On the Extraction of Cookbooks for APIs from the
Crowd Knowledge

Lucas B. L. de Souza
Department of Computer Science
Federal University of Uberlandia

Uberlandia, MG, Brazil

Email: lucas.facom.ufu@gmail.com

Abstract—Developers of reusable software elements, such as
libraries, usually have the responsibility to provide comprehensive
and high quality documentation to enable effective software reuse.
The effective reuse of libraries depends upon the quality of the
API (Application Program Interface) documentation. Well estab-
lished libraries typically have comprehensive API documentation,
for example in Javadocs. However, they typically lack examples
and explanations, which makes the effective reuse of the library
difficult.

StackOverflow.com (SO) is a Question and Answer service
directed to issues related to software development. In SO,
developers post questions related to a programming topic and
other members of the site can provide answers to help them
solving their problems. Despite the increasing adoption of SO,
the information related to a particular topic is spread along
the website. Thus, SO still lacks an organization of its crowd
knowledge.

In this paper, we present an automatic approach that orga-
nizes the information available on SO in order to build cookbooks
(recipe-oriented books) for APIs. In the experiments conducted
to test our approach, we generated cookbooks for three APIs
widely used by the software development community: SWT, STL
and LINQ. We have defined some criteria to test the cookbooks’
quality. The results have shown that for the studied APIs, the
cookbook proved to have a meaningful chapter organization, since
63-71% of the chapters have a defined meaning. Moreover, 72—
88% of the recipes are related to the meaning of its containing
chapter. In addition, we also verified the quality of the individual
question and answers pairs presented in the cookbooks, regarding
three properties: the appropriateness to be part of a cookbook,
the self-containment and the reproducibility of its source code
snippets. We have shown that 65-75% of the pairs met, at least
partially, these properties.

I. INTRODUCTION

Accordingly to Parnas (qtd. in Brooks [1] p.224) “Reuse is
something that is far easier to say than to do. Doing it requires
both good design and very good documentation. Even when
we see good design, which is still infrequently, we won’t see
the components reused without good documentation.”.

Application Programming Interfaces (APIs) are exposed to
developers in order to allow the reuse of software libraries
[2]. Traditionally, many kind of software documentation, like
API documentation, are generated by few people and have
a target audience much larger. The resulting documentation,
when exists, generally has poor quality and lacks examples
and explanations [3]. Although developers of reusable software

Eduardo C. Campos
Department of Computer Science
Federal University of Uberlandia

Uberlandia, MG, Brazil

Email: eduardocunhal 1 @ gmail.com

Marcelo de A. Maia
Department of Computer Science
Federal University of Uberlandia

Uberlandia, MG, Brazil
Email: marcmaia@facom.ufu.br

elements have the responsibility to provide high quality and
comprehensive documentation [4][2], we can observe that the
official documentation is not the unique source of information
that developers handle during the reuse process. Because
developers often do not have all the information they need
to complete a particular task using a library, their closer
alternative is to search the Web. They look for information that
will help them solve their software development problems [5].
In the last decade, concomitantly with the emerging of Web
2.0, a new culture and philosophy emerged and are changing
the characteristics of software development. This change is
the result of an extensive accessible structure of social media
(wikis, blogs, questions and answers sites, forums) [3]. Similar
to the way that open source development has changed the tra-
ditional process of software development [6], these new forms
of collaboration and contribution have the potential to redefine
how developers learn, preserve and share knowledge about
software development. This phenomena may also corroborate
to the fact that developers of reusable software elements still
fail to attach the proper importance to documentation.

Currently, one of the main source of information for that
kind of search is StackOverflow — SO, a Question and Answer
(Q&A) website related to software development issues. SO
uses social media to facilitate knowledge exchange between
programmers by attenuating the pitfalls involved in using
source code from the web [5]. Accordingly to Barzilay et
al. [5], “Its design nurtures a community of developers, and
enables crowd sourced software engineering activities ranging
from documentation to providing useful, high quality code
snippets”. The set of information available on this social media
services is called “crowd knowledge” and often become a
substitute for the official software documentation [7].

Nonetheless, the use of the “crowd knowledge” for a
substitute or a complement for the documentation has its
own drawbacks. Considering SO, we can observe that the
information related to a particular API is spread along the
website. For instance, there are more than 2500 threads on
SO related to the API SWT. Although it is possible to search
those threads to get relevant information for a specific task
using either the internal SO query mechanism or even using
general purpose search engines, there is no available notion
of structured content that the developer could follow in a
meaningful way, such as, a book or a tutorial.

In this work, our goal is to propose an approach to organize
part of the “crowd knowledge” by creating a kind of structured

documentation known as cookbook. A cookbook is composed
of chapters on a specific theme and each chapter is filled with
a set of recipes. Each recipe contains a problem that can be
solved with elements of that API and also contains instructions
on how to solve that problem.

The cookbooks generated by our approach are meant to be
used in a different way than Q&A sites. If a developer has
a specific task at hand that needs to be solved, a query that
describes the problem must be formulated and given to the
Q&A site, which recommends threads that can be useful to
help the solution of the problem. On the other hand, cookbooks
can be used by someone who wants to know what are the main
subjects of an APIL. This can be specially useful to someone
that is new to that API and want to have a broad vision of
it. This person could read the titles of chapters to check what
are the main topics concerning the API and then could focus
on those topics considered more interesting. In other words,
cookbooks have a exploratory characteristic, instead of search-
driven one. The generated cookbooks could also even be used
as a starting point to build edited versions of a cookbook for
some API, since in our approach we aim at identifying the
main concepts of an API and identifying high quality content
to fill the chapters.

In order to evaluate the effectiveness of our approach,
we generated cookbooks for three popular APIs widely used
by the software development community, related to different
programming languages: SWT! (Java), STL? (C++) and LINQ
[8] (NET languages). Some criteria to assess the generated
cookbooks were defined. Firstly, we evaluated the quality of
the chapters, analyzing in which extension its chapters are well
defined, since ideally one chapter should be related to one
specific theme of the API. We also checked if the recipes are
related with the chapters where they were included. Finally,
each question and answers pair presented in the cookbooks
was evaluated considering the following three criteria: the
appropriateness to be part of a cookbook, the self-containment,
and the reproducibility of its code snippets. The raw cookbooks
studied in this work can be seen at our website>.

The rest of this paper is organized as follows. In Section IT
we present the process of construction of cookbooks. Section
IIT presents the criteria used to evaluate the cookbooks. In
section IV we present and discuss the results and threats to
validity. The related work is discussed in Section V and the
conclusions are presented in Section VI.

II. COOKBOOK CONSTRUCTION

The first step necessary for the development of this work
was to obtain the data dump that the SO team provides on its
blog* . The data dump contains the entire contents available
on SO since its creation (in 2008) until the building date of the
dump, including posts (questions and answers), users, votes,
etc. We have used the version released in March 2013. This
dump was imported into a relational database that was used in
the construction of cookbooks.

Uhttp://www.eclipse.org/swt/
Zhttp://www.tutorialspoint.com/cplusplus/cpp_stl_tutorial htm
3http://lascam.facom.ufu.br
“http:/blog.stackoverflow.com/category/cc-wiki-dump/

A. Types of Questions in SO

In SO, users ask many kind of different questions. Accord-
ingly to Nasehi et al. [9] “SO question types can be described
based on two different dimensions. The first dimension deals
with the question’s topic: It shows the main technology or
construct that the question revolves around and usually can be
identified from the question tags that the questioner can add
to the question to help others (e.g., potential responders) find
out about what the question is about”. Thus, if our goal is to
build a cookbook for SWT library, we only consider in our
approach threads in which the question has the tag “SWT”. A
thread of discussion in SO is formed by a question and a series
of answers to that question. In the line “#Questions” of Table I,
we show the number of questions (that is equal to the number
of threads because each thread has one question) for the three
APIs considered in this paper. Yet accordingly to Nasehi et
al. “questions from SO can also be classified in a second
dimension that is about the main concerns of the questioners
and what they wanted to solve”. In this dimension, Nasehi et al.
identified four categories: Debug-Corrective, Need-To-Know,
How-To-Do-It and Seeking-Different-Solution. They defined
the How-To-Do-It category as the one in which the questioner
provides a scenario and asks about how to implement it, which
is very close to the idea of recipes from cookbooks, since they
also have the goal to provide instructions on how to perform
a task concerning the respective API. Thus, in our approach,
we only consider threads whose questions are in the category
How-To-Do-It. In order to identify this type of questions, we
developed a simple, yet automated, rule-based approach that
considers the terms present in the question’s title and body. A
question is classified as a How-To-Do-It if the three following
conditions are satisfied:

e It has the term “how” in its title or body;

e It does not have in its body the presence of terms
generally related to the Debug-Corrective category:

9 CLINNT3

“fail”, “problem”, “error”,

CEINNT3 ELINY3

sue”, “solve”, “trouble”;

LTINS

wrong”, “fix”, “bug”, “is-

e It does not have the word “error” in its code snippets
(if any are present).

TABLE I: SO’s Data Information.

| Metric \ SWT \ STL \ LINQ ‘
#Questions 2243 | 5562 | 26869
#How-To’s 752 | 1188 | 8787
#How-To Pairs (NP(A)) | 1089 | 3738 | 20083

Using these rules, we tried to differentiate between the cat-
egories How-To-Do-1It and Debug-Corrective, since for this last
category the word “how” generally is also used, but with the
intention to ask help on how to fix a problem in the question’s
code snippet. The words used in the rules described above
were defined after analyzing a random sample of 70 questions
from SO. In the evaluation of the cookbooks created using
our approach, one of the defined criteria (Appropriateness)
is used to check if the questions selected to be part of a
cookbook are indeed How-To-Do-It, which allowed us to test
the performance of this simple approach. The line “#How-
To’s” in Table I shows the number of questions that were

classified as How-To-Do-It. For instance, 752 of the 2243
questions that have the tag “SWT” were considered How-To-
Do-It. As the number of answers is different among different
threads, each thread originates a different number of Q&A
pairs (if a thread has n answers, there are n possible pairs for
that thread, and each pair is composed by an answer and the
question of the thread). In the line “#How-To Pairs (NP(A))”,
we showed the number of Q&A pairs that can be retrieved
using the questions classified as How-To-Do-It. Suppose that
NP is a function that returns these number of pairs for an API
A. For instance, NP(SWT) = 1089.

B. Ranking of Q&A Pairs

In the generation process of cookbooks, our goal is to select
only good quality content, i.e., posts well evaluated by the SO
crowd. Here we consider that the score of a post (question or
answer) is a proxy for its quality because the voting mechanism
on SO is the main feature that allows SO members evaluate
its content. A score of a post is the difference between the
upvotes and downvotes it received.

In order to rank the content about an API in our database
and then, to select only the best part of it to fill the cookbook,
a ranking of Q&A pairs was produced. We decided to rank
Q&A pairs instead of entire threads because the answers for
the same question can have different scores, i.e., some answers
can be better than others. Thus, the ranking of pairs allows
us to differentiate well voted from poor voted answers for a
same question. Each Q&A pair in this ranking is composed
by a question and one answer for that question.

Because each individual post on SO has its own score and
we want to rank Q&A pairs, we needed to define a metric
that indicates the quality of the pair as a whole. One possible
approach to achieve this, is to consider the mean value of
the question’s score and answer’s score of a pair. We decided
not to follow this approach because the answer seems to be
more important than its respective question. The reason for our
hypothesis is that the answer usually carries more information
about the problem’s solution. Thus, we decided to consider
the score of pair as the weighted mean value between the
individual scores of its answer and question. We arbitrarily
defined the values 7 and 3 for the weights of the answer and
question from a pair. We agree that different choices would
lead to different results, but we expected to achieve acceptable
results with this choice. Given an API (e.g., SWT), we can
calculate the SO score of each How-To-Do-It pair that belong
to that topic. Then, we can rank the set of pairs in descending
order.

Because we want to select the pairs that are on the top
of the ranking, the definition of a threshold is necessary.
With this goal, we defined the equation shown in (1), where
MP(A) represents the maximum position allowed for an API A
(i.e., the threshold that we are looking for); NP(A) represents
the number of How-To-Do-It pairs that belong to API A
(information shown in Table I); min is a function that returns
the smaller of two values; (int) is just a cast to integer type.
The interpretation for this formula is to obtain the threshold by
taking the smaller value between 400 and 10% the number of
pairs of the API. The reasoning behind this equation is that for
APIs with large number of #How-To pairs (e.g., LINQ that has

20083 pairs) the threshold calculated will be 400, since 10% of
the pairs of the API (in the case of LINQ, is 2008) is too much
information to be included in a cookbook. This strategy limits
the size of the final cookbook, since it could make its reading
and exploration difficult. Moreover, comprehensiveness is not
a goal for our cookbooks. This decision is based on the fact
the the crowd may not produce comprehensive content, so
it does not make sense to evaluate our approach from this
point of view. Our goal is mainly to produce a cookbook with
high quality content, which size is similar as the human-edited
cookbooks. For APIs that are smaller (e.g., SWT that has 1089
pairs), the threshold is 10% of the number of its pairs (108 in
case of SWT). Table II shows the thresholds calculated for the
three APIs considered in the experiments. These thresholds are
used in the algorithm for building cookbooks.

MP(A) = (int)min(400,0.1 « NP(A)) (1)

TABLE II: Maximum Position Allowed per APL

[API (A) [Maximum Position (MP(A)) |

SWT 108
STL 373
LINQ 400

C. Identification of Chapters

We used the topic modeling technique Latent Dirichlet
Allocation (LDA) [10] to identify the chapters of a cookbook,
because its the widely used technique to find discussion topics
in natural language text documents. Each topic found by
LDA potentially originates a chapter in the cookbook being
generated.

Before applying LDA, the data is pre-processed similarly
to the work conducted by Barua et al. [11]. For each thread,
where the question is classified as How-To-Do-It, we create a
document containing the textual content of the question and
all its answers (i.e., the content of question’s title, question’s
body and answers’s bodies). We preprocess the content of these
documents before applying LDA. Firstly, we discard the code
snippets that are present in the posts (if any), because source
code syntax (e.g., “while” and “for” loops) introduces noise
into the analysis phase, since all code snippets contain similar
programming language syntax and keywords, that do not help
topic models to find meaningful topics [11], [12]. We also
remove all HTML tags (e.g.,
and <a href="...”), since our
focus is to analyze natural language (English) content. Later,
we remove common English words (stop words). Finally, we
apply the Porter stemming algorithm [13], to map the words
to their base form (e.g., “programming”, and “programmer”
both get mapped to “program”). We used Apache Lucene’® to
remove stop words and stemming. Furthermore, we used the
Java library HTML Cleaner® to remove HTML tags.

Each document generated after this pre-processing was
included in the corpus of documents used to run LDA. As
for each thread we generated one document, the size of the

Shttp://lucene.apache.org/core
Shttp://htmlcleaner.sourceforge.net

corpus coincides with the values shown in the line “#How-
To’s” of Table I. For instance, the size of the corpus for API
SWT is 752.

The number of topics (K), is a user-specified parameter
for LDA that provides control over the granularity of the
discovered topics. Smaller values of K generates more general
topics and larger values of K generates more detailed topics.
There is no unique value of K that is suitable in all situations
and all datasets [14]. In order to determine the number of
topics, i.e., the value of parameter K for an API A (in short,
K(A)), we defined the equation shown in (2). This formula
defines K(A) as the minimum value between 20 and 15% of
the threshold calculated by equation (1) (i.e., MP(A)). The
reasoning behind this formula is that APIs with a large amount
of pairs (e.g., LINQ with 20083) will have K(A) = 20, i.e.,
our intended upper bound for the number of chapters in a
cookbook. In contrast, for smaller APIs such as SWT (1089
pairs), the K(A) will be calculated as a percent of the position
threshold calculated before (for SWT, K(A) = 16). This is a
way to limit the number of topics to 20 in the case of the
most popular APIs, which we believe is a reasonable number
of topics in a cookbook for this kind of APIs. In contrast, we
believe that 20 topics would be too much for APIs with less
content on SO (e.g., SWT), so we calculate the number of
topics as a percent of the threshold calculated by formula (1).
Table III shows the number of topics calculated for each API
considered in the experiments.

K(A) = (int)min(20,0.15 « M P(A)) 2)

TABLE III: Number of Topics per APL.
[API (A) [Number of Topics (K(A)) |

SWT 16
STL 20
LINQ 20

After determining the K value, we run LDA for 2000 Gibbs
sampling iterations, which is sufficient for the Gibbs sampling
algorithm to stabilize [15]. We used the LDA implementation
available in library MALLET’

After running LDA, the following information is available:

e There are K topics, and for each one exists some
top terms that describes it. For instance, after running
LDA for SWT, one of the topics had among its top
terms “tabl, column, row, cell”. Observe that this terms
are stems instead of entire words (“tabl” instead of
“table”), because one of the steps before applying
LDA was stemming the textual content of the threads.
This set of top terms is used as the title of the chapters.
Currently for each chapter’s title we show 20-top
terms of its corresponding topic. The number 20 has
showed in our experiments to be sufficient for the
identification of the chapter’s meaning;

e For each document (D) that composes the corpus
used in the LDA (remember that each document

corresponds to a SO thread), we have its dominant
topic, i.e., the topic that is most related to it. Consider
that getDominantTopic(D) is a function that receives
a document and returns its dominant topic.

D. Cookbook Generation

Now we present the algorithm used to build a cookbook
C for an API A. The pseudocode is shown in Algorithm 1.
For each document D present in the corpus used in LDA, we
retrieved its dominant topic. Then we retrieved all pairs that
can be built from that thread. For each pair, we retrieved its
position in the ranking of pairs for API A and then we checked
several conditions and if all of them are satisfied then the pair
is eligible to be included in the cookbook into the chapter
corresponding to the dominant topic of its thread. The verified
conditions are:

o The position of the pair in the ranking by score, must
not be superior to the maximum rank position allowed
(MP(A)). This is a way of ensuring that only well
evaluated pairs were included in the cookbook;

e The answer must have source code snippets. We
identify the presence of snippets trough the use of
the HTML tags “<pre><code>...”. We require the
presence of source code in the answers, because
programming by examples is a intuitive way to learn
both for novices and experts [16];

e The answer and question that composes the pair must
not have dead links in its content. This a way to ensure
the external sources referenced in the posts can still
be accessed. Table IV shows for the three APIs, the
number of different links and the number of dead
links present in the pairs belonging to it. In order to
verify if a link is dead or not, we used the Java library
HttpUnit8 ;

e The question must not be too large. Questions with
much content (verbose questions) usually contains
many queries (i.e., the questioner asks many things) or
have a difficult to understand problem. We decided to
not include this type of questions, to make cookbooks
easier to read and understand. We defined a threshold
for the maximum allowed size of a question, that
considers the number of characters present in its
body. Figure 1 shows a histogram with the percent
of question’s size in many sizes’s ranges. The data
considered in this graph are all questions for SWT,
STL and LINQ. The questions with size less to 1300
characters comprises 81.4% of the question. Thus, we
decided to not include pairs in the cookbook in which
its question has size greater than or equal to 1300
characters.

Considering a thread (document), all their pairs that satisfy
all conditions are added to a list. At the end, if the list contains
only one pair, this pair is added to cookbook. If the list has
more than one pair, the two pairs with larger score (best
position in the ranking by score) are added to the cookbook
inside the chapter corresponding to the dominant topic of the

"http://mallet.cs.umass.edu/

8http://httpunit.sourceforge.net/

Algorithm 1: Generation of Cookbook C for API A

C' < new Cookbook();

foreach D € Corpus do

dominantTopic < get DominantTopic(D);

pairs < getPairs(D);

listO fCandidate Pairs < newList();

foreach P € pairs do

rankingPosition < get RankingPosition(P);

if rankingPosition < M P(A) then

Q + getQuestion(P);

A + getAnswer(P);

if hasSourceCode(A) A
doesNotHaveDeadLink(Q) A
doesNotHaveDeadLink(A) A
size(Q) < 1300 then

| listO fCandidate Pairs.add(P);

i?gcludePairslnCOOchook(dominantTopic,
listO fCandidatePairs, C')

TABLE IV: Number of links per APL

[API (A) | Number of Links | Number of Dead Links |

SWT 2471 150
STL 5430 210
LINQ 13756 708

pair’s thread. The final number of chapters in the cookbook
can be smaller than the number of topics (K) used as input
for LDA run because it is possible that for a topic found
by LDA, none of the pairs have satisfied the conditions of
the cookbook generator algorithm. The empty topics do not
originate chapters in the cookbook. The first line of Table V
shows the number of chapters for the three APIs. For instance,
the number of topics calculated in LDA for SWT was 16, but
only 14 chapters had some content.

The pairs included into the chapters of a cookbook are
organized into Recipes. Each recipe is a set of pairs in which
the pair’s question coincides. As we only add at most two
pairs from the same thread, the size of this set is one or two. In
others words, a recipe is a question, with one or two solutions.
The reason to allow more than one solution per question, it that
the solutions contained in the answers can be different, so it
is interesting to provide more than one alternative to the user.
The explanation to provide at most two solutions, is to avoid
too large recipes. Moreover, the solutions showed (one or two
solutions) were well evaluated by the SO crowd. Thus, using
the solutions provided in at most two answers must be enough
to solve the problem described in the question. The second
and third lines of Table V show, respectively, the number of
pairs and recipes in the three generated cookbooks.

III. EVALUATION CRITERIA

In this section, we present the criteria used to evaluate the
cookbooks generated by our approach. All criteria range from
0 (worst value) to 4 (best value).

% of Question By Size Range

3 ™ 0
o) £ £
o &

o L5
& & &

_\QQ\ & h@\

A s

e“e‘ & S o
TN Y @

Size Range

Fig. 1: Percent of Questions by Size Range.

TABLE V: Cookbooks Metrics.

| Metric | SWT [STL | LINQ |
Number of Chapters 14 19 20

Number of Pairs 53 189 202
Number of Recipes 48 152 152

Firstly, we assess the chapter organization of the cookbooks
using two criteria. The first criterion (Semantics of Chapter or
SmtChap) was used to verify to what extent the meaning of
the titles of the chapters were well defined. The value 4 means
a perfectly defined subject in the title and value 0 means that
no subject or meaning could be found by reading the title.
The meanings found were also annotated. This criterion is not
boolean because for some chapters is it possible to identify a
subject, however it’s mixed with other minor subjects and/or
unrelated terms. After rating SmtChap for all chapters, the ones
with SmtChap greater than or equal to 3, have their recipes
analyzed to check to what extent each recipe is related to main
subject found for its chapter during evaluation of SmtChap.
This criterion is called Conformity to Chapter or ConfChap.
The reason behind this second criterion can be explained using
an example. One of the chapters of LINQ cookbook had a very
well defined meaning (SmtChap equal to 4) that was annotated
as “sorting of lists”. However, one of the recipes inside it was
not related to sorting. In that recipe the word “order” was
used many times, but in the context of a “sale order”. In this
case, the value for ConfChap was 0 because although the word
“order” is related to sorting, in that recipe it was being used
with other meaning.

The second part of the evaluation has a smaller granularity:
we assess three criteria for each pair (one recipe can have
one or two pairs). The first one is the Appropriateness (in
short, Approp) to be part of a cookbook for its API. This
criteria is a way to test the rule-based approach explained in
Subsection II-A, because we check if the pair’s questions are
How-To-Do-It, since questions belonging to other categories
are not desirable in cookbooks, just like Debug-Corrective
(that contains buggy code) or more theoretical questions —
the cookbooks are aimed to contain practical activities. This
criterion is also used to evaluate if the solution presented in the
answer of the pair is using the target API of the cookbook (e.g.,
for some recipes in cookbook for STL, although the questioner
explicitly asked for a solution using STL, the community only
gave solutions using BOOST libraries). The next analyzed

criterion was Self-containment (SelfCont). In this criterion, we
checked to what extent the information referenced in the pair
is self-contained. Although many posts have links to external
sources (e.g., blogs, tutorials, official API documentation), we
want to avoid the cases in which the solution is just presented
via an URL link, because the links can become unavailable
someday. Thus, it is important to replicate the information that
is important for the problem’s solution inside SO, even if the
solution is already presented in a external source. The next
criterion was called Reproducibility (Reprod). This criterion
was used to evaluate to what extent the source code snippets
available on the question and answer bodies of a pair can be
easily compiled and executed. The grade also ranges from 0
to 4. The value 0 means that its snippets cannot be compiled
at all. The value 4 means that the snippets can be easily
compiled and executed mostly without adaptation. This metric
is not boolean because sometimes the pairs have source code
snippets that although they cannot be directly executed, they
could be compiled after some adjustments (e.g., many snippets
are incomplete because they are missing a variable declaration,
but if we declare the missing variable, the snippets become
complete and could be compiled).

We present an evaluation composed of experiments with the
cookbooks generated for the three considered APIs to assess
their quality. We made a qualitative manual analysis of the
chapters and recipes of the cookbooks, in order to rate the
considered criteria. The evaluations were done by the first two
authors of this paper with a double-check mechanism.

IV. RESULTS AND DISCUSSION

In this section we present and discuss the results regarding
the evaluation of the cookbooks for the three considered
APIs. In Subsection IV-A we discuss aspects related to the
organization of chapters in cookbooks, considering the criteria
SmtChap - Semantics of Chapter and ConfChap - Conformity
to Chapter and also the chapters’ sizes. Subsection IV-B deals
with the evaluation of the individual Q&A pairs included in
the cookbooks. In Subsection IV-C, we present the threats to
the results’ validity.

A. Chapter’s Evaluation

The graphs in Figure 2 show for the three considered APIs,
the grades given by the evaluators for criterion SmtChap. For
SWT, four chapters have grade 2, four chapters have grade 3
and six chapters have grade 4. For STL, three chapters have
grade 0, two have grade 1, two have grade 2, three chapters
were graded as 3 and nine chapters received grade 4. For
LINQ, one chapter have grade 0, one chapter was graded as
1, five chapters were graded as 2, eight received grade 3 and
five have grade 4. We can observe that not every chapter has a
corresponding grade because the identifier of each chapter is
the one generated by LDA for its respective topic. Some topics
do not have corresponding chapters in the cookbooks, because
the chapters with no pairs are removed from the cookbooks.
The results show that 71.43% (10 of 14), 63.16% (12 of
19) and 65% (13 of 20) of the chapters for SWT, STL and
LINQ, respectively, were graded with SmtChap > 3, which are
reasonable results, as more than 60% of all chapters proved to
have a defined meaning.

Table VI shows the manually assigned meaning of the
chapters, with SmrChap equals to 4, considering the cookbook
for STL. Because of space constraints, we are not showing this
information for the other two cookbooks. As can be seen from
the table, the meanings assigned to the chapters are varied,
covering different areas of STL library.

Table VII shows for the generated cookbooks, the dis-
tribution of chapters’ size (number of recipes) considering
a 5-range. In the table, we can see, for instance, that there
are 13 chapters in SWT’s cookbook containing between one
and five recipes. The major part of the chapters has at most
five recipes, indicating that our approach tends to produce
small chapters. Nonetheless, there are some big chapters. One
possible explanation for this variation is that for an API some
subjects are more popular than others. Thus, the amount of
information in SO may vary depending on the subject. For
instance, chapter 17 of cookbook for STL has 18 recipes, and
is about operations with arrays and vectors, which seems to be
a very recurrent subject in STL. In the same cookbook, there
is a chapter with SmtChap value equals to O (i.e., a chapter for
which was not possible to identify a meaning) with 25 recipes.
Thus, we decided to calculate the one-tailed Spearman’s rank
correlation coefficient (rho) between SmtChap value of each
chapter and its number of recipes to check if chapters with
low SmtChap value tend to have many recipes (i.e., to check
if there is a strong negative relationship between the two
variables). The results are shown in Table VIII. As the p-
values found are greater than 0.05, thus, we cannot affirm that
exists a negative relationship between the two variables, even
though rho is negative for SWT and STL. Indeed, there are
some chapters that although having more than 20 recipes, have
SmtChap equals to four, indicating that our approach also has
found big chapters that have well defined meaning.

The results concerning the evaluation of ConfChap are in
Table IX, which shows the number of recipes that were graded
with each 0-4 ConfChap values. As the goal of this metric is
to evaluate the location of the recipe, these results are only
about the chapters grade with SmtChap > 3, because only
for a chapter having a defined meaning it is meaningful to
check to which extent the recipes are related to it. The results
show that for meaningful chapters, generally the recipes are
related to the identified meaning of its chapter: 79.41% (27 of
34), 88% (88 of 100) and 72.38% (76 of 105) of the recipes
belonging to chapters with SmtChap > 3, have ConfChap >
3, for SWT, STL and LINQ, respectively. Overall, more than
70% of those recipes are related to its chapters. As can be seen
from the table, almost all recipes have ConfChap values either
0 or 4 (i.e., they are not related at all or they are completely
related to its chapter), which could suggest that ConfChap
criterion should be boolean. Nonetheless, there are few recipes
that have intermediary ConfChap values. These recipes are
partially related to its chapters (e.g., one chapter for LINQ
has the meaning ‘Hierarchy in Trees’ and one of its recipes
is partially related to it, because although it used a method
to get the children of a tree’s node, the focus of the question
was the operator “SelectMany”). The LINQ’s cookbook has
a higher percentage of recipes with ConfChap equals to zero
(17.14%) than the other two cookbooks (14.71% and 5% for
SWT and LINQ respectively). One fact that contributed to that
is a chapter in LINQ’s cookbook, for which was annotated the
meaning “Iteration Over Lists” that had ten recipes not related

SWT: Semantics of the chapters

STL: Semantics of the chapters

LINQ: Semantics of the chapters

s 44—+ i E e B O e e e N R EERERERS
= e = = 3T
) g [
-] b=l
B2 et G g 4 ®2 +—+ +
<}
<] *SWT esTL || @ #LNQ
1 NI 4 1 |+
o SIS AP 0 .
] 5 10 15 0 5 10 15 20 0 5 10 15 20
Chapter ID Chapter ID Chapter ID

Fig. 2: Evaluation of Semantics of Chapter criterion.

TABLE VI: Meaning of STL Chapters with grade = 4.

| Chapter ID | Meaning |

Chapter 2 | Aspects relating to compilation/pre-compilation and debug.
Chapter 3 | Aspects related to memory: allocation, release, heap, buffer, pool.
Chapter 5 | Operations with map data structure (e.g. iterate over a map).

Chapter 11 | Reading and Writing file using a buffer.

Chapter 12 | Working with constructors and destructors methods.

Chapter 13 | Operations on strings (e.g. length, substring).

Chapter 15 | Data Structures: queue, priority queue, red black tree, heap.

Chapter 17 | Operations with arrays and vectors (e.g. allocation, size).

Chapter 19 | Concurrence (Parallelism) using Thread Safe and Lock.

to iteration. Those recipes were using lists in their solutions,
however, were not iterating over then. In other case for LINQ,
a recipe that uses the term “order” in the sense of “client
order” was included in a chapter about “sorting of lists”. As
we rely on results from LDA, that is a syntactic (not semantic)
technique, to include the recipes in the chapter, cases like the
above can occur, however these cases are not common.

TABLE VII: Chapters’ Size per APL
| Number of Recipes Range | SWT [STL | LINQ |

[T,5] 3 8 11
[6,10] I 6 5
[11,15] 0 3 I
[16,20] 0 I 0
[21,25] 0 I 3

TABLE VIII: Spearman Rank Correlation Test Between
SmtChap and Qty of Recipes.

| API | rho-value | p-value |

SWT -0.309 0.141
STL -0.146 0.276
LINQ 0.173 0.232

B. Q&A Pair’s Evaluation

The results concerning the evaluation of the three last
criteria (Approp, SelfCont and Reprod) are shown in Table
X. In this table, we defined a series of metrics to evaluate the
quality of the pairs included in the cookbooks (remember that

TABLE IX: Number of Recipes per ConfChap value.
| ConfChap Value | SWT [STL | LINQ |

0 5 5 18
1 0 3 3
2 2 4 8
3 0 4 1
4 27 84 75

a recipe can have one or two Q&A pairs). Firstly, we measure
the percent of pairs in a cookbook having a criterion (Approp,
SelfCont or Reprod) greater or equal than 3 and then equal to
4. Then, we measured the percent of pairs having all the three
criteria greater or equal than 3 and then equal to 4. As can be
seen from the table, Approp criterion generally has reasonable
values (mostly above 70%). The pairs with Approp lesser than
3 generally have one of the following features:

e A question not belonging to the How-To-Do-It cat-
egory. For instance, conceptual questions, where the
questioner tries to understand some behavior of the
API, and Debug-Corrective questions, in which the
questioner needs help to fix a faulty source code.
These cases represent false-positive questions of the
rule-based approach developed to detect How-To-Do-
It questions.

e An answer that do not contain a solution that uses the
API aimed in the cookbook. For instance, there were
some pairs in the cookbook for STL that presented
solutions using BOOST library instead of STL library.
Since it is a STL cookbook, is interesting that all pairs

present a solution that uses STL, even if they present
other solutions using a different API. This is typically
an inadequately tagged post.

TABLE X: Percent of Pairs per Metric.

| Metric | SWT [STL [LINQ |

Approp > 3 90.56% | 70.90% | 82.17%
Approp = 4 86.79% | 69.31% | 81.19%
SelfCont > 3 100% | 95.77% | 97.52%
SelfCont = 4 100% | 94.18% | 97.52%
Reprod > 3 83.02% | 94.18% | 86.63%
Reprod = 4 56.60% | 70.37% | 47.52%
Approp & SelfCont & | 75.47% | 65.55% | 73.76%
Reprod > 3

Approp & SelfCont & | 45.28% | 45.50% | 40.09%
Reprod = 4

The SelfCont criterion had very high values overall, mean-
ing that almost all pairs included in the cookbooks were com-
pletely self-contained. In just a few cases, some answers posted
a solution via a HTTP link, without giving any information
about the solution in the answer itself. One hypothesis to
explain this result is because we select only well evaluated
pairs (high-scored) to be included in the cookbooks. Maybe the
evaluation done by the crowd on SO content, already considers
the self-containment of the solutions presented, meaning that
posts with high score, tend to be self-contained.

The results for Reprod were also reasonable as well,
indicating that our strategy has good performance in selecting
pairs containing snippets that are reproducible or can become
reproducible with minor adjusts. The main reasons found,
that explains why some source code snippets are difficult to
reproduce are:

e The use of a variable that was not declared. For
instance, in SWT’s cookbook, some answers have
snippets that uses a widget object (e.g., a button), but
does not show how to create the object. It could not
be trivial for someone new to SWT to create these
widgets.

e The answerer provide a solution (e.g., a method) and
does not show how to use the solution. For instance,
some answer snippets present a method as a solution
for the question’s problem. Sometimes these methods
have many parameters, that are not trivial to create. In
other words, one of the concerns of the evaluators was
to see a working solution, for example, through the use
of a “main” method, so they could see, for instance,
how to create all objects that a method requires as
parameters before calling it.

e The omission of some lines of code (e.g., some
answers use “..” to indicate that some lines are
omitted in a snippet). For some of these cases, the
evaluators were concerned that the lines omitted could
be important for the execution of the code snippets.

The two last lines of Table X show the percent of pairs
having Approp, SelfCont and Reprod greater than or equal
to 3 (seventh row) and equals to 4 (eighth row). More then

65% of all pairs satisfies the condition (> 3) , and more
than 40% of all pair satisfies the condition (= 4). These
numbers show that our approach has reasonable performance
in building cookbooks whose pairs meet approapriateness,
self-containment and reproducibility at least partially.

C. Threats to Validity

In our approach, the assessment of chapters’ semantics is
subjective. Different persons may assign different meanings
for the same cookbook chapter. Another subjective aspect
is the appropriateness of containment of a recipe within a
chapter subject. Even considering the same chapter subject,
different persons may disagree about that. The evaluation
criteria (Approp, SelfCont and Reprod) for a cookbook Q&A
pair is also subjective (e.g., one may consider the Q& A pair not
suitable for the cookbook, while another person may consider
the same pair appropriate). Despite the inherent subjectivity of
the evaluation process, we used a double-check strategy aiming
to reduce the bias.

Another aspect to note is the overlapping of the issues
in the cookbook chapters (i.e., the same issue appearing in
more than one chapter of the same cookbook). Although
this happens, we conducted a qualitative manual analysis
and observed that there were only 2 cases of overlapping
in the three cookbooks. Moreover, none of these cases were
a complete overlap (i.e., one or more chapters that covers
exactly the same issue). For instance, Chapters 3 and 7 of
the SWT Cookbook have a partial overlap because both are
about the mouse click event. However, Chapter 7 also covers
other mouse events, such as drag and drop. One explanation
for the overlap is due to the amount of topics found by LDA in
the documents. In our approach, the LDA was arbitrarily set to
find maximum 20 topics in each cookbook. As our approach is
automatic, varying the maximum number of topics to be found
by LDA may arise undesirable effects such as greater overlap
of issues between chapters or very general chapters. Indeed,
there are several thresholds arbitrarily defined. Although, we
have pre-tested those thresholds before conducting the whole
process, indeed some variation on them may result in different
results.

V. RELATED WORK

We organized the related work in three subsections. In this
work, we propose an approach to build a kind of documenta-
tion (cookbooks) for APIs, so in Subsection V-A, we review
works related to API documentation. The Subsection V-B
reviews aspects related to social media in software engineering.
In Subsection V-C, we review works related to search of
examples to support API documentation and developer’s work.

A. APIs Documentation

The nature of the documentation process differs substan-
tially depending on the context. In the closed documentation,
documents rarely leave the environment of a closed system:
they are created by few and used by few. Unlike the closed
documentation, the API documentation (e.g., Javadocs) is
written by a few, but read by many [3]. Documenting APIs
effectively and using them is not trivial. Robillard [17] ob-
served that inadequate or inappropriate examples are obstacles

for learning APIs. He also identified several other obstacles
related to factors such as the format and design aspects of the
API. Although useful documentation can be found in Javadoc,
the resulting documentation generally narrow in focus and
sometimes is too detailed. According to Robillard, the learning
process has an API similar to the design of the API importance.
He also showed that developers want some complete and
well structured documentation with a set of examples showing
how to use the API in different scenarios. According to
the study participants, the following properties of software
documentation are the most important: contents (information
in the document), the use of examples, being updated, the
organization (index, sections, subsections). In our work, we
rely on SO to build the cookbooks and those properties
are partially met. The content of the cookbooks are already
assessed by the SO community via the voting mechanism.
Since SO allows edition of posts (questions and answers), the
property of “being update” can be met, as users of SO can
edit posts to reflect the changes in new versions of the APIs.
As we only selected answers containing source code snippets
to compose the cookbooks, the “use of examples” property
is also met. The organization property is not always satisfied
for the recipes, because not all answers in the cookbooks
are organized in sections, subsections. However, the cookbook
itself partially meets this property since it is organized into a
series of chapters. However, in the current state, there is no
coherent sequencing of the proposed cookbook chapters.

B. Social Media in Software Engineering

The possibilities and limitations of the crowd documen-
tation in software development have not yet been fully un-
derstood [3]. Parnin and Treude [18] analyzed the results of
searches on Google for a specific API (JQuery) and found that,
besides the official documentation sources, many sources of
documentation via social media appeared among the results.
For example, for 84% of methods, they found at least one
question on SO on the first page of results.

An analysis of how developers post questions and answers
on SO resulted in several categories of questions (how-to,
review, error, conceptual, etc.) [7]. Questions containing source
code are common in the review category. The study also
showed that the SO is particularly effective at code reviews and
conceptual questions, and approximately 85% of the questions
are answered. Besides the type of question, other factors such
as the date and time of posting the question, the identity of the
asker, the technology in question, the size of the question, and
the presence of source code in question affect its likelihood of
receiving good responses. In their study of the design elements
behind the SO, Mamykina et al. [19] have concluded that its
success is not explained only by the technical design of the
site, but also for the assessment activities (e.g., voting) and
incentives (such as the reputation score). They also found that
users of Stack Overflow get very quick answers: the questions
are answered in about 11 minutes.

Our work is also related to social media because it uses
the “crowd knowledge” available in SO to build cookbooks
for APIs. As we assessed a series of criteria for the generated
cookbooks, this work contributes to understand how the social
media can be used in software documentation field.

C. Use of Examples

The use of examples is a important source of help for
programmers because they can solve a problem through reuse
of examples [20]. There are tools designated to extract code
from open source repositories to identify examples. Some tools
extract common patterns of use of APIs [21] [22]. Other ap-
proaches, use data mining techniques to locate characteristics
in the source code [23]. Those tools rely on queries consisting
of keywords to find examples. Holmes et al [24] developed a
tool (Strathcona) that uses the current context of development
(e.g., the classes being used in the source code) as a query
to find similar source code snippets to be reused. Another
examples and artifacts recommendation tool is Hipikat [25]. In
the work presented here, we also need to select good examples
that are inserted into the chapters of the created cookbook. The
difference with respect to these works is that in our approach,
the examples of API usage are mined from SO (in contrast
with repositories of source code). Moreover, as a cookbook is
a documentation for a whole topic (e.g., SWT), our approach
is characterized as a browse-oriented interface instead of a
search-oriented interface, i.e., we recommend a entire set of
examples and explanations instead of focusing on examples
for a particular problem that a user has at hand.

Stylos et al. [26] developed a tool (Jadeite) that extracts
some common usage scenarios and inserts it into the API
documentation (Javadoc), however the examples are only
limited to instantiation of classes. Our work is related to
cookbooks instead of Javadocs. Moreover, the cookbooks are
created from the scratch (i.e., we are not improving an existing
documentation).

Ponzanelli et al. [27] presented an integrated and largely
automated approach to assist programmers who want to lever-
age the crowd knowledge of Q&A services. They implemented
SEAHAWK, a recommendation system in the form of a plugin
for the Eclipse IDE to harness the crowd knowledge of SO
from within the IDE. This plugin automatically formulates
queries from the current context in the IDE, and presents a
ranked and interactive list of results. SEAHAWK lets users
identify individual discussion pieces and import code samples
through simple drag & drop. Our approach also uses data from
SO, but has a browsing interface in contrast to SEAHAWK’s
query interface. Moreover, instead of a plugin for a IDE, we
developed a website where the cookbooks are available.

VI. CONCLUSIONS

In this paper, we presented an approach to build cookbooks
(a recipe-oriented documentation) for APIs. The information
used to build the cookbooks is mined from SO, a Question
and Answer website related to software development. The
information available in this kind of social media services is
often called “crowd knowledge”.

Our approach aimed at addressing the problem of the lack
of documentation or poor quality documentation for APIs
using the information available in SO to build cookbooks.
In the process of building the cookbooks, we organized the
information available in SO about a certain API into a series
of chapters, each one related to a subject or theme of the APIL.
To identify those subjects, we used LDA, a topic modeling
technique. Each topic found by LDA was considered to be

a potential chapter in the cookbook. The chapters were filled
with recipes, which are composed by a question and one or
two answers to it. We aimed at selecting only one special kind
of question to be included in cookbooks: the How-To-Do-It
question, that corresponds to questions asking for instructions
on how to solve a task using a API. A simple, yet adequate,
rule-based approach was developed to filter How-To-Do-It
question. Moreover, we selected only well voted posts from
SO to be included in the cookbooks.

The evaluation of our cookbook generating approach was
conducted with three important APIs: SWT, STL and LINQ.
These APIs are widely used by the software development
community. Our evaluation was targeted at evaluating the qual-
ity of the proposed organization and of the selected recipes.
We did not evaluate the comprehensiveness of cookbooks,
because this criteria would be intrinsically linked with the
comprehensiveness of “crowd knowledge” around the desired
API. We defined some criteria to test the quality of the gen-
erated cookbooks: we checked whether the cookbook chapters
had well defined meaning; if the recipes were related to the
meaning of its chapter; and how the question and answer
pairs presented in the cookbooks met three properties (the
appropriateness to be in a cookbook; the self-containment
of its information and the reproducibility of its source code
snippets). The results of the evaluations were promising: 63—
71% of the chapters proved to have a defined meaning; 72—
88% of the recipes are related to the meaning of the chapter
that it belong; more than 65-75% of the pairs presented
in the cookbooks meet, at least partially, the properties of
appropriateness to be part of a cookbook, self-containment and
reproducibility of snippets. We developed a website were the
cookbooks built for the three APIs can be seen.

As a future work, we intend to apply the proposed approach
to generate cookbooks for others APIs. We also expect to
define other criteria to evaluate other dimension of the quality
of cookbooks. There are still some problems that should be
investigated, such as, organizing the order of the chapters in a
coherent way, or even to propose different organizations, such
as tutorials or books.

ACKNOWLEDGMENTS

This work was partially supported by FAPEMIG grant
CEXAPQ-2086-11 and CNPQ grant 475519/2012-4.

REFERENCES

[11 E P. Brooks, Jr., The Mythical Man-month (Anniversary Ed.). Boston,
MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] M. Monperrus, M. Eichberg, E. Tekes, and M. Mezini, “What should
developers be aware of? An empirical study on the directives of API
documentation.” Emp. Softw. Eng., vol. 17, no. 6, pp. 703737, springer
Us, 2012.

[3] C. Parnin, C. Treude, L. Grammel, and M.-A. Storey, “Crowd Documen-
tation: Exploring the Coverage and the Dynamics of API Discussions
on Stack Overflow,” Georgia Tech, Tech. Rep., iEEE Comp. Soc., 2012.

[4] D. Kramer, “API documentation from source code comments: a case
study of javadoc,” in Proc. of the 17th annual Int. Conf. on Computer
Documentation. New York, NY, USA: ACM, 1999, pp. 147-153.

[5] O. Barzilay, C. Treude, and A. Zagalsky, Facilitating Crowd Sourced

Software Engineering via Stack Overflow. New York: Springer, 2013,
pp. 297-316.

(6]

(71

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

A. Mockus, R. T. Fielding, and J. Herbsleb, “A case study of open
source software development: the Apache server,” in Proc. of the 22nd
ICSE. ACM, 2000, pp. 263-272.

C. Treude, O. Barzilay, and M.-A. Storey, “How Do Programmers Ask
and Answer Questions on the Web? (NIER track),” in Proc. of the 33rd
ICSE. ACM, 2011, pp. 804-807.

J. Hilyard and S. Teilhet, C# 3.0 Cookbook.
O’Reilly Media, 2007.

S. Nasehi, J. Sillito, F. Maurer, and C. Burns, “What Makes a Good
Code Example? A Study of Programming Q&A in Stack Overflow,” in
Proceedings of the 28th IEEE ICSM, 2012, pp. 25-34.

D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allocation,” The Journal
of machine Learning research, vol. 3, pp. 993-1022, published by
JMLR. org, 2003.

A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers
talking about? An analysis of topics and trends in Stack Overflow,”
Empirical Software Engineering, pp. 1-36, springer US, 2012.

Sebastopol, CA, USA:

S. W. Thomas, “Mining software repositories using topic models,” in
Proceedings of the 33rd ICSE. New York, NY, USA: ACM, 2011, pp.
1138-1139.

M. E. Porter, “Readings in Information Retrieval,” K. Sparck Jones and
P. Willett, Eds. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 1997, ch. An algorithm for suffix stripping, pp. 313-316.

H. M. Wallach, I. Murray, R. Salakhutdinov, and D. Mimno, “Evaluation
methods for topic models,” in Proceedings of the 26th Annual ICML.
New York, NY, USA: ACM, 2009, pp. 1105-1112.

T. L. Griffiths and M. Steyvers, “Finding Scientific Topics,” PNAS, vol.
101, no. suppl. 1, pp. 5228-5235, 2004.

E. Lahtinen, K. Ala-Mutka, and H.-M. Jdrvinen, “A Study of the
Difficulties of Novice Programmers,” SIGCSE Bull., vol. 37, no. 3, pp.
14-18, aCM, 2005.

M. P. Robillard, “What Makes APIs Hard to Learn? Answers from
Developers,” IEEE Softw., vol. 26, no. 6, pp. 27-34, iEEE Computer
Society Press, 2009.

C. Parnin and C. Treude, “Measuring API documentation on the web,”
in Proc. of the 2nd Web2SE. ACM, 2011, pp. 25-30.

L. Mamykina, B. Manoim, M. Mittal, G. Hripcsak, and B. Hartmann,
“Design lessons from the fastest Q&A site in the west,” in Proceedings
of CHI. New York, NY, USA: ACM, 2011, pp. 2857-2866.

M. B. Rosson and J. M. Carroll, “The reuse of uses in Smalltalk
programming,” ACM Trans. Comput.-Hum. Interact., vol. 3, no. 3, pp.
219-253, aCM, 1996.

M. Acharya, T. Xie, J. Pei, and J. Xu, “Mining API patterns as partial
orders from source code: from usage scenarios to specifications,” in
Proceedings of the the 6th joint meeting of the European software
engineering conference. ACM, 2007, pp. 25-34.

S. K. Bajracharya, J. Ossher, and C. V. Lopes, “Leveraging usage
similarity for effective retrieval of examples in code repositories,” in
Proc. of the 18th ACM SIGSOFT FSE. ACM, 2010, pp. 157-166.

C. McMillan, M. Grechanik, D. Poshyvanyk, Q. Xie, and C. Fu,
“Portfolio: Finding relevant functions and their usage,” in Proc. of the
33rd ICSE. ACM, 2011, pp. 111-120.

R. Holmes and G. C. Murphy, “Using structural context to recommend
source code examples,” in Proceedings of the 27th ICSE. ACM, 2005,
pp. 117-125.

D. Cubrani¢ and G. C. Murphy, “Hipikat: recommending pertinent
software development artifacts,” in Proceedings of the 25th ICSE. 1EEE
Computer Society, 2003, pp. 408—418.

J. Stylos, B. A. Myers, and Z. Yang, “Jadeite: Improving API documen-
tation using usage information.” in CHI Extended Abstracts. ACM,
2009, pp. 4429-4434.

L. Ponzanelli, A. Bacchelli and M. Lanza, “Leveraging Crowd
Knowledge for Software Comprehension and Development,” in CSMR,
A. Cleve, F. Ricca, and M. Cerioli, Eds. IEEE Computer Society,
2013, pp. 57-66.

