
Assessing Modularity using Co-Change Clusters

Luciana Lourdes Silva
Marco Tulio Valente

Department of Computer Science,
Federal University of Minas Gerais
{luciana.lourdes,mtov}@dcc.ufmg.br

Marcelo de A. Maia
Faculty of Computing,

Federal University of Uberlândia
marcmaia@facom.ufu.br

Abstract
The traditional modular structure defined by the package hierarchy
suffers from the dominant decomposition problem and it is widely
accepted that alternative forms of modularization are necessary to
increase developer’s productivity. In this paper, we propose an al-
ternative form to understand and assess package modularity based
on co-change clusters, which are highly inter-related classes con-
sidering co-change relations. We evaluate how co-change clusters
relate to the package decomposition of three real-world systems.
The results show that the projection of co-change clusters to pack-
ages follow different patterns in each system. Therefore, we claim
that modular views based on co-change clusters can improve devel-
opers’ understanding on how well-modularized are their systems,
considering that modularity is the ability to confine changes and
evolve components in parallel.

Categories and Subject Descriptors D.1.5 [Software]: Program-
ming Techniques - Object-Oriented Programming; D.2.2 [Soft-
ware]: Software Engineering - Design Tools and Techniques;
D.2.7 [Software]: Software Engineering - Distribution, Mainte-
nance, and Enhancement; D.2.8 [Software]: Software Engineering
- Metrics; H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval

Keywords Modularity, software change, version control systems,
co-change graphs, co-change clusters, Chameleon graph partition-
ing algorithm

1. INTRODUCTION
Modularity is the key concept to embrace when designing com-
plex software systems [3]. The central idea is that modules should
hide important design decisions or decisions that are likely to
change [27]. In this way, modularity contributes to improve pro-
ductivity both during initial development and maintenance phases.
Particularly, well-modularized systems are easier to maintain and
evolve, because their modules can be understood and changed in-
dependently from each other.

For this reason, it is fundamental to consider modularity when
assessing the internal quality of software systems [21, 24]. Typi-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
MODULARITY ’14, April 22–26, 2014, Lugano, Switzerland.
Copyright c© 2014 ACM 978-1-4503-2772-5/14/04. . . $15.00.
http://dx.doi.org/10.1145/10.1145/2577080.2577086

cally, the standard approach to assess modularity is based on cou-
pling and cohesion, calculated using the structural dependencies
established between the modules of a system (coupling) and be-
tween the internal elements from each module (cohesion) [7, 35].
However, typical cohesion and coupling metrics measure a single
dimension of the software implementation (the static-structural di-
mension). On the other hand, it is widely accepted that traditional
modular structures and metrics suffer from the dominant decom-
position problem and tend to hinder different facets that develop-
ers may be interested in [20, 30, 31]. Therefore, to improve current
modularity views, it is important to investigate the impact of design
decisions concerning modularity in other dimensions of a software
system, as the evolutionary dimension.

Specifically, we propose a novel approach for assessing modu-
larity, based on co-change graphs [5]. The approach is directly in-
spired by the common criteria used to decompose systems in mod-
ules, i.e., modules should confine implementation decisions that are
likely to change together [27]. We first extract co-change graphs
from the history of changes in software systems. In such graphs,
the nodes are classes and the edges link classes that were modified
together in the same commits. After that, co-change graphs are au-
tomatically processed to produce a new modular facet: co-change
clusters, which abstract out common changes made to a system, as
stored in version control platforms. Therefore, co-change clusters
represent sets of classes that changed together in the past.

Our approach relies on distribution maps [12]—a well-known
visualization technique—to reason about the projection of the ex-
tracted clusters in the traditional decomposition of a system in
packages. We then rely on a set of metrics defined for distribution
maps to characterize the extracted co-change clusters. Particularly,
we describe some recurrent distribution patterns of co-change clus-
ters, including patterns denoting well-modularized and crosscutting
clusters. Moreover, we also evaluate the meaning of the obtained
clusters using information retrieval techniques. The goal in this
particular case is to understand how similar are the issues whose
commits were clustered together. We used our approach to assess
the modularity of three real-world systems (Geronimo, Lucene, and
Eclipse JDT Core) and observed different patterns of co-change
modularity in such systems.

Our main contributions are threefold. First, we propose a
methodology for extracting co-change graphs and co-change clus-
ters, including several pre and post-processing filters to avoid noise
in the generated clusters. This methodology relies on a graph clus-
tering algorithm designed for sparse graphs, as is the case of co-
change graphs, that was capable to identify high density clusters.
Second, we propose a methodology to contrast the co-change mod-
ularity with the standard package decomposition. This methodol-
ogy includes metrics to detect both well-modularized and crosscut-
ting co-change clusters. Third, we found that the generated clusters
not only are dense in terms of co-changes, but they also have high

similarity from the point of view of the meaning of the maintenance
issues that originated the respective commits.

The paper is organized as follows. Section 2 presents the
methodology to extract co-change graphs and co-change clusters
from version control systems. Section 3 presents the results of
co-change clustering, when applied to three systems. Section 4 an-
alyzes the modularity of such systems under the light of co-change
clusters. Section 5 analyzes the semantic similarity within the set
of issues related to the extracted clusters. Section 6 discusses our
results and presents threats to validity. Section 7 describes related
work and finally Section 8 concludes the paper.

2. METHODOLOGY
This section presents the methodology we followed for retrieving
co-change graphs and then for extracting the co-change clusters.

2.1 Extracting Co-Change Graphs
As proposed by Beyer et al. [5], a co-change graph is an abstraction
for a version control system (VCS). Suppose a set of change trans-
actions (commits) in a VCS, defined as T = {T1, T2, . . . , Tn},
where each transaction Ti changes a set of classes. Conceptually, a
co-change graph is an undirected graph G = {V,E}, where V is a
set of classes and E is a set of edges. An edge (Ci, Cj) is defined
between classes (vertices) Ci and Cj whenever there is a transac-
tion Tk, such that Ci, Cj ∈ Tk, for i 6= j. Finally, each edge has
a weight that represents the number of transactions changing the
connected classes.

2.1.1 Pre-processing Tasks
When extracting co-change graphs, it is fundamental to preprocess
the considered commits to filter out commits that may pollute the
graph with noise. More specifically, we propose the following pre-
processing tasks:

Removing commits not associated to maintenance issues: In early
implementation stages, commits can denote partial implementa-
tions of programming tasks, since the system is under construc-
tion [25]. When such commits are performed multiple times, they
generate noise in the edges’ weights. For this reason, we consider
just commits associated to maintenance issues. More specifically,
we consider as maintenance issues those that are registered in an
issue tracking system, such as Bugzilla, Jira, etc. Moreover, we
only considered issues labeled as bug correction, new feature, or
improvement. We followed the usual procedure to associate com-
mits to maintenance issues: a commit is related to an issue when
its textual description includes a substring that represents a valid
Issue-ID in the system’s bug tracking system [10, 34, 40].

Removing commits not changing classes: The co-changes consid-
ered by our approach are defined for classes. However, there are
commits that only change artifacts like configuration files, docu-
mentation, script files, etc. Therefore, we discard such commits
in order to only consider commits that change at least one class.
Finally, we eliminate unit testing classes from commits because
co-changes between functional classes and their respective testing
classes are usually common and therefore may dominate the rela-
tions expressed in co-change graphs.

Merging commits related to the same maintenance issue: When
there are multiple commits referring to the same Issue-ID, we
merge all of them—including the changed classes—in a single
commit. For instance, the issue GERONIMO-3003 from Geronimo1

is handled by four commits producing revisions 918360, 798794,

1 Geronimo is an application server, http://geronimo.apache.org

799023, and 799037. In this case, a single change set is gener-
ated for the four commits, including 13 classes. Therefore, in the
co-change graph an edge is created for each pair of classes in this
merged change set. In this way, we will have edges connecting
classes modified in different commits (but referring to the same
maintenance issue).

Removing commits associated to multiple maintenance issues: We
remove commits that report changes related to more than one main-
tenance issue, which are usually called tangled code changes [15].
Basically, such commits are discarded because otherwise they
would generate edges connecting classes modified to implement
semantically unrelated maintenance tasks (which were included in
the same commit just by convenience, for example). For instance,
the revision 565397 of Geronimo includes changes to attend the
following six issues: 3254, and 3394 to 3398.

Removing highly scattered commits: We remove commits repre-
senting highly scattered code changes, i.e., commits that modify
a massive number of classes. Typically, such commits are asso-
ciated to refactorings (like rename method) and other software
quality improving tasks (like dead code removal), implementation
of new features, or minor syntactical fixes (like changes to com-
ment styles) [38]. For instance, the commit associated to revision
1355069 of Lucene changed 251 classes, located in 80 packages.
In this revision, redundant throws clauses were refactored.

Figure 1. Packages changed by commits in the Lucene system

Recent research showed that scattering in commits tends to
follow heavy-tailed distributions [38]. Therefore, the existence of
massively scattering commits cannot be neglected. Particularly,
such commits may have a major impact when considered in co-
change graphs, due to the very large deviation between the number
of classes changed by them and by the remaining commits in the
system. Figure 1 illustrates this fact by showing a histogram with
the number of packages changed by commits made to the Lucene
system 2. As we can observe, 1,310 commits (62%) changed classes
in a single package. Despite this fact, the mean value of this distri-
bution is 51.2, due to the existence of commits changing for exam-
ple, more than 10 packages.

Considering that our goal is to model recurrent maintenance
tasks and considering that highly scattered commits typically do not

2 An information retrieval library, http://lucene.apache.org.

present this characteristic, we decided to remove them during the
co-change graph creation. For this purpose, we define that a pack-
age pkg is changed by a commit cmt if at least one of the classes
modified by cmt are located in pkg. Using this definition, we ig-
nore commits that change more than MAX SCATTERING pack-
ages. In Section 3, we define and explain the values for thresholds
in our method.

2.1.2 Post-processing Task
In co-change graphs, the edges’ weights represent the number
of commits changing the connected classes. However, co-change
graphs typically have many edges with small weights, i.e., edges
representing co-changes that happened very few times. Such co-
changes are not relevant considering that our goal is to model recur-
rent maintenance tasks. For this reason, there is a post-processing
phase after extracting a first co-change graph. In this phase, edges
with weights less than a MIN WEIGHT threshold are removed. In
fact, this threshold is analogous to the support threshold used by
co-change mining approaches based on association rules [39].

2.2 Extracting Co-Change Clusters
After extracting the co-change graphs, our goal is to retrieve sets
of classes that frequently change together, which we call co-
change clusters. We propose to extract co-change clusters auto-
matically, using a graph clustering algorithm designed to handle
sparse graphs, as is typically the case of co-change graphs [5].
More specifically, we decided to use the Chameleon clustering al-
gorithm [18], which is an agglomerative and hierarchical clustering
algorithm recommended to sparse graphs.

The algorithm operates in two phases:

• First Phase: a nearest-neighbor graph is extracted and a min-cut
graph partitioning algorithm is used to partition the data items
(classes in our case) into a pre-defined number of subclusters
M . The number of clusters after this phase is M plus C, where
C is the number of connected components in the graph.

• Second Phase: Chameleon combines such smaller clusters re-
peatedly. Clusters are combined to maximize the number of
links within a cluster (internal similarity) and to minimize the
number of links between clusters (external similarity).

2.2.1 Defining the Number of Clusters
A critical decision when applying Chameleon—and many other
clustering algorithms—is to define the number of partitions M that
should be created in the first phase of the algorithm. To define the
“best value” for M we execute Chameleon multiple times, with dif-
ferent values of M , starting with a M INITIAL value. Furthermore,
in the subsequent executions, the previous tested value is decre-
mented by a M DECREMENT constant.

After each execution, we discard small clusters, as defined by a
MIN CLUSTER SZ threshold. Considering that our goal is to ex-
tract groups of classes that may be used as alternative modular
views, it is not reasonable to have clusters with only two or three
classes. If we accept such small clusters, we may eventually gener-
ate a decomposition of the system with hundreds of clusters.

For each execution, the algorithm provides two important statis-
tics to evaluate the quality of each cluster:

• ESim - The average similarity of the classes of each cluster and
the remaining classes (average external similarity). This value
must tend to zero because minimizing inter-cluster connections
is important to support modular reasoning.

• ISim - The average similarity between the classes of each
cluster (average internal similarity).

After pruning the small clusters, the following clustering quality
function is applied to the remaining clusters:

coefficient(M) =
1

k
∗

k∑
i=1

ISimCi − ESimCi

max (ISimCi , ESimCi)

where k is the number of clusters after pruning small clusters.
The measure coefficient(M) combines the concepts of cluster

cohesion (tight co-change clusters) and cluster separation (highly
separated co-change clusters). The coefficients ranges from [-1;
1], where -1 indicates a very poor round and 1 an excellent round.

The selected M value is the one with the highest coefficient(M).
If the highest coefficient(M) is the same for more than one value
of M , then the highest mean(ISim) is used as a tiebreaker. Clearly,
internal similarity is relevant because maintainers are interested in
clusters containing classes that frequently change together.

3. CO-CHANGE CLUSTERING RESULTS
In this section, we report the results we achieved after following the
methodology described in Section 2 to extract co-change clusters
for three systems.

3.1 Target Systems and Thresholds Selection
Table 1 describes the systems considered in our study, including
information on their function, number of lines of code (LOC),
number of packages (NOP), and number of classes (NOC), the
number of commits extracted for each system, and the time frame
used in this extraction. In the study, we considered the following
thresholds:

• MAX SCATTERING = 10 packages, i.e., we discard com-
mits changing classes located in more than ten packages. We
based on the hypothesis that large transactions typically corre-
spond to noisy data, such as comments formatting and rename
method [1, 39]. Excessive pruning is undesirable, so we adopted
a conservative approach working at package level.

• MIN WEIGHT = 2 co-changes, i.e., we discard edges connect-
ing classes with fewer than two co-changes because an unitary
weight does not reflect how often two classes usually change
together [5].

• M INITIAL = NOCG ∗ 0 .20 , i.e., the first phase of the clus-
tering algorithm creates a number of partitions that is one-fifth
of the number of classes in the co-change graph (NOCG). The
higher the M , the higher the final clusters’ size because the
second phase of the algorithm works by aggregating the parti-
tions. In this case, the ISim tend to be lower because subgraphs
that are not well connected are grouped in the same cluster. We
made several experiments varying M ′s value, and observed that
whenever M is high, the clustering tend to have clusters of un-
balanced size.

• M DECREMENT = 1 class, i.e., after each clustering execution,
we decrement the value of M by 1, meaning that no value for
M is discarded from one iteration to another.

• MIN CLUSTER SZ = 4 classes, i.e., after each clustering exe-
cution, we remove clusters with less than 4 classes.

We defined the thresholds after some preliminary experiments
with the target systems. We also based this selection on previous
empirical studies reported in the literature. For example, Walker
showed that only 5.93% of the patches in the Mozilla system
change more than 11 files [38]. Therefore, we claim that commits
changing more than 10 packages are in the last quantiles of the
heavy-tailed distributions that normally characterize the degree of

Table 1. Target systems (size metrics and initial commits sample)
System Description Release LOC NOP NOC Commits Period

Geronimo Web application server 3.0 234,086 424 2,740 9,829 08/20/2003 - 06/04/2013 (9.75 years)
Lucene Text search library 4.3 572,051 263 4,323 8,991 01/01/2003 - 07/06/2013 (10.5 years)
JDT Core Eclipse Java infrastructure 3.7 249,471 74 1,829 24,315 08/15/2002 - 08/21/2013 (10 years)

scattering in commits. As another example, in the systems included
in the Qualitas Corpus—a well-known dataset of Java programs—
the packages on average have 12.24 classes [36, 37]. In our three
target systems, the packages have on average 15.87 classes. There-
fore, we claim that clusters with less than four classes can be char-
acterized as small clusters.

3.2 Co-Change Graph Extraction
We start by characterizing the extracted co-change graphs. Table 2
shows the percentage of commits in our sample, after applying
the preprocessing filters described in Section 2.1.1): removal of
commits not associated to maintenance issues (Pre #1), removal
of commits not changing classes and also testing classes (Pre #2),
merging commits associated to the same maintenance issue (Pre
#3), removal of commits denoting tangled code changes (Pre #4),
and removal of highly scattering commits (Pre #5).

Table 2. Percentage of commits after each preprocessing filters
System Pre #1 Pre #2 Pre #3 Pre #4 Pre #5

Geronimo 32.6 25.2 17.3 16.1 14.3
Lucene 39.2 34.6 23.6 23.3 22.4

JDT Core 38.4 32.8 21.7 20.30 20.1

As can be observed in Table 2, our initial sample for the Geron-
imo, Lucene, and JDT Core systems was reduced to 14.3%, 22.4%,
and 20.1% of its original, respectively. The most significant reduc-
tion was due to the first preprocessing task. Basically, only 32.6%,
39.2%, and 38.4% of the commits in the Geronimo, Lucene, and
JDT Core systems are explicitly associated to maintenance issues
(as stored in the systems issue tracking platforms). There were also
significant reductions after filtering out commits that do not change
classes or that only change testing classes (preprocessing task #2)
and after merging multiple commits due to the same maintenance
issue (preprocessing task #3). Finally, a reduction affecting 3% of
the Geronimo’s commits and nearly 1% of the commits of the other
systems was achieved by the last two preprocessing tasks.

After applying the preprocessing filters, we extracted a first
co-change graph for each system. We then applied the post-
processing filter defined in Section 2.1.2, to remove edges with
unitary weights. Table 3 shows the number of vertices (|V |) and
the number of edges (|E|) in the co-change graphs, before and af-
ter this post-processing task. The table also presents the graph’s
density (column D).

Table 3. Number of vertices (|V |), edges (|E|) and co-change
graphs’ density (D) before and after the post-processing filter

System
Post-Processing

Before After
|V| |E| D |V| |E| D

Geronimo 2,099 24,815 0.01 695 4,608 0.02
Lucene 2,679 63,075 0.02 1,353 18,784 0.02

JDT Core 1,201 75,006 0.01 823 25,144 0.04

By observing the results in Table 3, two conclusions can be
drawn. First, co-change graphs are clearly sparse graphs, having
density close to zero in the evaluated systems. This fact reinforces

our choice to use Chameleon as the clustering algorithm, since this
algorithm is particularly well-suited to handle sparse graphs [18].
Second, most edges in the initial co-change graphs have weight
equal to one (more precisely, around 81%, 70%, and 66% of the
edges for Geronimo, Lucene, and JTD Core graphs, respectively).
Therefore, they connect classes that changed together in just one
commit and for this reason were removed by the post-processing
task. As result, the number of vertices after post-processing was
reduced to 33% (Geronimo), 50% (Lucene), and 68.5% (JDT Core)
of their initial value.

3.3 Co-Change Clustering
We executed the Chameleon graph clustering algorithm having as
input the co-change graphs created for each system (after applying
the pre-processing and post-processing filters).3 Table 4 shows
the value of M that generated the best clusters, according to the
clustering selection criteria defined in Section 2.2.1. The table
also reports the initial number of co-change clusters generated by
Chameleon and the number of clusters after eliminating the small
clusters, i.e., clusters with fewer than four classes, as defined by
the MIN CLUSTER SZ threshold. Finally, the table shows the ratio
between the final number of clusters and the number of packages
in each system (column %NOP).

Table 4. Number of co-change clusters

System M # clusters %NOPAll |V| ≥ 4

Geronimo 108 46 21 0.05
Lucene 68 98 49 0.19

JDT Core 100 35 24 0.32

For example, for the Geronimo system, we achieved the “best
clusters” for M = 108, i.e., the co-change graph was initially par-
titioned into 108 clusters, in the first phase of the algorithm. In the
second phase (agglomerative clustering), the initial clusters were
successively merged, stopping with a configuration of 46 clusters.
However, only 21 clusters have four or more classes (|V | ≥ 4) and
the others were discarded, since they represent “small modules”,
as defined in Section 3.1. We can also observe that the number of
clusters is considerably smaller than the number of packages. Ba-
sically, this fact is an indication that the maintenance activity in the
system is concentrated in few classes.

For the Lucene system, we achieved the best clusters for M =
68, since the number of clusters returned in the first phase is M
plus the number of connected components.

Table 5 shows standard descriptive statistics measurements re-
garding the size of the extracted co-change clusters, in terms of
number of classes. As we can observe, the extracted clusters have
8.8±4.7 classes, 11.7±7.0 classes, and 14±10.4 classes (average
± standard deviation) in the Geronimo, Lucene, and JDT Core sys-
tems, respectively. Moreover, the biggest cluster has a considerable
number of classes: 20 classes (Geronimo), 27 classes (Lucene), and
43 classes (JDT Core).

3 To execute Chameleon, we relied on the CLUTO clustering package,
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview.

Table 5. Co-change clusters size (in number of classes)

System Cluster size
Min Max Avg Std

Geronimo 4 20 8.8 4.7
Lucene 4 27 11.7 7.0

JDT Core 4 43 14 10.4

Table 6 presents standard descriptive statistics measurements re-
garding the density of the extracted co-change clusters. The clusters
have a density of 0.80 ± 0.24 (Geronimo), 0.68 ± 0.25 (Lucene),
and 0.54 ± 0.29 (JDT Core). The median density is 0.90 (Geron-
imo), 0.71 (Lucene), and 0.49 (JDT Core). Therefore, although
co-change graphs are heavily sparse graphs, the results in Table 6
show they have dense subgraphs with a considerable size (at least
four classes). Density is a central property in co-change clusters,
because it assures that there is a high probability of co-changes
between each pair of classes in the cluster. In other words, high-
density co-change clusters can be viewed as related program units,
at least under evolutionary terms.

Table 6. Co-change clusters density

System Cluster density
Min Max Avg Std Median

Geronimo 0.31 1.0 0.80 0.24 0.90
Lucene 0.17 1.0 0.68 0.25 0.71

JDT Core 0.18 1.0 0.54 0.29 0.49

Table 7 presents standard descriptive statistics measurements re-
garding the average weight of the edges in the extracted co-change
clusters. For a given co-change cluster, we define this average as
the sum of the weights of all edges divided by the number of edges
in the cluster. We can observe that the median edges’ weight is not
high, being slightly greater than two in Geronimo and Lucene, and
four in the JDT Core. However, it is important to mention that after
applying the preprocessing filters we only considered a small sam-
ple of the initial commits to create the co-change graphs (14.3% of
the commits in Geronimo, 22.4% of the commits in Lucene, and
20.1% in JDT Core).

Table 7. Average edges’ weight

System Cluster average edges weight
Min Max Avg Std Median

Geronimo 2 5.5 2.4 0.8 2.1
Lucene 2 7.1 2.7 1.0 2.4

JDT Core 2 7.6 4.3 1.5 3.8

4. MODULARITY ANALYSIS
In this section, we investigate the application of co-change clus-
ters to assess the quality of a system’s package decomposition. Par-
ticularly, we investigate the distribution of the co-change clusters
over the package structure. For this purpose, we rely on distribu-
tion maps [12], which are typically used to compare two partitions
P and Q of the entities from a system S. In our case, the entities
are classes, the partition P is the package structure, and Q is com-
posed by the co-change clusters. Moreover, entities (classes) are
represented as small squares and the partition P (package struc-
ture) groups such squares into large rectangles (packages). In the
package structure, we only consider classes that are members of
co-change clusters, in order to improve the maps visualization. Fi-
nally, partition Q (co-change clusters) is used to color the classes
(all classes in a cluster have the same color).

In addition to visualization, distribution maps can be used to
quantify the focus of a given cluster q in relation to the partition P
(package structure), as follows:

focus(q, P) =
∑
pi∈P

touch(q, pi) ∗ touch(pi, q)

where

touch(p, q) =
|p ∩ q|
|q|

In this definition, touch(q, pi) is the number of classes of cluster q
located in the package pi divided by the number of classes in pi that
are included in at least a co-change cluster. Similarly, touch(pi, q)
is the number of classes in pi included in the cluster q divided by
the number of classes in q. Focus ranges between 0 and 1, where
the value one means that the cluster q dominates the packages that
it touches, i.e., it is well-encapsulated in such packages. On the
other hand, when co-change clusters crosscut many packages, but
touching few classes in each of them, their focus is low. There is
also a second metric that measures how spread is a cluster q in P ,
i.e., the number of packages touched by q.

Tables 8 and 9 show the standard descriptive statistics measure-
ments regarding respectively the focus and spread of the co-change
clusters. We can observe that the co-change clusters in Geronimo
have a higher focus than in Lucene and JDT Core. For example, the
median focus in Geronimo is 1.00, against 0.55 and 0.30 in Lucene
and JDT Core, respectively. Regarding spread, the values in both
systems are similar, on average the spread is 3.50 (Geronimo), 3.35
(Lucene), and 3.83 (JDT Core). Figure 2 shows a scatterplot with
the values of focus (horizontal axis) and spread (vertical axis) for
each co-change cluster. In Geronimo, we can see that there is a
concentration of clusters with high focus. On the other hand, for
Lucene, the clusters are much more dispersed along the two axis.
Eclipse JDT tends to have lower focus, but also lower spread, even
if the maximum spread is the largest of the three systems.

Table 8. Focus
System Focus

Min Max Avg Std Median
Geronimo 0.50 1.00 0.93 0.12 1.00

Lucene 0.06 1.00 0.57 0.30 0.55
JDT Core 0.07 1.00 0.36 0.26 0.30

Table 9. Spread

System Spread
Min Max Avg Std Median Mode

Geronimo 1 8 3.50 2.10 3 1
Lucene 1 8 3.35 1.90 3 3

JDT Core 1 10 3.83 2.60 3 1

In the following sections, we analyze examples of well-encapsu-
lated and crosscutting clusters, using distribution maps,4 in the
Geronimo system (Section 4.1), in the Lucene System (Section
4.2), and the Eclipse JDT (Section 4.3). Section 4.1 emphasizes
well-encapsulated clusters, since they are common in Geronimo.
On the other hand, Section 4.2 emphasizes crosscutting concerns,
which are most common in Lucene. Section 4.3 on Eclipse JDT
reports an analysis on both types of clusters.

4 To extract and visualize distribution maps, we used the Topic Viewer
tool [33], available at https://code.google.com/p/topic-viewer).

Figure 2. Focus versus Spread

Figure 3. Distribution map for Geronimo

4.1 Distribution Map for Geronimo
Figure 3 shows the distribution map for Geronimo. To improve the
visualization, besides background colors, we use a number in each
class (small squares) to indicate their respective clusters. The large
boxes are the packages and the text below is the package name.

Considering the clusters that are well-encapsulated (high focus)
in Geronimo, we found three package distribution patterns:

• Clusters well-encapsulated (focus = 1.0) in a single package
(spread = 1). Four clusters have this behavior. As an example,
we have Cluster 2, which dominates the co-change classes in the
package main.webapp.WEBINF.view.realmwizard (line 1
in the map, column 9). This package implements a wizard to
configure or create security domains. Therefore, since it imple-
ments a specific functional concern, maintenance is confined in
the package. As another example, we have Cluster 5 (package
mail, line 1 in the map, column 10) and Cluster 11 (package
security.remoting.jmx, line 1, column 3).

• Clusters well-encapsulated (focus = 1.0) in more than one
package (spread > 1). We counted eight clusters with this
behavior. As an example, we have Cluster 18 (spread = 4),
which touches all co-change classes in the following packages:

security.jaas.server, security.jaas.client, secu-
rity.jaas, and security.realm (displayed respectively in
line 1, columns 7 and 8; line 2, column 6; and line 4, column
6). As suggested by their names, these packages are related to
security concerns, implemented using the Java Authentication
and Authorization Service (JAAS) framework. Therefore, the
packages are conceptually related and their spread should not
be regarded as a design problem. In fact, the spread in this case
is probably due to a decision to organize the source code in
sub-packages.
As another example, we have Cluster 20 (spread = 5), which
touches all classes in connector.outbound, connector.wo-
rk.pool, connector.work, connector.outbound.con-
nectiontracking, and timer.jdbc (displayed respectively
in line 1, column 4; line 2, column 5; line 4, column 4; line
7, column 1; line 5 and column 3). These packages implement
EJB connectors for message exchange.

• Clusters partially encapsulated (focus ≈ 1.0), but touching
classes in other packages (spread > 1).5 As an example,

5 These clusters are called octopus, because they have a body centered on a
single package and tentacles in other packages [12].

we have Cluster 8 (focus = 0.97, spread = 2), which dom-
inates the co-change classes in the package tomcat.model
(line 1 and column 1 in the map), but also touches the class
TomcatServerGBean from package tomcat (line 2, column
8). This class is responsible for configuring the web server used
by Geronimo (Tomcat). Therefore, this particular co-change in-
stance suggests an instability in the interface provided by the
web server. In theory, Geronimo should only call this interface
to configure the web server, but in fact the co-change cluster
shows that maintenance in the model package sometimes has a
ripple effect on this class, or vice-versa.
As another example, we have Cluster 14 (focus = 0.92 and
spread = 2), which dominates the package tomcat.connector
(line 1 and column 6 in the map) but also touches the class
TomcatServerConfigManager from package tomcat (line 2,
column 8). This “tentacle” in a single class from another pack-
age suggests again an instability in the configuration interface
provided by the underlying web server.

4.2 Distribution Map for Lucene
We selected for analysis clusters that are crosscutting (focus≈ 0.0),
since they are much more common in Lucene. More specifically,
we selected the three clusters in Lucene with the lowest focus
and a spread greater than two. Figure 4 shows a fragment of the
distribution map for Lucene, containing the following clusters:

• Cluster 12 (focus = 0.06 and spread = 3) with co-change
classes in the following packages: index, analysis, and
store. Since the cluster crosscuts packages that provide very
different services (indexing, analysis, and storing), we claim
that it reveals a modularization flaw in the package decompo-
sition followed by Lucene. For example, a package like store
that supports binary I/O services should hide its implementa-
tion from other packages. However, the existence of recurring
maintenance tasks crosscutting store shows that the package
fails to hide its main design decisions from other packages in
the system.

• Cluster 13 (focus = 0.2 and spread = 3), with co-change
classes in the following packages: search, search.spans,
and search.function. In this case, we claim that crosscut-
ting causes less harm to modularity, because the packages are
related to a single service (searching).

• Cluster 28 (focus = 0.21 and spread = 6), with co-change
classes in the following packages: index, search, search.
function, index.memory, search.highlight, and store.
instantiated. These packages are responsible for important
services in Lucene, like indexing, searching, and storing. There-
fore, as in the case of Cluster 12, the crosscutting behavior of
this cluster suggests a modularization flaw in the system.

We also analyzed the maintenance issues associated to the com-
mits responsible for the co-changes in Cluster 28. Particularly, we
retrieved 37 maintenance issues related to this cluster. We then
manually read and analyzed the short description of each issue, and
classified them in three groups: (a) maintenance related to func-
tional concerns in Lucene’s domain (like searching, indexing, etc);
(b) maintenance related to non-functional concerns (like logging,
persistence, exception handling, etc); (c) maintenance related to
refactorings. Table 10 shows the number of issues in each cate-
gory. As can be observed, the crosscutting behavior of Cluster 28
is more due to issues related to functional concerns (59.5%) than to
traditional non-functional concerns (8%). Moreover, changes mo-
tivated by refactorings (32.5%) are more common than changes in
non-functional concerns.

Figure 4. Part of the Distribution map for Lucene

Finally, we detected a distribution pattern in Lucene that repre-
sents neither well-encapsulated nor crosscutting clusters, but that
might be relevant for analysis:

• Clusters well-confined in packages (spread = 1). Although re-
stricted to a single package, these clusters do not dominate the
colors in this package. But when considered as a single cluster,
they dominate their package. As a concrete example, we have
Cluster 20 (focus = 0.22) and Cluster 29 (focus = 0.78) that
are both confined in package util.packed (line 1, column 3).
Therefore, in this case a refactoring that splits the package in
sub-packages can be considered, in order to improve the focus
of the respective clusters.

Table 10. Maintenance issues in Cluster 28
Maintenance Type # issues % issues
Functional concerns 22 59.50%
Non-functional concerns 3 8.00%
Refactoring 12 32.50%

4.3 Distribution Map for JDT Core
Figure 5 shows the distribution map for JDT Core. We selected
three distinct types of clusters for analysis: a crosscutting cluster
(focus ≈ 0.0 and spread >= 3), a clusters confined in a single
package with (spread = 1), and a cluster with high spread.

• Clusters with crosscutting behavior. We have Cluster 4 (fo-
cus = 0.08 and spread = 4) with co-change classes in the
following packages: core.dom, internal.core, inter-
nal.compiler.lookup, and internal.core.util. The
core.util package provides a set of tools and utilities for
manipulating .class files and Java model elements. Since the
cluster crosscuts packages providing very different services
(document structure, files and elements manipulation, popu-
lation of the model, compiler infrastructure), we claim that it
reveals a modularization flaw in the system.

• Clusters well-confined in packages (spread = 1). We have Clus-
ter 0 (focus = 0.48), Cluster 5 (focus = 0.35), and Cluster 6
(focus = 0.07) in the core.dom package (line 1, column 1).

Figure 5. Part of the Distribution map for JDT Core

• Clusters partially encapsulated (focus ≈ 1.0), but touching
classes in other packages (spread > 1). We have Cluster 3
(focus = 0.87 and spread = 8), which dominates the co-change
classes in the packages search.jdt.internal.core.search
.matching and search.jdt.core.search. These packages
provide support for searching the workspace for Java elements
matching a particular description. Their spread should not
be regarded as a design problem, because the packages are
related to a single service (searching). However, the cluster
also touches classes in other packages. For example, the class
core.index.Index maps document names to their referenced
words in various categories.

5. SEMANTIC SIMILARITY ANALYSIS
The previous section has shown that the package modular struc-
ture of Geronimo has more adherence to co-change clusters than
Lucene’s and JDT Core’s. We also observed that patterns followed
by the relation clusters vs. packages can help to assess the modu-
larity of systems. This section aims at evaluating the semantic sim-
ilarity of the issues that are related to a specific cluster in order to
improve our understanding of the clusters’ meaning. We consider
that if the issues related to a cluster have high semantic similarity,
then the classes within that cluster are also semantically related and
the cluster is semantically cohesive. We assume that an issue is re-
lated to a cluster if the change set of the issue contains at least a pair
of classes from that cluster, not necessarily linked with an edge. In
our strategy to evaluate the similarity of the issues related to a clus-
ter, we consider each short description of a issue as a document
and the collection of documents is obtained from the collection of
issues related to a cluster. We will use Latent Semantic Analysis -
LSA [11] to evaluate the similarity among the collection of docu-
ments related to a cluster because it is a well-known method used
in other studies concerning similarity among issues and other soft-
ware artifacts [28, 29].

5.1 Pre-processing Issue Description
When analyzing text documents with Information Retrieval tech-
niques, an adequate pre-processing of the text is important to
achieve good results. We determined a domain vocabulary of terms
based on words found in commits of the target system. The first
step is stemming the terms. Next, the stop-words were removed.

The final step produces a term-document matrix, where the cells
have value 1 if the term occurs in the document and 0 otherwise.
This decision was taken after some qualitative experimentation, in
which we observed that different weighting mechanisms based on
the frequency of terms, such as td-idf [23], did not improved the
quality of the similarity matrix.

5.2 Latent Semantic Analysis
The LSA algorithm is applied to the binary term-document matrix
and produces another similarity matrix among the documents (is-
sues) with values ranging from -1 (no similarity) to 1 (maximum
similarity). The LSA matrix should have high values to denote a
collection of issues that are all related among them. However, not
all pairs of issues have the same similarity level, so it is necessary to
analyze the degree of similarity between the issues to evaluate the
overall similarity within a cluster. We used heat maps to visualize
the similarity between issues that are related to a cluster. Figures 6
shows examples of similarity within specific clusters. We show for
each system the two best clusters in terms of similarity to the left,
and the two clusters with several pairs of issues with low similarity
to the right. The white cells represent that the issues do not have
any word in common, blue cells represent very low similarity, and
yellow cells denote the maximum similarity between the issues.

We can observe that even for the cluster with more blue cells,
there is still a dominance of higher similarity cells. The white cells
in JDT’s clusters suggest that there are issues with no similarity
between the others in their respective cluster.

5.3 Scoring clusters
We propose the following metric to evaluate the overall similarity
of a cluster c:

similarity score(c) =

∑
0<i,j<n−1

j<i

similar(i, j)

(n
2

2
− n)

where

similar(i, j) =

{
0, if LSA Cosine(i, j) < SIM THRS
1, if LSA Cosine(i, j) ≥ SIM THRS

n = number of issues related to cluster c
SIM THRS = 0.4

The meaning of the similarity score of a cluster is defined upon
the percentage of similar pair of issues related to that cluster. So, a
cluster with score = 0.5, means that 50% of pairs of issues related
to that cluster are similar to each other.

In this work, we had to define a threshold to evaluate if two
issues are similar or not. We consider the semantic similarity be-
tween two issue reports, i and j, as the cosine between the vectors
corresponding to i and j in the semantic space created by LSA. Af-
ter experimental testing, we observed that pairs of issues (i, j) that
had LSA Cosine(i , j) ≥ 0 .4 had a meaningful degree of similar-
ity. Nonetheless, we agree that this fixed threshold cannot be free
of imprecision. Similar to our study, Poshyvanyk and Marcus [29]
used LSA to analyze the coherence of the user comments in bug
reports. The system’s developers classified as high/very high simi-
lar, the comments with average similarity greater than 0.33, so our
more conservative approach seems to be quite adequate.

Moreover, because our goal is to have an overall evaluation of
the whole collection of co-change clusters, some imprecision in the
characterization of similarity between two issues would not affect
significantly our analysis of the distribution of clusters’ scores.
Figures 7 shows the distribution of score values for Geronimo’s,
Lucene’s, and JDT’s clusters.

Figure 6. Examples of heat maps for similarity of issues

We can observe that the systems’ clusters follow a similar pat-
tern of scoring, with 100% (for Lucene and JDT) and more than
90% (for Geronimo) of clusters having more than half pairs of is-
sues similar to each other.

Figure 7. Distribution of the clusters’ score

5.4 Correlating Similarity, Focus, and Spread
Another analysis that we carried out with clusters’ scores was to
evaluate the degree of correlation between the score, focus and
spread. Table 11 shows the results obtained by applying the Spear-
man correlation test. For Geronimo, we observed a strong negative
correlation between spread and score. In other words, the higher is
the number of similar issues in a cluster, the higher is the capacity
of the cluster to encompass a whole package in Geronimo. Inter-
estingly, Lucene does not present the same behavior as Geronimo.
We observe a weak correlation between focus and score, but we
encounter no significant correlation between spread and score. In
the case of Lucene, the higher is the number of similar issues in a
cluster, the lower is the number of packages touched by the cluster.
In the case of Eclipse JDT Core, there is no significant correlation
between focus and score. Although, there is a moderate negative
correlation between spread and score, it is only significant at p-
value 0.074. Considering that the clusters of the analyzed systems
followed a similar pattern of similarity, this result suggests that the
reasonable similarity between co-change induces different proper-
ties in the clusters, either in spread or in focus.

Table 11. Correlation between score, focus and spread of clusters
for Geronimo, Lucene, and JDT Core

Correlation Coefficient Score Score Score
p-value Geronimo Lucene JDT
Focus 0.264 0.308 −0.015

0.131 0.016 0.473
Spread −0.720 −0.178 −0.304

1.71× 10−4 0.111 0.074

6. DISCUSSION
6.1 Practical Implications
Software architects can rely on the approach proposed in this pa-
per to assess modularity under an evolutionary dimension. More
specifically, we claim that our approach helps to reveal the follow-
ing patterns of co-change behavior:

• When the package structure is adherent to the cluster structure,
as in Geronimo’s clusters (43% well encapsulated), then local-
ized co-changes are likely to occur.

• When there is not a clear adherence between co-change clus-
ters and packages, a restructuring of the package decomposition
may be necessary to improve modularity. Particularly, there are
two patterns of clusters that may suggest modularity flaws. The
first pattern denotes clusters with crosscutting behavior (focus
≈ 0 and high spread). For example, in Lucene and JDT Core
we detected 12 and 10 clusters related to this pattern, respec-
tively. The second pattern is the octopus cluster that suggest a
possible ripple effect during maintenance tasks. In Geronimo
and Lucene, we detected four and five clusters related to this
pattern, respectively.

On the other hand, modular designs usually demand well-
trained, skilled, and experienced software architects. Nonetheless,
we have no evidence that the proposed co-change clusters may fully
replace traditional modular decompositions. Indeed, a first obstacle
to this proposal is the fact that co-change clusters do not cover the
whole population of classes in a system. On the other hand, we
believe that they can be used as an alternative modular view during
program comprehension tasks. For example, they may provide a
better context during maintenance tasks (similar for example to the
task context automatically inferred by tools like Mylyn [20]).

6.2 Clustering vs Association Rules Mining
Our approach is centered on the Chameleon hierarchical cluster-
ing algorithm, since this algorithm was designed to handle sparse
graphs [18]. In our case studies, for example, the co-change graphs
have densities ranging from 2% (Geronimo and Lucene) to 4%
(Eclipse JDT Core). Particularly, in traditional clustering algo-
rithms, like K-Means [22], the mapping of data items to clusters is
a total function, i.e., each data item is allocated to a specific cluster.
Likewise K-Means, Chameleon tries to cluster all data items (ver-
tices). However, when some vertices do not share any edge with the
rest of the vertices, the number of clustered vertices is fewer than
the total number of initial vertices.

An alternative to retrieve co-change relations is to rely on asso-
ciation rules mining [2]. In the context of evolutionary coupling, an
association rule Cant ⇒ Ccons express that commit transactions
changing the classes Cant (antecedent term) also change Ccons

classes (consequent term), with a given probability.
However, hundreds of thousands of association rules can be eas-

ily retrieved from version histories. For example, we executed the
Apriori algorithm [2] to retrieve association rules for the Lucene
system. By defining a minimum support threshold of four transac-
tions, a minimum confidence of 50%, and limiting the size of the
rules to 10 classes, we mined 976,572 association rules, with an
average size of 8.14 classes. We repeated this experiment with the
confidence threshold of 90%. In this case, we mined 831,795 asso-
ciation rules, with an average size of 8.23 classes. This explosion
in the number of rules is an important limitation for using asso-
ciation rules to assess modularity, which ultimately is a task that
requires careful judgment and analysis by software developers and
maintainers.

6.3 Threats to Validity
In this section, we discuss possible threats to validity, following
the usual classification in threats to internal, external, and construct
validity:

Threats to External Validity: There are some threats that limit our
ability to generalize our findings. The use of Geronimo, Lucene,
and JDT Core may not be representative to capture co-change pat-
terns present in other systems. However, it is important to note that
we do not aim to propose general co-change patterns, but instead
we just claim that the patterns founded in the target systems show
the feasibility of using co-change clusters to evaluate modularity
under a new dimension.

Threats to Construct Validity: A possible design threat to construct
validity is that developers might not adequately link commit with
issues, as pointed out by Herzing and Zeller [15]. Moreover, we
also found a high number of commits not associated to maintenance
issues. Thus, our results are subjected to missing and to incorrect
links between commits and issues. However, we claim at least that
we followed the approach commonly used in other studies that
map issues to commits [8–10, 40]. We also filtered out situations
like commits associated to multiple maintenance issues and highly
scattered commits. Another possible construction threat concerns
the time frame used to collect the issues. We considered activity in
a period of approximately ten years, which is certainly a large time
frame. However, we did not evaluate how the co-change clusters
evolved during this time frame or whether the systems’ architecture
substantially changed.

Finally, our approach only handles co-changes related to source
code artifacts (.java files). However, the systems we evaluated have
other types of artifacts, like XML configuration files. Geronimo for
example has 177 Javascript files, 1004 XML configuration files, 19
configuration files, and 105 image files. Therefore, it is possible
that we missed some co-change relations among non-Java based
artifacts or between non-Java and Java-based artifacts. On the other
hand, considering only source code artifacts makes possible the
projection of co-change clusters to distribution maps, using the
package structure as the main partition in the maps.

Threats to Internal Validity: Our approach relies on filters to se-
lect the commits used by the co-change graphs and clusters. Those
filters are based on thresholds that could be defined differently, de-
spite of our careful pre-experimentation. We also calibrated the se-
mantic similarity analysis with parameters that define the dimen-
sionality reduction in the case of LSA, and with a threshold in the
case of the LSA Cosine coefficient that defines when a pair of is-
sues is similar. Although this calibration has some degree of uncer-
tainty, it was not proposed to get better results favoring one system
instead of the other. We defined the parameters and constants so
that coherent results were achieved in all systems. Moreover, we
observed that variations in the parameters’ values would affect the
results for all systems in a similar way.

7. RELATED WORK
In this section, we discuss work related to our approach. The dis-
cussion is organized in three sections: concern mapping, co-change
mining, and aspect mining.

7.1 Concern Mapping
Several approaches have been proposed to help developers and
maintainers to manage concerns and features. For example, concern
graphs model the subset of a software system associated with a spe-
cific concern [30, 31]. The main purpose is to provide developers

with an abstract view of the program fragments related to a concern.
FEAT is a tool that supports the concern graph approach by en-
abling developers to build concern graphs interactively, as result of
program investigation tasks. Aspect Browser [14] and JQuery [16]
are other tools that rely on lexical or logic queries to find and doc-
ument code fragments related to a certain concern. ConcernMap-
per [32] is an Eclipse Plug-in to organize and view concerns us-
ing an hierarchical structure similar to the package structure. How-
ever, in such approaches, the concern model is created manually or
based on explicit input information provided by developers. More-
over, the relations between concerns are typically only syntactical
and structural. On the other hand, in the approach proposed in this
paper, the elements and relationships are obtained by mining the
version history.

7.2 Co-change Mining
Zimmermann et al. proposed an approach that uses association rule
mining on version histories to suggest possible future changes [39].
Their approach differs from ours because they rely on association
rules to recommend further changes (e.g., if class A usually co-
changes with B, and a commit only changes A, a warning is given
suggesting to check whether B should not be changed too). On the
other hand, we use co-change graphs to retrieve clusters semanti-
cally related to a target system’s concern. A co-change graph is cre-
ated from the selection of commits linked to their respective main-
tenance issues. Furthermore, our goal is not to recommend future
changes, but to assess modularity, using distribution maps to com-
pare and contrast co-change clusters with the system’s packages.

Beyer and Noack introduced the concept of co-change graphs
and proposed a visualization of such graphs to reveal clusters of
frequently co-changed artifacts [5]. Their approach clusters all co-
change artifacts (code, configuration scripts, documentation, etc),
representing files as co-change graphs’ vertices. These vertices are
displayed as circles and their area is proportional to the frequency
that the file was changed. The vertex color represents its respec-
tive cluster. However, they do not define pre-processing and post-
processing filters. In contrast, we prune many classes during the
pre-processing and post-processing phases and after clustering the
co-change graphs. Finally, our central goal is not directly related
with improving the visualization of co-change clusters, but on us-
ing them to assess modularity.

Oliva et al. mined version histories to extract logical dependen-
cies between software artifacts to identify their origins [26]. They
conducted a manual investigation of the origins of logical depen-
dencies by reading revision comments and analyzing code diffs.
Beck and Diehl combined evolutionary dependencies with syntac-
tic dependencies to retrieve the modular structure of a system [4].
However, they clustered all classes in a system, since their original
goal was to compare both approaches to software clustering. On the
other hand, since our goal is to assess modularity, we consider only
high-density co-change clusters.

Huzefa et al. presented an approach that combines conceptual
and evolutionary couplings for impact analysis in source code [17],
using information retrieval and version history mining techniques.
Gethers et al. proposed an impact analysis that adapts to the specific
maintenance scenario using information retrieval, historical data
mining, and dynamic analysis techniques [13]. However, they did
not use maintenance issues reports to discard noisy commits.

A recent study by Negara et al. revealed that the use of data from
version history presents many threats when investigating source
code properties [25]. For example, developers usually fix failing
tests by changing the test themselves, commit tasks without test-
ing, commit the same code fragment multiple times (in different
commits), or take days to commit changes containing several types

of tasks. In this work, we proposed five pre-processing tasks and
one post-processing task to tackle some of such threats.

7.3 Aspect Mining
Breu and Zimmermann proposed an approach (HAM) based on
version history to detect cross-cutting concerns in an object-
oriented program to guide its migration to an aspect-oriented pro-
gram [6]. They defined the notion of transaction, which is the set
of methods inserted by the developer to complete a single devel-
opment task. They also considered that method calls inserted in
eight or more locations (method bodies) define aspect candidates.
One important difference from their work and ours is that they con-
sider not only methods that were changed together, but also those
changes that were the same. Moreover, they rely on a fine-grained
notion of change that is interested in finding methods calls to define
aspect candidates.

Adams et al. proposed a mining technique (COMMIT) to iden-
tify concerns from functions, variables, types, and macros that were
changed together [1]. Similarly to HAM, COMMIT is based on the
idea that similar calls and references that are added or removed into
different parts of the program are candidates to refer to the same
concern. This information produces several seed graphs which are
concern candidates because nodes in the graph represent program
entities to which calls or references have been co-added or co-
removed. Their approach differs from ours because they generate
independent seed graphs, while we are centered on a unique graph.

8. CONCLUDING REMARKS
In this work, we proposed a method to extract an alternative view
to the package decomposition based on co-change clusters. We
applied our method to three real software systems, Geronimo,
Lucene, and JDT Core, that have approximately ten years of com-
mitted changes. Our results show that meaningful co-change clus-
ters can be extracted using the information available in version
control systems. Although co-change graphs extracted from repos-
itories are sparse, the co-change clusters were dense and have high
internal similarity concerning co-changes and semantic similarity
concerning their originating issues. We have shown that co-change
clusters and their associated metrics were useful to assess the hi-
erarchical modular decomposition of the target systems. Even if
in some cases co-change clusters may be used to restructure the
original package decomposition, we suggest that they can also be
use as an alternative view during maintenance tasks to improve the
developer’s understanding of the change impact.

We still need to investigate the reasons that induce co-change
clusters and to identify the eventual patterns that produce those
clusters, which would contribute in early modularization decisions.
We plan to investigate and to compare our approach with other clus-
tering algorithms for sparse graphs, like the approach proposed by
Beyer et al. [5]. We also plan to consider co-changes at a finer-
granularity level, more specifically among methods, and also in-
cluding non-source code artifacts, like XML configuration files.
Finally, we plan to investigate whether co-change clusters can be
used as an alternative to the Package Explorer, supporting a mech-
anism for the virtual separation of concerns, inspired on the CIDE
tool [19]. However, CIDE supports the virtual separation of fea-
tures whose implementation physically crosscuts many classes. On
the other hand, our goal is to support the virtual separation of fea-
tures with a strong temporal relationship, in terms of co-changes.

Acknowledgments
This work was partially supported by FAPEMIG (grants CEX-
APQ-2086-11, PPM-00388-13) and CNPq (grants 475519/2012-4,
304897/2011-6).

References
[1] B. Adams, Z. M. Jiang, and A. E. Hassan. Identifying crosscutting

concerns using historical code changes. In 32nd International Confer-
ence on Software Engineering, pages 305–314. ACM, 2010.

[2] R. Agrawal and R. Srikant. Fast algorithms for mining association
rules in large databases. In 20th International Conference on Very
Large Data Bases (VLDB), pages 487–499, 1994.

[3] C. Y. Baldwin and K. B. Clark. Design Rules: The Power of Modular-
ity. MIT Press, 2003.

[4] F. Beck and S. Diehl. Evaluating the impact of software evolution on
software clustering. In 17th Working Conference on Reverse Engi-
neering (WCRE), pages 99–108, 2010.

[5] D. Beyer and A. Noack. Clustering software artifacts based on fre-
quent common changes. In 13th International Workshop on Program
Comprehension (IWPC), pages 259–268, 2005.

[6] S. Breu and T. Zimmermann. Mining aspects from version history. In
21st Automated Software Engineering Conference (ASE), pages 221–
230, 2006.

[7] S. Chidamber and C. Kemerer. Towards a metrics suite for ob-
ject oriented design. In 6th Object-oriented programming systems,
languages, and applications Conference (OOPSLA), pages 197–211,
1991.

[8] C. Couto, C. Silva, M. T. Valente, R. Bigonha, and N. Anquetil. Un-
covering causal relationships between software metrics and bugs. In
16th European Conference on Software Maintenance and Reengineer-
ing (CSMR), pages 223–232, 2012.

[9] C. Couto, P. Pires, M. T. Valente, R. Bigonha, and N. Anquetil. Pre-
dicting software defects with causality tests. Journal of Systems and
Software, pages 1–38, 2014.

[10] M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison
of bug prediction approaches. In 7th Working Conference on Mining
Software Repositories (MSR), pages 31–41, 2010.

[11] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, and
R. Harshman. Indexing by latent semantic analysis. Journal of the
American Society for Information Science,, 41:391–407, 1990.

[12] S. Ducasse, T. Gı̂rba, and A. Kuhn. Distribution map. In 22nd IEEE
International Conference on Software Maintenance (ICSM), pages
203–212, 2006.

[13] M. Gethers, H. Kagdi, B. Dit, and D. Poshyvanyk. An adaptive
approach to impact analysis from change requests to source code. In
26th Automated Software Engineering Conference (ASE), pages 540–
543, 2011.

[14] W. G. Griswold, J. J. Yuan, and Y. Kato. Exploiting the map metaphor
in a tool for software evolution. In 23rd International Conference on
Software Engineering (ICSE), pages 265–274, 2001.

[15] K. Herzing and A. Zeller. The impact of tangled code changes. In 10th
Working Conference on Mining Software Repositories (MSR), pages
121–130, 2013.

[16] D. Janzen and K. D. Volder. Navigating and querying code without
getting lost. In 2nd International Conference on Aspect-oriented
Software Development (AOSD), pages 178–187, 2003.

[17] H. Kagdi, M. Gethers, and D. Poshyvanyk. Integrating conceptual and
logical couplings for change impact analysis in software. Empirical
Software Engineering (EMSE), 2013.

[18] G. Karypis, E.-H. S. Han, and V. Kumar. Chameleon: hierarchical
clustering using dynamic modeling. Computer, 32(8):68–75, 1999.

[19] C. Kästner, S. Apel, and M. Kuhlemann. Granularity in software prod-
uct lines. In 30th International Conference on Software Engineering
(ICSE), pages 311–320, 2008.

[20] M. Kersten and G. C. Murphy. Using task context to improve program-
mer productivity. In 14th International Symposium on Foundations of
Software Engineering (FSE), pages 1–11, 2006.

[21] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-
M. Loingtier, and J. Irwin. Aspect-oriented programming. In 11th
European Conference on Object-Oriented Programming (ECOOP),
volume 1241 of LNCS, pages 220–242. Springer Verlag, 1997.

[22] J. B. MacQueen. Some methods for classification and analysis of mul-
tivariate observations. In 5th Berkeley Symposium on Mathematical
Statistics and Probability, pages 281–297, 1967.

[23] C. D. Manning, P. Raghavan, and H. Schtze. Introduction to Informa-
tion Retrieval. Cambridge University Press, 2008.

[24] B. Meyer. Object-Oriented Software Construction. Prentice-Hall,
2000.

[25] S. Negara, M. Vakilian, N. Chen, R. E. Johnson, and D. Dig. Is it
dangerous to use version control histories to study source code evolu-
tion? In 26th European conference on Object-Oriented Programming
(ECOOP), pages 79–103, 2012.

[26] G. A. Oliva, F. W. Santana, M. A. Gerosa, and C. R. B. de Souza. To-
wards a classification of logical dependencies origins: a case study.
In 12th International Workshop on Principles of Software Evolu-
tion and the 7th annual ERCIM Workshop on Software Evolution
(EVOL/IWPSE), pages 31–40, 2011.

[27] D. L. Parnas. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12):1053–1058, 1972.

[28] D. Poshyvanyk and A. Marcus. Using information retrieval to sup-
port design of incremental change of software. In 22th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
pages 563–566, 2007.

[29] D. Poshyvanyk and A. Marcus. Measuring the semantic similarity
of comments in bug reports. In 1st International ICPC2008 Workshop
on Semantic Technologies in System Maintenance (STSM), pages 265–
280, 2008.

[30] M. P. Robillard and G. C. Murphy. Concern graphs: finding and de-
scribing concerns using structural program dependencies. In 24th In-
ternational Conference on Software Engineering (ICSE), pages 406–
416, 2002.

[31] M. P. Robillard and G. C. Murphy. Representing concerns in source
code. ACM Transactions on Software Engineering and Methodology,
16(1):1–38, 2007.

[32] M. P. Robillard and F. Weigand-Warr. Concernmapper: simple view-
based separation of scattered concerns. In OOPSLA workshop on
Eclipse technology eXchange, eclipse ’05, pages 65–69, 2005.

[33] G. Santos, M. T. Valente, and N. Anquetil. Remodularization analysis
using semantic clustering. In 1st CSMR-WCRE Software Evolution
Week, pages 224–233, 2014.

[34] J. Śliwerski, T. Zimmermann, and A. Zeller. When do changes induce
fixes? In 2nd Working Conference on Mining Software Repositories
(MSR), pages 1–5, 2005.

[35] W. P. Stevens, G. J. Myers, and L. L. Constantine. Structured design.
IBM Systems Journal, 13(2):115–139, June 1974.

[36] E. Tempero, C. Anslow, J. Dietrich, T. Han, J. Li, M. Lumpe,
H. Melton, and J. Noble. Qualitas corpus: A curated collection of
Java code for empirical studies. In Asia Pacific Software Engineering
Conference (APSEC), pages 336–345, 2010.

[37] R. Terra, L. F. Miranda, M. T. Valente, and R. S. Bigonha. Quali-
tas.class corpus: A compiled version of the qualitas corpus. Software
Engineering Notes, pages 1–4, 2013.

[38] R. J. Walker, S. Rawal, and J. Sillito. Do crosscutting concerns
cause modularity problems? In 20th International Symposium on the
Foundations of Software Engineering (FSE), pages 1–11, 2012.

[39] T. Zimmermann, P. Weissgerber, S. Diehl, and A. Zeller. Mining
version histories to guide software changes. IEEE Transactions on
Software Engineering, 31(6):429–445, 2005.

[40] T. Zimmermann, R. Premraj, and A. Zeller. Predicting defects for
Eclipse. In 3rd International Workshop on Predictor Models in Soft-
ware Engineering, page 9, 2007.

