. Rep., 2012.

[19] M. Pohar, M. Blas, and S. Turk. Comparison of
logistic regression and linear discriminant analysis : A
simulation study. Metodološki Zvezki, 1(1):143–144,
2004.

[20] A. Polukhin. Boost C++ application development
cookbook. Packt Publ., Birmingham, 2013.

[21] L. Ponzanelli, A. Bacchelli, and M. Lanza. Leveraging
crowd knowledge for software comprehension and
development. In A. Cleve, F. Ricca, and M. Cerioli,
editors, CSMR, pages 57–66. IEEE Computer Society,
2013.

[22] M. F. Porter. Readings in Information Retrieval.
chapter An algorithm for suffix stripping, pages
313–316. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1997.

[23] N. Sawadsky and G. C. Murphy. Fishtail: From task
context to source code examples. In Proceedings of the
1st Workshop on Developing Tools As Plug-ins, pages
48–51, New York, NY, USA, 2011. ACM.

[24] L. Sehgal, N. Mohan, and P. S. Sandhu. Quality
prediction of function based software using decision
tree approach. In International Conference on
Computer Engineering and Multimedia Technologies
(ICCEMT), pages 43–47, 2012.

[25] W. Takuya and H. Masuhara. A spontaneous code
recommendation tool based on associative search. In
Proceedings of the 3rd International Workshop on
Search-Driven Development, pages 17–20. ACM, 2011.

[26] C. Treude, O. Barzilay, and M.-A. Storey. How do
programmers ask and answer questions on the web?
(nier track). In Proceedings of the 33rd International
Conference on Software Engineering, pages 804–807.
ACM, 2011.

[27] D. ČubraniĆ, G. C. Murphy, J. Singer, and K. S.
Booth. Learning from project history: A case study
for software development. In Proceedings of the 2004
ACM Conference on CSCW, pages 82–91. ACM, 2004.

[28] Y. Yang and J. O. Pedersen. A comparative study on
feature selection in text categorization. In
International Conference on Machine Learning
(ICML), 1997.

