
Preprint 

 

 

© Springer-Verlag Berlin Heidelberg 2012 

A Quantitative and Qualitative Assessment of Aspectual 

Feature Modules for Evolving Software Product Lines 

Felipe Nunes Gaia
1
, Gabriel Coutinho Sousa Ferreira

1
, Eduardo Figueiredo

2
, and 

Marcelo de Almeida Maia
1
 

1
Federal University of Uberlândia, Brazil 

2
Federal University of Minas Gerais, Brazil 

{felipegaia, gabriel}@mestrado.ufu.br, 

 figueiredo@dcc.ufmg.br, marcmaia@facom.ufu.br 

Abstract. Feature-Oriented Programming (FOP) and Aspect-Oriented 

Programming (AOP) are programming techniques based on composition 

mechanisms, called refinements and aspects, respectively. These techniques are 

assumed to be good variability mechanisms for implementing Software Product 

Lines (SPLs). Aspectual Feature Modules (AFM) is an approach that combines 

advantages of feature modules and aspects to increase concern modularity. 

Some guidelines of how to integrate these techniques have been established in 

some studies, but these studies do not focus the analysis on how effectively 

AFM can preserve the modularity and stability facilitating SPL evolution. The 

main purpose of this paper is to investigate whether the simultaneous use 

aspects and features through the AFM approach facilitates the evolution of 

SPLs. The quantitative data were collected from two SPLs developed using four 

different variability mechanisms: (1) feature modules, aspects and aspects 

refinements of AFM, (2) aspects of aspect-oriented programming (AOP), (3) 

feature modules of feature-oriented programming (FOP), and (4) conditional 

compilation (CC) with object-oriented programming. Metrics for change 

propagation and modularity were calculated and the results support the benefits 

of the AFM option in a context where the product line has been evolved with 

addition or modification of crosscutting concerns. However a drawback of this 

approach is that refactoring components design requires a higher degree of 

modifications to the SPL structure. 

Keywords: Software product lines, feature-oriented programming, aspect-

oriented programming, aspectual feature modules, variability mechanisms 

1 Introduction 

Software Product Line (SPL) refers to an emerging engineering technique that aims to 

provide the systematic reuse of a common core and shared modules by several 

software products [11]. Optional features define points of variability and their role is 

to permit the instantiation of different products by enabling or disabling them. SPL 

products share the same application domain and have points of variability among 

them. The adoption of SPLs presents as potential benefits the increased  product’s 



 

 

quality and development productivity, which are achieved through the systematic 

reuse of features in different products [11]. 

During the software life cycle, change requests are not only inevitable, but also 

highly frequent [20] in SPL since they target several different products. These change 

requests must be accommodated since they include demands from multiple 

stakeholders [15]. 

Variability mechanisms play a crucial role when considering evolving SPLs. They 

must guarantee the architecture stability and, at the same time, facilitate future 

changes in the SPL. Therefore, variability mechanisms should not degenerate 

modularity and should minimize the need of future changes. This can be reached 

through non-intrusive and self-contained changes that favor insertions and do not 

require deep modifications into existing components. The inefficacy of variability 

mechanisms to accommodate changes might lead to several undesirable consequences 

related to the product line stability, including invasive wide changes, significant ripple 

effects, artificial dependences between core and optional features, and the lack of 

independence of the optional code [16, 28]. 

In our previous study [14], we analyzed and compared variability mechanisms to 

evolve SPLs, using FOP, Design Patterns and Conditional Compilation. The 

evaluation was also based on the change propagation and modularity metrics. In that 

work, the result was mostly favorable for FOP. It is important to consider that 

crosscutting concerns were not considered in the subject system analyzed in that 

study. This work has as main goal the better understanding how contemporary 

variability mechanisms contribute to the mentioned SPL evolution practices. To this 

aim, this paper presents a case study that evaluates comparatively four mechanisms 

for implementing variability on evolving product lines: conditional compilation (CC), 

feature-oriented programming (FOP), aspect-oriented programming (AOP), and 

aspectual feature modules (AFM). This work is an extension of previous work [18], 

which was carried out only with one SPL, called WebStore. In this work, we include 

five releases of another SPL called MobileMedia. MobileMedia is larger than 

WebStore not only in terms of number of components but also with respect to the 

variety of change scenarios. Therefore, this new case study helped us to (i) increase 

the results reliability, (ii) come up with new findings, and (iii) reduce threats to study 

validity. Moreover, we extended significantly the amount of data, providing 

quantitative and qualitative analysis of the measured data in greater depth. 

The analysis presents novel results that support the benefits of AFM and FOP 

option when SPL has optional features. In this case the class refinements adhere more 

to Open-Closed principle [40]. In addition, these mechanisms cope well for features 

with no shared code and facilitate the instantiation of different products. However, 

FOP is not suitable for crosscutting concerns and design refactoring of AFM cause a 

higher number of modifications in the components. The results also demonstrate that 

CC may not be appropriate in SPL evolution context when modularity of features is 

important. For example, the inclusion of new features usually increases the tangling 

and the scattering of others features. 

In Section 2, the implementation mechanisms used in the case study are presented. 

Section 3 describes the study settings, including the target SPL and change scenarios. 

Section 4 analyzes changes made in the WebStore and MobileMedia SPLs and how 

they propagate through its releases. Section 5 analyzes the modularity of both SPLs 

with specific concern-related metrics. Section 6 provides an overall discussion of 

results. Section 7 presents some limitations of this work. Section 8 presents some 



 

 

related work and points out directions for future work. Finally, Section 9 concludes 

this paper. 

2 Variability Mechanisms 

This section presents some concepts about the four techniques evaluated in the study: 

conditional compilation (CC), feature-oriented programming (FOP), aspect-oriented 

programming (AOP), and aspectual feature modules (AFM). Our main goal is to 

compare the different composition mechanisms available to understand their strengths 

and weaknesses. Although CC is not a new variability mechanism, we decide to 

include it in this study because it is a state-of-the-practice option adopted in SPL 

industry, and can serve as a baseline for comparison [1, 35, 45]. 

2.1 Conditional Compilation 

The CC approach used in this work is a well-known technique for handling software 

variability [1, 4, 22] and is based on code annotation. It has been used in 

programming languages like C for decades and it is also available in object-oriented 

languages such as Java. Basically, the preprocessor directives indicate pieces of code 

that should be compiled or not, based on the value of preprocessor variables. The 

major advantage of this approach is the code can be marked at different granularities 

of, from a single line of code to a whole file.  

The code snippet below shows the use of conditional compilation mechanisms by 

inserting the pre-processing directives. 

1  public class ControllerServlet extends HttpServlet { 

2    public void init() { 

3      actions.put("goToHome", new GoToAction("home.jsp")); 

4      //#if defined(BankSlip) 

5      actions.put("goToBankSlip",  

                   new GoToAction("bankslip.jsp")); 

6      //#endif 

7      //#if defined(Logging) 

8      Logger.getRootLogger().addAppender(new ConsoleAppender( 

          new PatternLayout("[%C{1}] Method %M  

                                    executed with success."))); 

9      //#endif 

10   } 

11 } 

Listing 1. Example of variability management with conditional compilation. 

In the example above, there are some directives that characterize the CC way of 

handling variability. On line 4 there is a directive //#if defined (BankSlip) 

that indicates the beginning of the code belonging to BankSlip feature. In line 6 there 

is a #endif directive that determines the end of the code associated to this feature. 

The identifiers used in the construction of these directives, in this case "BankSlip", 

are defined in a configuration file and are always associated with a boolean value. 

This value indicates the presence of the feature in the product, and consequently the 

inclusion of the bounded piece of code in the compiled product. The same reasoning 

applies to the bounded piece of code that belongs to Logging feature. 



 

 

2.2 Feature-Oriented Programming 

Feature-oriented programming (FOP) [33] is a paradigm for software 

modularization by considering features as a major abstraction. This work relies on 

AHEAD [9, 10] which is an approach to support FOP based on step-wise refinements. 

The main idea behind AHEAD is that programs are constants and features are added 

to programs using refinement functions. Each refinement is composed on the base 

class in a certain order, increasing its behavior. The code snippets in Listings 2-4 

show examples of a class and two class refinements used to implement variation 

points. 

1  public class ControllerServlet extends HttpServlet { 

2    public void init() { 

3      actions.put("goToHome", new GoToAction("home.jsp")); 

5    } 

6  } 

Listing 2. Example of variability mechanism with FOP (base class) 

 

1  layer bankslip; 

2  refines class ControllerServlet { 

3    public void init() { 

4      Super().init(); 

5      actions.put("goToBankSlip",  

                   new GoToAction("bankslip.jsp")); 

6    } 

7  } 

Listing 3. Example of variability mechanism with FOP (bankslip class refinement) 

The example in Listing 2 shows an ordinary base class that implements a default 

action for going to home and Listing 3 presents the respective FOP class refinement 

that considers going to bank slip payment in checkout. Line 1 of Listing 3 is a clause 

that indicates a layer of the class refinements. The bankslip identifier in line 1 is 

used to compose the layers according to some pre-established order in the SPL 

configuration script that creates a specific product. 

1  layer logging; 

2  refines class ControllerServlet { 

3    public void init() { 

4      Super().init(); 

5      Logger.getRootLogger().addAppender(new ConsoleAppender( 

          new PatternLayout("[%C{1}] Method %M  

                                  executed with success."))); 

6    } 

7  } 

Listing 4. Example of variability mechanism with FOP (logging class refinement) 

Listing 4 provides another class refinement to include the behavior of feature 

Logging in the class. This feature is designed to register successful execution of 

public methods. 



 

 

2.3 Aspect-Oriented Programming 

Aspect-oriented programming has been proposed to modularize crosscutting 

concerns. The main mechanism of modularization is the aspect, which encapsulate a 

concern code that would be tangled with and scattered across the code of other 

concerns. An aspect is composed on the class that crosscut through the process of 

weaving. This work is based in an extension of Java for AOP called AspectJ [24]. 

Listing 5 shows how an aspect can modularize the CopyPhoto feature. An aspect 

usually needs to provide the interception points in the base code in order to get the 

code adequately weaved. Lines 3-4 show an example of intercepting the call of the 

constructor method of PhotoViewScreen. Lines 5-7 show how and what will be 

executed after that interception point (pointcut). 

1  public aspect CopyPhotoAspect { 

2    public static final Command copyCommand =  

            new Command("Copy", Command.ITEM, 1); 

3    pointcut constructor(Image image) : 

4           call(PhotoViewScreen.new(Image)) && args(image); 

5    after(Image image) returning (PhotoViewScreen f):  

6     constructor(image) {   f.addCommand(copyCommand);    } 

7  } 

Listing 5. Example of variability mechanism with AOP (aspect) 

2.4 Aspectual Feature Modules 

Aspectual feature modules (AFM) are an approach to implement the symbiosis of 

FOP and AOP [5, 6, 7]. An AFM encapsulates the roles of collaborating classes and 

aspects that contribute to a feature. In other words, a feature is implemented by a 

collection of components, e.g., classes, refinements and aspects. Typically, an aspect 

inside an AFM does not implement a role. Usually, a refinement is more adequate for 

this task. Aspects in AFM are usually used to do what they are good for, and in the 

same way of AOP: modularize code that otherwise would be tangled with or scattered 

across other concerns. It is important to note that an aspect is a legitimate part of a 

feature module and so, is applied and removed together with the feature it belongs to. 

First enabled features are composed using AHEAD Tool Suite (ATS), after aspects 

belonging to these features are weaved using AspectJ. Listing 6 shows a chain of 

mixins generated by ATS that creates basic photo management functions. After this 

process the mixins layers are composed with aspects. Listing 7 shows an aspect that 

includes the behavior to define and view favorite’s photos. 

 



 

 

1  abstract class PhotoController$$PhotoManagement$refinements 

       extends PhotoListController { 

2    public PhotoController$$PhotoManagement$refinements(...) { 

3      super(midlet, albumData, albumListScreen); 

4    } 

5    public void initCommandsMap() { 

6      commands = new HashMap(); 

7    } 

8  } 

 

9  abstract class PhotoController$$CreatePhoto$refinements 

       extends PhotoController$$PhotoManagement$refinements { 

10   public void initCommandsMap() { 

11     super.initCommandsMap(); 

12    commands.put("Add", new AddPhoto()); 

13    commands.put("Save Photo", new SavePhoto()); 

14   } 

15   public PhotoController$$CreatePhoto$refinements (...) {  

16     super(midlet, albumData, albumListScreen);  

17   } 

18 } 

 

19 public class PhotoController extends 

       PhotoController$$CreatePhoto$refinements { 

20   public PhotoController (...) {  

21     super(midlet, albumData, albumListScreen);  

22   } 

23 } 

Listing 6. Example of variability mechanism with AFM (mixin layers) 

 

1  public aspect FavouritesAspect { 

2   pointcut initCommandsMapAction(PhotoController controller): 

            execution(public void *.initCommandsMap())  

        && this(controller); 

4   after(PhotoController controller): 

initCommandsMapAction(controller) { 

7    controller.commands.put("Set Favorite",  

                    new SetFavorite()); 

8    controller.commands.put("View Favorites",  

                    new ViewFavorites()); 

9   } 

10 } 

Listing 7. Example of variability mechanism with AFM (aspect) 

3 Case Studies 

This section describes the study based on the analysis of the evolution of two 

software product lines.  



 

 

3.1 Research Questions 

The study was conducted to answer the following research questions. 

RQ1. Does the use of AFM have smoother change propagation impact 

than using CC, FOP, or AOP? 

RQ2. Does the use of AFM provide more stable design of the SPL 

features than using CC, FOP, or AOP during the evolution? 

3.2 Infrastructure Settings 

The independent variable of this study is the variability mechanism used to implement 

the SPLs, namely, Conditional Compilation (CC), Feature-oriented programming 

(FOP), Aspect-oriented programming (AOP), and Aspectual Feature Modules (AFM). 

Two subject systems (SPLs) are used to analyze the behavior of the dependent 

variables: change propagation and modularity metrics. For each SPL, the study was 

organized in four phases: (1) construction of the subject SPL with complete releases 

that correspond to their respective change scenarios using the four techniques 

aforementioned for each release (2) feature source code shadowing of all produced 

source code, (3) measurement and metrics calculation, and (4) quantitative and 

qualitative analysis of the results. In the first phase, the first two authors implemented 

the WebStore SPL from the scratch using all different variability mechanisms. The 

authors also adapted the MobileMedia SPL using two different mechanisms, FOP and 

AFM. At end of this phase, 24 different releases of the WebStore SPL and 20 

different releases of MobileMedia SPL were available. In the second phase, all code 

was marked according to each designed feature of both SPLs. The concrete result of 

this phase was text files, one for each code file, marked with the corresponding 

feature. In the third phase, change propagation [34] was measured and modularity 

metrics [15] were calculated. Finally, the results were analyzed in the fourth phase. 

The next sections present the analysis of both SPLs and discuss their change 

scenarios. 

3.3 The Evolved WebStore SPL 

The first target SPL was developed to represent major features of an interactive web 

store system. It was designed for academic purpose, but focusing on real features 

available in typical web store systems. We have also designed representative changes 

scenarios (the same for all studied techniques – CC, FOP, AOP and AFM), 

considered important, that could exercise the SPL evolution. 

WebStore is an SPL for applications that manage products and their categories, 

show products catalog, control access, and payments. Table 1 provides some 

measures about the size of the SPL implementation in terms of number of 

components, methods, and lines of source code (LOC). Classes, class refinements, 

and aspects were accounted as components. The number of components varies from 

23 (CC) to 85 (FOP). The columns R.1 to R.6 represent the different releases of the 

SPL. 

Table 1. WebStore SPL implementation 

  CC FOP 



 

 

R.1 R.2 R.3 R.4 R.5 R.6 R.1 R.2 R.3 R.4 R.5 R.6 

#Components  23 23 26 26 26 32 28 32 38 40 44 85 

#Methods 138 139 165 164 167 197 142 147 175 177 182 394 

LOC (aprox.) 885 900 1045 1052 1066 1496 915 950 1107 1121 1149 2181 

 

AOP AFM 

R.1 R.2 R.3 R.4 R.5 R.6 R.1 R.2 R.3 R.4 R.5 R.6 

#Components  23 46 48 53 52 53 30 34 40 42 46 50 

#Methods 138 143 171 171 176 212 130 135 163 165 170 206 

LOC (aprox.) 885 924 1080 1081 1105 1371 784 819 976 990 1018 1284 

 

 

Figure 1 presents a simplified view of the WebStore SPL feature model [8]. 

Examples of core features are CategoryManagement and ProductManagement. In 

addition, some optional features are DisplayByCategory and BankSlip. We use 

numbers in the top right-hand corner of a feature in Figure 1 to indicate in which 

release the feature was included (see Table 2). 

The WebStore releases of each mechanism are very similar from the architecture 

design point-of-view. Even though they are implemented using four distinct 

variability mechanisms, in all different releases we could follow the MVC 

architectural pattern. In all mechanisms, the Release 1 contains the core of the target 

SPL. All subsequent releases were designed to incorporate the required changes in 

order to include the corresponding feature. For instance, the FOP mechanism was 

developed trying to maximize the decomposition of the product features. This 

explains why Release 1 in FOP contains more components than Release 1 that uses 

CC. All new scenarios were incorporated by including, changing, or removing 

classes, class refinements, or aspects. 

 

Figure 1. WebStore Basic Feature Model 

3.4 The WebStore Change Scenarios 

As aforementioned, we designed and implemented a set of change scenarios in the 

first phase of our investigation. A total of five change scenarios were incorporated 

into WebStore, resulting in six releases. Table 2 summarizes changes made in each 

release. The scenarios comprised different types of changes involving mandatory and 

optional features. Table 2 also presents which types of change each release 



 

 

encompassed. The purpose of these changes is to exercise the implementation of the 

feature boundaries and, so, to assess the design stability of the SPL. 

Table 2. Summary of change scenarios in WebStore 

Release Description Type of Change 

R1 WebStore core.  

R2 Two types of payment included. (Paypal and 

BankSlip) 

Inclusion of optional 

feature 

R3 New feature included to manage category. Inclusion of optional 

feature  

R4 The management of category was changed to 

mandatory feature and new feature included to 

display products by category. 

Changing optional 

feature to mandatory 

and inclusion of 

optional feature 

R5 New feature included to display products by 

nearest day of inclusion. 

Inclusion of optional 

feature 

R6 Two crosscutting features included. (Login and 

Logging) 

Inclusion of optional 

feature 

3.5 The Evolved MobileMedia SPL 

The second target SPL, called MobileMedia, was developed with the purpose to serve 

as reference for aspect-oriented programming studies [15]. It was designed with 

academic purpose, but including change scenarios with mandatory and optional 

features that could exercise its evolution. Although MobileMedia is not a case of the 

industry, was widely studied in several academic works [12, 14, 15, 17, 18]. 

MobileMedia [15] was developed based on a previous SPL, called MobilePhoto 

[39]. Table 3 provides some measures about the size of the SPL implementations in 

terms of number of components, number of methods and number of lines of source 

code (LOC). Classes, class refinements and aspects were accounted as components. 

LOC were accounted without considering blank lines. The average number of 

components varies from 22 (CC) to 106 (FOP). As occurred in WebStore, FOP 

requires more components to implement MobileMedia features. Moreover 

MobileMedia AFM-based solution uses more lines of code than the FOP 

implementation. 

 

Table 3. MobileMedia SPL implementation 

  

CC FOP 

R.1 R.2 R.3 R.4 R.5 R.1 R.2 R.3 R.4 R.5 

#Components  22 23 23 28 35 54 63 73 86 106 

#Methods 113 132 135 153 191 143 177 191 216 285 

LOC (aprox.) 971 1147 1214 1380 1852 1142 1356 1458 1629 2163 

 

AOP AFM 

R.1 R.2 R.3 R.4 R.5 R.1 R.2 R.3 R.4 R.5 

#Components  25 27 30 37 48 58 64 69 81 101 



 

 

#Methods 132 161 172 191 241 163 194 206 232 299 

LOC (aprox.) 1066 1270 1367 1516 2020 1238 1447 1545 1724 2232 

 

Figure 2 presents a simplified view of the MobileMedia SPL feature model. 

Examples of core features are AlbumManagement and PhotoManagement. In 

addition, some optional features are Favourites, Sorting and CopyPhoto. Similar to 

Figure 1, numbers on the top right-hand corner of a feature in Figure 2, were used to 

indicate in which release the feature was included (see Table 4). 

 

 

Figure 2. MobileMedia Basic Feature Model 

3.6 The MobileMedia Change Scenarios 

Unlike WebStore, which was developed from scratch, we have a full CC and AOP 

implementation of MobileMedia available to us [15]. However, we had to design and 

implement the corresponding set of change scenarios in FOP and AFM. Four change 

scenarios were considered in MobileMedia, resulting in five releases. Table 4 

summarizes changes of each release. The scenarios comprised different types of 

changes involving mandatory and optional features. Table 4 also presents which types 

of change each release encompassed. These changes were defined so that some 

crosscutting features were present, such as, Sorting and Favorites. These features have 

code tangled and scattered with several other features, hindering the modularization 

of this code. Their purpose is to exercise scenarios, in principle, more appropriated for 

the mechanisms AOP and AFM in the context of software product line evolution. 

Table 4. Summary of change scenarios in MobileMedia 

Release Description Type of Change 

R1 MobileMedia core.  

R2 New feature included to count the number of times 

a photo has been viewed and sorting photos by 

highest viewing frequency. New feature included 

to edit the photo`s label. 

Inclusion of optional 

and mandatory 

features 

R3 New feature included to allow users to specify and 

view their favorite photos. 

Inclusion of optional 

feature 

R4 New feature included to allow users to keep 

multiple copies of photos. 

Inclusion of optional 

feature 

R5 New feature included to send photo to other users 

by SMS. 

Inclusion of optional 

feature 



 

 

4 Change Propagation Analysis 

This section presents a quantitative analysis to answer RQ1. In particular, we are 

interested to know how different variability mechanisms affect changes in software 

product line evolution. The quantitative analysis uses traditional measures of change 

impact [34], considering different levels of granularity: components, methods, and 

lines of source code (Table 1). A general interpretation is that lower number of 

modified and removed components suggests more stable solution, possibly supported 

by the variability mechanisms. In the case of additions, we expect that a higher 

addition of components indicates the conformance with the Open-Closed principle 

[40]. In this case, the lowest number of additions may suggest that the evolution is not 

being supported by non-intrusive extensions. 

4.1 Change Propagation Analysis for WebStore 

 Firstly, we perform the analysis of change propagation at the component 

granularity level. Figure 3 shows the number of added, removed and changed 

components, respectively, in Releases 2 to 6 of the WebStore SPL.  

Considering the addition of components show in the upper plot of Figure 3, we 

observe that the CC mechanism has the lowest number of added components 

compared to the other approaches. Considering some specific releases, we could 

observe that the addition of crosscutting concerns with FOP is a painful task, which 

be observed by the much higher number of component additions in Release 6 for 

FOP.  

Considering the removal of components shown in the middle plot of Figure 3, we 

observe that release 4 using AOP had a significant difference from the others 

considering it was necessary to remove two components. This occurred because the 

feature Category Management changed from optional to mandatory, so it was 

necessary to remove the aspect components that allowed the enabling of this feature 

and code distribution of it throughout the system.  

Considering the change of components shown in the bottom plot of Figure 3, we 

observe that the AFM and FOP mechanism have lower number of modified 

components than AOP (except in Releases 5 and 6) and CC. The changes in 

components and methods were due to insertions, necessary to implement the desired 

features, which occurred inside them. This is a very interesting finding: CC releases 

have consistently lower number of added components than the others and also have 

consistently higher number of changed components than the others. Considering that 

there is no notably difference considering all releases, we conclude that CC does not 

adhere as closely to the Open-Close principle as the other mechanisms do, because 

instead of adding new components to support new features it typically needs to 

change existing components.  

Considering the difficulty of FOP in handling crosscutting concerns, we could 

clearly see the importance of AFM to overcome this situation. On the other hand, 

aspects did not work well when transforming an optional feature into mandatory 

because of the necessity to remove the aspects. 

 



 

 

40

30

20

10

0

40

30

20

10

0

Release

Technology

65432

A
F
M

A
O
P

FO
P

C
C

A
F
M

A
O
P

FO
P

C
C

A
F
M

A
O
P

FO
P

C
C

A
F
M

A
O
P

FO
P

C
C

A
F
M

A
O
P

FO
P

C
C

40

30

20

10

0

Additions

Removals

Changes

 

Figure 3. Component additions, removals and changes in WebStore releases 

Figures 4, 5 and 6 show fine-grained change propagation data, i.e., in the method 

and LOC level. In each of those graphs, we show boxplots for the additions, changes 

and removals of methods and LOC. Boxplots are interesting because they show the  

tendency of the data and also the general dispersion as well. A boxplot shows the 

division of the dataset in four groups, each comprising a quarter of the data. The box 

represents the two quarters around the median, which is marked inside the box. The 

asterisks are considered outliers. The way we group the boxplots reveal the variation 

between different mechanisms inside a specific release. 

In general, concerning the number of methods and lines of code, there is no sharp 

difference and variation between the measures of the four mechanisms. An important 

exception is for the implementation of Release 6. In that case, there are a substantial 

higher number of method additions within FOP (Figure 4 – M A – Release 6). This 

can be explained because the implementation of the Logging concern required more 

method additions for the required new refinements. The median of added LOC and 

methods for CC in Release 6 is also lower than for the others (Figure 4 – LOC  

A – Release 6 – CC) contributing with the finding that CC changes are more 

prominent than additions (Figure 5 – M C – Release 6 – CC) undermining the Open 

Closed principle. We can also observe in Figure 5 that AFM and FOP are less prone 

to changes.  

 



 

 

Release

Technology

65432

F O
P

C
C

A
O
P

A
FMF O

P
C
C

A
O

P

A
FMF O

P
C
C

A
O

P

A
FMFO

P
C
C

A
O

P

A
FMFO

P
C
C

A
O

P

A
FM

80

70

60

50

40

30

20

10

0

65432

FO
P

C
C

A
O
P

A
FMF O

P
C
C

A
O

P

A
FMF O

P
C
C

A
O

P

A
FMFO

P
C
C

A
O

P

A
FMFO

P
C
C

A
O

P

A
FM

18

16

14

12

10

8

6

4

2

0

LOC A M A

 

Figure 4. LOC and method additions in WebStore releases 

Release

Technology

65432

F
O

P
C
C

A
O

P
A
FM

F
O

P
C
C

A
O
P

A
FM

F
O

P
C
C

A
O

P
A
F M

F
O

P
C
C

A
O

P
A
FM

F
O
P

C
C

A
O
P

A
F M

2,0

1,5

1,0

0,5

0,0

65432

F
O

P
C
C

A
O

P
A
FM

F
O
P

C
C

A
O

P
A
F M

F
O

P
C
C

A
O

P
A
FM

F
O
P

C
C

A
O
P

A
F M

F
O

P
C
C

A
O

P
A
FM

18

16

14

12

10

8

6

4

2

0

LOC C M C

 
 

Figure 5. LOC and method changes in WebStore releases 

 

 



 

 

Release

Technology

65432
F O

P
C
C

A
O

P
A
F
M

F O
P

C
C

A
O

P
A
F
M

FO
P

C
C

A
O

P
A
F
M

FO
P

C
C

A
O

P
A
F
M

FO
P

C
C

A
O

P
A
F
M

16

14

12

10

8

6

4

2

0

65432
FO

P
C
C

A
O

P
A
F
M

FO
P

C
C

A
O

P
A
F
M

FO
P

C
C

A
O

P
A
F
M

FO
P

C
C

A
O

P
A
F
M

FO
P

C
C

A
O

P
A
F
M

3,0

2,5

2,0

1,5

1,0

0,5

0,0

LOC R M R

 

Figure 6. LOC and method removals in WebStore releases 

Concerning the removals of lines and methods, we have the same tendency of 

components. In Release 4 using AOP had a significant difference on the number of 

methods and lines removed, which was significantly higher than in other approaches. 

This occurred because the component removals implied in line and method removals.  

4.2 Change Propagation Analysis for MobileMedia 

In this section, we perform the same analysis for MobileMedia as conducted in the 

previous section. Firstly, we perform the analysis of change propagation at the 

component granularity level.  

The upper graph in Figure 7 shows that, similarly to the WebStore SPL, the CC 

mechanism has the lowest number of added components compared to the other 

approaches. Moreover, the approaches AFM and FOP have similar number of 

insertions, which are higher than the other approaches. This finding contributes with 

the hypothesis that AFM and FOP adheres more to the Open-Closed Principle 

because the introduction of features is promoted by the insertion of components. 

The middle plot of Figure 7 shows the number of removed components in Releases 

2 to 5 of the MobileMedia SPL. Release 4 using FOP and AFM had a significant 

difference from the others. This occurred because in this release, the developers 

restructured the design to facilitate the modifications required in Release 5. So, 

several refinements had to be removed, similarly both in FOP and in AFM.  

The bottom plot of Figure 7 shows the number of changed components. 

Interestingly, CC has presented a lower number of modified components. However, 

this situation can be explained because CC releases have systematically lower number 

of components than the other approaches. So, if we consider the number of change 

components relative to the total number of components of the respective release, we 

can observe that the relative number of components changed with CC is the highest in 

releases 3 and 5. In release 4 FOP and AFM still have the highest relative (and also 



 

 

absolute) number of changed components. We explain this higher number of FOP and 

AFM because of the restructuring previously mentioned. 

 

20

10

0

20

10

0

Release

Technology

5432

AO
P

AF
M

FO
P

C
C

AO
P

AF
M

FO
P

C
C

AO
P

AF
M

FO
P

C
C

AO
P

AF
M

FO
P

C
C

20

10

0

Additions

Removals

Changes

 

Figure 7. Component additions, removals and changes in MobileMedia releases 

The change propagation analysis at the granularity level of lines of code and 

methods is shown in Figures 8, 9 and 10. All these graphs show that concerning the 

number of methods and lines of code, there is no sharp difference between the 

measures of the four mechanisms. However, in Figure 8, it is possible to see that AOP 

has slightly more line and method additions than the others, except in release 4 where 

CC had more additions. This is can be explained by the fact that several components 

refactoring forced the addition of new pointcuts and advices. Differently from the 

WebStore SPL, FOP and AFM have shown a lower number of line and method 

additions.  



 

 

Release

Technology

54321

FO
P

C
C

A
O

P
A
FMFO

P
C
C

A
O
P

A
FMFO

P
C
C

A
O

P
A
F M

FO
P

C
C

A
O

P
A
FMFO

P
C
C

A
O
P

A
FM

300

250

200

150

100

50

0

54321

FO
P

C
C

A
O

P
A
FMF O

P
C
C

A
O

P
A
FMFO

P
C
C

A
O
P

A
FMFO

P
C
C

A
O

P
A
F M

FO
P

C
C

A
O

P
A
FM

25

20

15

10

5

0

LOC A M A

 

Figure 8. LOC and method additions in MobileMedia releases  

In Figure 9, we can observe that CC has high degree of LOC changes in releases 2, 

3 and 5 specially if compared to AFM and FOP. In release 4, AFM and FOP do not 

perform well concerning LOC changes if compared to CC. The explanation for that is 

the design restructuring carried out in this release for FOP and AFM. The impact of 

LOC change has also been higher for AOP, except in release 3, where CC has highest 

impact and in release 5 where no significant difference could be observed (Figure 9 – 

leftmost graph). The same pattern could be observed for method changes where 

releases 2 and 4 have shown higher values for AOP (Figure 9 – rightmost graph). 

 

Release

Technology

54321

FO
P

C
C

A
O

P
A
F M

F O
P

C
C

A
O

P
A
FMFO

P
C
C

A
O
P

A
FMFO

P
C
C

A
O

P
A
FMF O

P
C
C

A
O

P
A
FM

25

20

15

10

5

0

54321

FO
P

C
C

A
O

P
A
FMF O

P
C
C

A
O

P
A
F M

FO
P

C
C

A
O

P
A
FMFO

P
C
C

A
O
P

A
FMF O

P
C
C

A
O

P
A
F M

5

4

3

2

1

0

LOC C M C

 



 

 

Figure 9. LOC and method changes in MobileMedia releases 

 

Release

Technology

54321

F
O

P
C
C

A
O
P

A
FM

F
O

P
C
C

A
O

P
A
F M

F
O
P

C
C

A
O

P
A
FM

F
O

P
C
C

A
O
P

A
FM

F
O
P

C
C

A
O

P
A
FM

400

300

200

100

0

54321

F
O

P
C
C

A
O
P

A
FM

F
O
P

C
C

A
O

P
A
FM

F
O

P
C
C

A
O
P

A
FM

F
O

P
C
C

A
O

P
A
F M

F
O

P
C
C

A
O
P

A
FM

25

20

15

10

5

0

LOC R M R

 

Figure 10. LOC and method removals in MobileMedia releases  

In Figure 10, we can observe no sharp distinction between the different 

mechanisms. Nonetheless, we can see some outliers in Release 4 for all approaches. 

These outliers have occurred in a fundamental “controller” class, called 

BaseController, which was an important restructuring target. 

The previous results from WebStore and MobileMedia have provided some main 

conclusions about the four different mechanisms: 

  CC has presented higher degree of LOC changes and lower degree of 

component addition, suggesting that new features are typically handled 

changing existent code, which is considered harmful from the 

maintenance point of view. 

  FOP and AFM have consistently higher degree of component additions, 

suggesting that new features are typically handled inserting new 

components, which is the desired option from the maintenance point of 

view. 

 The similar pattern in component additions for FOP and AFM reveals that 

refinement modules are used as the main construction for addition of new 

features. 

  AOP alone has not presented significant better numbers than CC. This result 

may suggest that significant changes are required to adapt existent code 

with new aspects. 

5 Modularity Analysis 

This section presents and discusses the results for the analysis of the stability of the 

SPLs design throughout the implemented changes.  



 

 

Separation of concerns (SoC) is a fundamental principle related to the 

decomposition mechanisms used both in design as in implementation. Concerns are 

the main way for decomposing software into smaller parts, and at the same time more 

manageable and comprehensible. A feature is a functionality increment in software 

[10] and this concept is closely related to that of concerns – some researchers regard 

them as equivalent [31]. 

To support our analysis, we used a suite of metrics for quantifying concern 

modularity [39]. We choose these metrics because they have been used and validated 

in several previous empirical studies [12, 13, 14, 17, 19, 21].  

This suite measures the degree to which a single feature of the system maps to:  

(i) components (i.e. classes, class refinements and aspects) – based on the 

metric Concern Diffusion over Components (CDC) [34]. This metric 

quantify the degree of feature scattering considering the granularity level 

of components. It counts the number of classes and interfaces that 

contributes to the implementation of a feature. 

(ii) operations (i.e. methods and advices) – based on the metric Concern 

Diffusion over Operations (CDO) [34]. This metric quantify the degree of 

feature scattering considering the granularity level of methods. It counts 

the number of methods and constructors realizing a feature.  

(iii) lines of code – based on the metrics Concern Diffusion over Lines of Code 

(CDLOC) [34] and Number of Lines of Concern Code (LOCC) [16]. 

CDLOC computes the degree of feature tangling. For instance, given a 

certain feature F, this metric counts the number of “switches” between F 

and lines of code realizing other features [40]. A switch occurs when a 

code block realizing F is followed by a code block realizing another 

feature, and vice-versa. LOCC counts the total number of lines of code 

that contribute to the implementation of a feature.  

We adapted these metrics considering the ratio of the measured value to the total 

value on that release, for instance, CDC was calculated as the ratio of classes that 

contributes to the implementation of a feature to the total number of classes, in 

addition, our relative CDC represents the percentage of classes that are used to 

implement the feature. This relative metrics enabled us to analyze together the set of 

metric values for all features. For all the employed metrics, a lower value implies a 

better result.  

This metrics suite has a common characteristic that distinguishes them from 

traditional software metrics [21]. They capture information about the realization of 

features cutting across one or more components, i.e these metrics are used for 

quantifying Separation of Concerns (SoC) [21, 40]. They can be applied to any kind 

of software component in either object-oriented or feature-oriented programs. 

Although these metrics were originally proposed to quantify concern properties, they 

can also be used to quantify features properties. The terms concern and feature are 

used without distinction in this study.  

In the next sections, we provide an overall analysis with the mean value of each 

metric for each mechanism/release. Because the overall analysis is based only on 

mean values, it does not cope with the variability of the data, so we conduct a second 

analysis using probability plots that reveals details about the overall dispersion of the 

metric values. 



 

 

5.1 Overview of the Modularity Analysis for WebStore 

The data was collected and organized in one spreadsheet for each metric. For 

WebStore, each sheet of one studied metric has 8435 lines, i.e., one line for each 

combination of feature, release, technique (AFM, AOP, CC, FOP) and component 

(classes, refinements, aspects). For example, the first line corresponds to the 

following combination: (Base, 1, CC, ControllerServlet). Supplementary data 

accompanying the paper provide all these sheets.  

We provide an overall view of the modularity data aggregating metrics’ values 

with the mean function applied on the group of components from each release 

implemented with each mechanism (AFM, AOP, CC, FOP). 

Figure 11 presents CDC, CDO, CDLOC and LOCC mean values for each release 

of the subject SPL.  

The CDC mean values for FOP and AFM were consistently the lowest in all 

releases. The values for AOP stayed in between, while CC had the highest values. 

These lower CDC values for FOP and AFM reveal that FOP and AFM are better 

suited to encapsulate features within the modules because lower CDC values means 

lower scattering of features across the modules. Moreover, the values for FOP and 

AFM being almost the same suggests that FOP refinements are responsible for that 

better encapsulation. 

The CDLOC mean values for FOP were also consistently the lowest in all releases, 

meaning that FOP contributes to lower concern scattering not only considering the 

component level, but also in the LOC granularity level. The CDLOC mean values for 

AFM were slightly lower (better) than AOP in Releases 4, 5, and 6 that could be 

explained by more influence of FOP refinements in AFM. CDLOC values for CC 

were the worst ones, especially in Release 6. The highest CDC and CDLOC values 

for CC together contribute to reveal the inability of the CC mechanism to modularize 

SPL features. 

For CDO and LOCC there was no significant difference between releases or 

techniques, except in Release 6 where the CC values were significantly the worst 

ones.  

 

654321

0,35

0,30

0,25

0,20

0,15

0,10

Release

C
D

C

AFM

AOP

CC

FOP

654321

0,20

0,18

0,16

0,14

0,12

0,10

0,08

Release

C
D

O

AFM

AOP

CC

FOP

 



 

 

654321

0,05

0,04

0,03

0,02

0,01

0,00

Release

C
D

L
O

C

AFM

AOP

CC

FOP

654321

0,22

0,20

0,18

0,16

0,14

0,12

0,10

Release

L
O

C
C

AFM

AOP

CC

FOP

 

Figure 11. Metrics values through WebStore evolution 

5.2 Dispersion Analysis of Modularity Metrics for WebStore 

In the previous section, the graphs have shown only the mean value of the metrics 

that were useful to gain an overall insight, but have the limitation to analyze the 

dispersion of the data. Because the mean value can be significantly skewed by outliers 

and do not represent the tendency of most part of the data, we conduct an analysis of 

the dispersion of the data using probability plots. The goal of this analysis is to gain 

confidence on the previous results based on the mean values and probably reveal 

more details on the data. 

Probability plots are well suited to compare two or more data sets. The data are 

plotted against a theoretical distribution in such a way that the points ideally should 

form approximately a straight line. A theoretical distribution should be chosen, among 

known distributions, in such a way that it fairly fits the data. We have tested the data 

with the set of distributions of Minitab16© that could be applied to grouped data and 

did not require parameterization. Those distributions were Normal, Lognormal, 

Exponential, Smallest Extreme Value, Weibull, Largest Extreme Value, Logistic, and 

Loglogistic. The criterion to select the distribution that best fitted our data was to 

verify the Anderson-Darling – AD goodness-of-fit statistic and its associated p-value. 

The lowest mean AD for all curves (one for each mechanism) defined the best fitted 

distribution. In all probability plots, a box with the AD value and their respective p-

value is provided. If the p-value is greater than 0.05 the fitness is significant. A not-

significant fitness does not impact our analysis. We actually do not require significant 

fitness because we just want to compare the curves of different mechanisms for 

different or similar behavior.  

Following, we will describe how we can analyze a probability plot using the one 

shown in Figure 12, which is the probability plot for the CDC values of the WebStore 

releases. The other probabilities plots can analyzed in the same way. In this 

probability plot each point is a CDC value for a feature in a specific release using a 

specific mechanism (AFM, AOP, CC, FOP). The x-axis corresponds to the CDC 

value and the y-axis corresponds to the percentage number of plotted points from the 

bottom up. Lower CDC values are plotted firstly from the bottom up. For example, 

the green diamond point at the lower part of the graph represents a CDC value 

0.03846 and the y-axis indicates that 1.21% of the points (in fact one point) were 

plotted. In order to interpret the graph, we can observe that 100% of the CDC values 

for CC are further to the right. This fact reveals that not only the mean value for CDC 

is higher for CC mechanism (as shown in the previous section), but also that the CDC 

value is consistently higher than for all other mechanisms. For the other mechanisms, 

we can see that AFM and FOP are almost coincident, reflecting the similar curve 



 

 

presented in the previous section. For AOP, we can observe that it presents the 

highest frequency of lower values considering the 27% lowest CDC values, being 

further to the left. However, in the range of the 28% to 99% of the CDC highest 

values, AOP presents higher values than AFM and FOP. This explains why in the 

previous section AOP is in between CC and AFM-FOP. In this case, we could see that 

differently from CC, CDC values for AOP is not always higher than AFM and FOP. 

This can be explained because some features could be nicely modularized in AOP, 

such as Bankslip, DisplayByCategory, DisplayWhatIsNew, Logging, and PayPal in 

Release 6.  The cause is the crosscutting feature introduced in Release 6 that AOP 

could cope with better modularity. On the other hand, the Logging produced high 

scattering both in FOP and CC, confirming the hypothesis that both FOP and CC do 

not cope well with crosscutting features. 

 

 

10,10,010,001

99,9

99

90

80

70

60

50

40

30

20

10

5

3

2

1

CDC

P
e

rc
e

n
t

0,359 >0,250

1,215 <0,010

0,674 0,077

0,627 0,097

AD P

AFM

AOP

CC

FOP

Weibull - 95% CI

 

Figure 12. Probability plot for CDC 

Figure 13 shows the probability plot for CDO in the WebStore SPL. This plot 

confirms the mean CDO shown in Figure 11, that there is no sharp difference between 

the different mechanisms. 

Figure 14 shows the probability plot for CDLOC in the WebStore SPL. In this plot 

we can observe that the tangling with CC is consistently the highest among all 

mechanisms because the data points for are consistently further to the right. The 

tangling with FOP was mostly the lowest, except in the cases where AOP was better, 

which was in the crosscutting features. AFM followed the FOP tendency 

Figure 15 shows the probability plot for LOCC in the WebStore SPL. This plot has 

the same behavior of CDO plot, i.e., there is no significant dominance of any 

approach. This plot is consistent with the mean plot of Figure 11. Nonetheless, we can 

observe that the Logging are highly scattered in FOP and CC, compared to their 

correspondents in AFM and AOP. 

 



 

 

10,10,010,001

99,9

99

90

80

70

60

50

40

30

20

10

5

3

2

1

CDO

P
e

rc
e

n
t

1,610 0,023

1,413 0,038

1,169 0,073

1,125 0,082

AD P

AFM

AOP

CC

FOP

Exponential - 95% CI

 

Figure 13. Probability plot for CDO 

0,250,200,150,100,050,00

99

95

90

80

70

60

50

40

30

20

10

5

1

CDLOC

P
e

rc
e

n
t

3,269 <0,005

1,973 <0,005

2,197 <0,005

3,403 <0,005

AD P

AFM

AOP

CC

FOP

Logistic - 95% CI

 

Figure 14. Probability plot for CDLOC 



 

 

10,10,010,001

99,9

99

90

80

70

60

50

40

30

20

10

5

3

2

1

LOCC

P
e

rc
e

n
t

1,927 0,010

0,836 0,183

1,827 0,013

0,911 0,148

AD P

AFM

AOP

CC

FOP

Exponential - 95% CI

 

Figure 15. Probability plot for LOCC 

5.3 Modularity Analysis for MobileMedia 

The data was collected and organized in one spreadsheet for each metric. For 

MobileMedia, each sheet of one studied metric has 13738 lines, i.e., one line for each 

combination of feature, release, mechanism (AFM, AOP, CC, FOP) and components 

(classes, refinements, aspects).  

Figure 16 presents CDC, CDO, CDLOC and LOCC mean values for each release 

of the MobileMedia SPL. Similarly as the WebStore SPL, the CDC mean values for 

FOP and AFM were consistently the lowest in all releases and also the values for 

AOP stayed in between, while CC had the highest values. This consistency between 

the different SPLs is an important finding, enhancing the consistency on the scattering 

over components.  

Considering the CDO mean values, differently of the WebStore SPL we can 

observe that AFM and FOP values are consistently lower, although the difference is 

not so sharp as in the CDC plot. For AOP, the CDO mean values stayed in between 

following the similar tendency of CDC. 

Considering the CDLOC mean values, also we can observe a different behavior 

observed in WebStore SPL. Similarly as CDO, AFM and FOP were also consistently 

the lowest in all releases. Also considering CDLOC, AOP is also in between as the 

plots for CDC and CDO, except for release 1. 

 



 

 

54321

0,30

0,25

0,20

0,15

0,10

Release

C
D

C

AFM

AO

CC

FOP

54321

0,15

0,14

0,13

0,12

0,11

0,10

0,09

0,08

0,07

0,06

Release

C
D

O

AFM

AO

CC

FOP

54321

0,030

0,025

0,020

0,015

0,010

Release

C
D

L
O

C

AFM

AO

CC

FOP

54321

0,16

0,14

0,12

0,10

0,08

0,06

Release

L
O

C
C

AFM

AO

CC

FOP

 

Figure 16. Metrics values through MobileMedia evolution 

Considering that Figure 16 shows only mean values, we conducted similar analysis 

as in WebStore SPL with probability plots.  

Figure 17 shows the probability plot for CDC, where we can observe that AFM 

and FOP consistently present lower values than AOP and CC. AOP is mostly better 

than CC, but there are some points where AOP and CC have similar scattering. In 

general, we can observe a similar pattern for the MobileMedia and WebStore 

concerning the CDC metric. 

 



 

 

1010,10,01

99,9

99

95

90

80

70

60

50

40

30

20

10

5

1

0,1

CDC

P
e

rc
e

n
t

0,470 0,238

0,653 0,084

0,717 0,058

0,296 0,584

AD P

AFM

AO

CC

FOP

Lognormal - 95% CI

 

Figure 17. Probability plot for CDC 

 

Figure 18 shows the probability plot for CDO, where we cannot observe significant 

difference between the mechanisms. Although we have seen, a lower mean value for 

CDO in AFM and FOP, this was caused because for the 70% higher CDC values 

AFM and FOP have lower values than AOP and CC. Nonetheless, for lower values 

CDC values, AOP (and at smaller scale CC) have lower values than FOP and AFM. 

In this case, the graph of Figure 16, helps to explain that the features introduced in 

releases 4 and 5 were benefited from the AOP mechanisms. 



 

 

1010,10,010,0010,0001

99,9

99

95

90

80

70
60
50
40
30

20

10

5

1

0,1

CDO

P
e

rc
e

n
t

2,846 <0,005

2,708 <0,005

1,716 <0,005

1,737 <0,005

AD P

AFM

AO

CC

FOP

Loglogistic - 95% CI

 

Figure 18. Probability plot for CDO 

Figure 19 shows the probability plot for CDLOC. In this plot, we can see that the 

tangling of AFM and FOP are typically lower than in AOP and CC. Interestingly, this 

behavior is similar to the one observed in the WebStore SPL. Moreover, in 

MobileMedia, we can observe that AOP is lower than in CC in the lowest values, but 

are similar in the highest values confirming that the features introduced in releases 4 

and 5 were benefited from the mechanisms of AOP that reduce tangling. 

0,070,060,050,040,030,020,010,00-0,01-0,02

99

98

97

95

90

80

70

60

50

40

30

20

10

1

0,1

CDLOC

P
e

rc
e

n
t

7,919 <0,010

5,477 <0,010

4,228 <0,010

5,116 <0,010

AD P
AFM

AO

CC

FOP

Largest Extreme Value - 95% CI

 

Figure 19. Probability plot for CDLOC 



 

 

 

Figure 20 shows the probability plot for LOCC. As in the plot with mean values, 

we can see no significant difference between the mechanisms. This result is consistent 

with the mean value plot and also consistent with the WebStore SPL. 

 

1010,10,010,0010,0001

99,9

99

95

90

80
70
60
50
40
30

20

10

5

1

0,1

LOCC

P
e

rc
e

n
t

1,586 <0,005

1,306 <0,005

0,928 0,009

1,178 <0,005

AD P

AFM

AO

CC

FOP

Loglogistic - 95% CI

 

Figure 20. Probability plot for LOCC 

We can observe that the main findings of the previous results are: 

  CC presented clearly higher scattering and tangling of features. CDC and 

CDLOC were fundamental to reveal this situation. 

 AFM and FOP have presented better behavior concerning the scattering and 

tangling of features. AFM has presented slightly better numbers over FOP 

concerning scattering and tangling in MobileMedia, where crosscutting 

features had more impact. The aspectual modules were the responsible for 

this behavior. 

 AOP alone helped to reduce scattering and tangling compared to CC, but not 

as significantly as AFM and FOP revealing that the aspectual modules 

have their importance at specific points of the SPL and the refinement 

modules are still responsible for the major impact in scattering and 

tangling. 

6 Discussion 

From the analysis carried out in the Sections 4 and 5, four interesting situations, 

discussed below, naturally emerged with respect to which type of modularization 

mechanism presents superior modularity and stability in specific conditions.  

 

AFM and FOP succeed in features with no shared code. This situation was 

observed with three optional features of WebStore SPL (Bankslip, Paypal, and 



 

 

DisplayWhatIsNew) and six optional feature of MobileMedia SPL(CreateAlbum, 

DeleteAlbum, CreatePhoto, DeletePhoto, EditPhotoLabel and ViewPhoto).  In these 

cases, the code for these features were independent (no sharing, i.e., there is no 

common code implementing more than one feature) and then, AFM and FOP 

solutions presented lower values and superior stability in terms of tangling, specially 

FOP (CDLOC) and scattering over components (CDC) which explain the previous 

data. The results of the other metrics (CDO and LOCC) did not follow the same trend 

of the CDC metric, which can be explained because since the granularity of the 

methods and lines of code is lower, then the distribution of features occurs in a 

proportional fashion in all mechanisms. On the other hand, since the granularity of 

components is higher, the impact on modularity metrics is higher too.  

The efficiency of AFM and FOP mechanisms to isolate such feature that are 

implemented with independent code can be explained by the use of class refinements, 

which increment the base behavior in a pluggable way. The CC mechanism have no 

capability to modularize the feature, so the developer needs to implements those 

features intrusively changing existent components, introducing #ifdefs where features 

are tangled.  

Even in the case of features that are implemented with shared code between each 

other, AFM and FOP have presented good modularity results. Nonetheless, the gain 

was not as large as in the case of features with no shared code. The feature Logging is 

an exception, because even if it has no shared code with other features this feature 

was highly scattered in FOP solution. This result was expected considering the 

crosscutting nature of this feature, as shown below. 

 

When crosscutting concerns are present in the solution AFM are 

recommended over FOP. Another interesting finding that emerged from our analysis 

is that FOP does not cope well with crosscutting concerns. In this case, AFM 

provided an adequate solution, because it did not forced the use of aspects to 

modularize features with no shared code, but still did not force painful scattered 

refinements to implement a crosscutting feature. 

The difficulties of FOP mechanisms to implement crosscutting concerns were 

observed with the feature Logging, but they could not be observed with the feature 

Login, even though both are crosscutting features from WebStore SPL. The same 

situation was not observed with features Favourites and Sorting from the 

MobileMedia SPL. In the feature where this situation was observed, it was necessary 

to define several refinements within the FOP solution. 

Even if this excessive refinement has not been observed in other FOP 

implementations of crosscutting features, some core features have benefited from the 

use of aspect, such as, BasicBackEndDefinitions and BasicFrontEndDefinitions from 

the WebStore SPL and features AlbumManagement and PhotoManagement from the 

MobileMedia SPL. Thus, even indirectly, aspects also have advantages in the 

implementation of non-crosscutting features. 

 

Refactoring in design at component level has important impact in AFM and 

FOP. Component refactoring that impacts the architectural design tends to affect 

more AFM and FOP than the other mechanisms, because not only base classes but 

also the refinements are affected. In the case of AFM, this impact can be even worse 

because aspects can also be affected. This situation was observed in release 4 of the 

MobileMedia, where some components were splitted and renamed with a specific 



 

 

goal to prepare the SPL for future releases. The change propagation analysis 

conducted in Section 4 has supported this finding. 

 

CC compilation should be avoided when modular design is an important 

requirement. Although conditional compilation is still widely used in large scale 

projects [35], our data have shown that its use does not produced a stable architecture 

and should be avoided specially in situations where changes are frequent. This 

situation was observed in most analyses performed in Sections 4 and 5.  On the other 

hand, this mechanism still could have some advantages that could influence its 

adoption that were not considered in this work, for example, the easiness to 

understand the mechanism and the availability of robust tools that support the 

development [1, 35]. 

7 Threats to Validity 

The validity evaluation of the results depends to a large extent on how well threats 

have been handled. Four types of validity threats [37] are considered: conclusion va-

lidity, internal validity, external validity and construct validity.  

Conclusion validity concerns the relationship between treatment and outcome. That 

is, it affects the ability to draw correct conclusions based on data [37]. For the 

reliability of the measurement process, 33740 data points were collected. A data point 

is a measurement on a single member of a statistical population [REF]. An 

independently author who did not collect the respective data applied statistical 

analysis. Finally, conclusions are based on cross-discussion among all authors of this 

paper. Therefore, we believe this threat has been mitigated and our conclusions sound. 

Threats to internal validity refer to matters that may affect an independent variable 

with respect to causality, without the knowledge of the researcher. They threat the 

conclusion about a possible casual relationship between treatment and outcome [37]. 

A possible threat to internal validity in this study is the fact that most releases of the 

SPLs were developed by some of the authors. In addition, there is a reasonably large 

space for different designs and alternative design options would produce different 

results. To mitigate this threat, all designs of WebStore were carefully constructed 

both to take the best practices of each implementation technique and to maintain a 

similar division of components. The know-how acquired in similar previous studies 

by the authors [14, 15], associated with developers who work in the software industry, 

help to reduce the influences in results. In the MobileMedia case, the base application, 

formerly called MobilePhoto [39], was developed by independent researchers and it 

was also assessed in previous empirical studies with different purposes [15].  

Threats to external validity may limit the ability to generalize the experimental 

results. Some factors can be considered in this case, such as, the special purpose of 

the subject SPLs and the choice of the evolution scenarios. In fact, it is hard to select 

enough representative samples of all application domains in a study like ours. Aware 

of that, our choices were careful discussed in order to have representative scenarios of 

typical maintenance tasks in SPLs. The implementation languages and tools we used 

also limit the generalization since there are many alternatives. We decided to use 

AHEAD and AspectJ, for instance, because they are popular languages and also have 

common features of other FOP and AOP languages.  

Finally, concerning the construct validity, one issue is on how much support 

modularity metrics offer to produce robust answers to the design stability problem. As 

a matter of fact, these metrics offers a limited view on the overall quality of design. 



 

 

They are mostly related to the modularization of features, which are notably important 

for stable SPLs. The scope of this study has been narrowed to SPLs systems in order 

to cope with this issue. Although several alternative metrics are available, we choose 

the mostly used and validated ones [19, 21].  

8 Related Work  

Recent research work has also analyzed stability and reuse of SPLs [12, 15]. 

Figueiredo et al. [15] performed an empirical study to assess modularity, change 

propagation, and feature dependency of two evolving SPLs. Their study focused on 

aspect-oriented programming while we analyzed variability mechanisms available in 

feature-oriented programming in this study.  

Gomes and Monteiro [42] also studied two different AOP languages and the 

impact of their composition mechanisms to implement design patterns [43]. Their 

results have shown that Object Teams/Java (OT/J) [42] is highly recommended over 

AspectJ when the goal is to support the development of complex architectures and 

provide enhanced evolvability. 

Lopez-Herrejon and others [41] evaluated the support for features in five different 

advanced modularization techniques, namely AspectJ, Hyper/J, Jiazzi, Scala and 

AHEAD. They have investigated properties such as feature definition and 

composition capabilities of different language constructions such as aspects, units, 

refinements and traits. Their conclusion has shown that none of the studied 

mechanisms completely backup efficient SPL construction, and further studies about 

these and other mechanisms are required to understand their full potential. 

Dantas and his colleagues [12] also conducted an exploratory study to analyze the 

support of new modularization techniques to implement SPLs. Their study aimed at 

comparing the advantage and drawbacks of different techniques in terms of stability 

and reuse, and suggests a minimal advantage of CaesarJ [29] over the other 

mechanisms. Although Dantas also used a hybrid language, that contains mechanisms 

to support AOP and FOP, we focused on different goals and on different languages: 

AHEAD [9] and AspectJ [24]. Other studies also analyzed the variability 

management of SPLs and the benefits of using FOP constructions to increase software 

reuse [5, 30]. 

Apel and others [5], who proposed the Aspectual Feature Modules approach [6, 7], 

have also used size metrics to quantify the number of components and lines of code in 

an SPL implementation. Their study, however, did not consider a significant suite of 

software metrics and did not address SPL evolution and stability. In other work 

Greenwood et al. [21] used similar suites of metrics to ours to assess the design 

stability of an evolving application. However, they did not target at assessing the 

impact of changes in the core and variable features of SPLs. 

Another advanced modularization technique, called Delta-oriented programming 

(DOP) [44] has been gaining attention in SPL community. DOP is a superset of FOP, 

designed specifically to increase feature expressiveness and flexibility in SPLs 

development. The major abstractions of DOP are delta modules, which are 

responsible for encapsulate program deltas (additions, modifications and removals) 

and complex constraints between them that enable safe and unambiguous 

combination of features. Although there are differences between DOP and FOP 

language constructions, we believe that if the same analyses regarding modularity and 

stability were applied to DOP, the results would not show significant differences 

when compared to FOP. Because of the nature of delta modules, the results would 



 

 

probably present slightly lower number of components and higher tangling of 

features. However, we acknowledge that DOP would overcome FOP in terms of 

enabling type-safe composition, handling optional feature problem, and improving 

SPL evolution means. These advantages are due to the natural capabilities of delta 

modules, namely after clauses to express dependencies, combination of features to 

avoid code duplication and the possibility to add new self-contained delta modules 

instead of performing intrusive refactoring on existing code. 

Other studies focused on challenges in software evolution field [20, 28]. These 

works have in common the concern about measuring different artifacts through 

software evolution, which relies directly on the use of reliable software metrics [23]. 

Furthermore, there is a shared sense about software metrics on engineering 

perspective: they are far from being mature and are constantly the focus of 

disagreements [23, 27, 36]. 

Several studies have investigated variability management on SPLs [2, 3, 25, 32]. 

Batory et al. have reported an increased flexibility in changes and significant 

reduction in program complexity measured by number of methods, lines of code, and 

number of tokens per class [10]. Simplification in evolving SPL architecture has also 

been reported in [30, 34], as consequence of variability management. 

9 Concluding Remarks and Future Work 

This study evolved two SPLs in order to assess the capabilities of contemporary 

variability mechanisms to provide SPL modularity and stability in the presence of 

change requests. Such evaluation included two complementary analyses: change 

propagation and feature modularity. The use of variability mechanisms to develop 

SPLs largely depends on our ability to empirically understand their positive and 

negative effects through design changes.  

Some interesting results emerged from our analysis. First, the AFM and FOP 

designs of the studied SPLs tend to be more stable than the other approaches. This 

advantage of AFM and FOP is particularly observable when a change targets optional 

features. Second, we observed that AFM and FOP class refinements adhere more 

closely the Open-Closed principle. Furthermore, such mechanisms usually scale well 

for dependencies that do not involve shared code and facilitate multiple different 

product instantiations. However, FOP does not cope well when crosscutting concerns 

must be addressed. In this case, AFM provides a better scenario concerning the 

propagation of changes. 

Our results also indicate that conditional compilation (CC) may not be adequate 

when feature modularity is a major concern in the evolving SPL. For instance, the 

addition of new features using CC mechanisms usually causes the increase of feature 

tangling and scattering. These crosscutting features destabilize the SPL architecture 

and make it difficult to accommodate future changes. 

For the future work, the study of other advanced modularization techniques and 

alternative metrics to assess other quality attributes in SPLs, such as robustness and 

reuse could be an interesting way. We also aim to replicate this study with additional 

SPLs. 



 

 

Acknowledgments 

This work was partially supported by FAPEMIG, grants APQ-02376-11, APQ-02532-

12, APQ-0286-11 and CNPq grants 485235/2011-0 and 475519/2012-4.  

References 

1. Adams, B., De Meuter, W., Tromp, H., Hassan, A. E.: Can we Refactor Conditional 

Compilation into Aspects? In: 8th ACM International Conference on Aspect-oriented 

Software Development, AOSD '09, pp. 243—254. ACM, Virginia, New York (2009) 

2. Adler, C. Optional Composition - A Solution to the Optional Feature Problem?. Master 

thesis, University of Magdeburg, Germany, February 2011. 

3. Ali Babar, M., Chen, L., Shull, F. Managing variability in software product lines, IEEE 

Software,.27 (2010) 89–91. 

4. Alves, V., Neto, A. C., Soares, S., Santos, G., Calheiros, F., Nepomuceno, V., Pires, D., 

Leal, J., Borba., P.: From Conditional Compilation to Aspects: A Case Study in Software 

Product Lines Migration. In: First Workshop on Aspect-Oriented Product Line 

Engineering (AOPLE), Portland, USA (2006) 

5. Apel, S., Batory, D.: When to Use Features and Aspects? A Case Study. In: GPCE, 

Portland, Oregon (2006) 

6. Apel, S. et al. Aspectual Mixin Layers: Aspects and Features in Concert. Proceedings of 

ICSE'06, Shanghai, China (2006) 

7. Apel, S., Leich, T., Saake, G.: Aspectual feature modules. IEEE Trans. Softw. Eng., 

34:162–180. (2008) 

8. Batory, D. Feature models, grammars, and propositional formulas, In Proceedings of the 

9th International Software Product Line Conference (SPLC), 2005, pp. 7–20. 

9. Batory, D.: Feature-Oriented Programming and the AHEAD tool suite. In: 26th 

International Conference on Software Engineering, ICSE’04, pp. 702—703. IEEE 

Computer Society, Washington (2004) 

10. Batory, D., Sarvela, J., Rauschmayer.: Scaling step-wise refinement. IEEE Transactions on 

Software Engineering, 30(6):355–371 (2004) 

11. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns. Addison-

Wesley (2002) 

12. Dantas, F., Garcia, A.: Software Reuse versus Stability: Evaluating Advanced 

Programming Techniques. In: 23th Brazilian Symposium on Software Engineering, 

SBES’10 (2010) 

13. Eaddy, M. et al. Do Crosscutting Concerns Cause Defects?, IEEE Trans. on Software 

Engineering (TSE), vol. 34, 497-515 (2008) 

14. Ferreira, G., Gaia, F., Figueiredo, E., Maia, M. On the Use of Feature-Oriented 

Programming for Evolving Software Product Lines – a Comparative Study. In: Proc. of the 

XV Brazilian Symposium on Programming Languages. São Paulo. pp. 121-135. (2011) 

15. Figueiredo, E., Cacho, N., Sant’Anna, C., Monteiro, M., Kulesza, U., Garcia, A., Soares, 

S., Ferrari, F., Khan, S., Castor Filho, F., and Dantas, F.: Evolving Software Product Lines 

with Aspects: An Empirical Study on Design Stability. In: 30th International Conference 

on Software Engineering, ICSE ’08, pp. 261--270. Leipzig, Germany (2008) 

16. Figueiredo, E. et al. On the Maintainability of Aspect-Oriented Software: A Concern-

Oriented Measurement Framework. Proc. of European Conf. on Soft. Maint. and Reeng. 

(CSMR). Athens (2008) 

17. Figueiredo, E., Sant’Anna, C., Garcia, A. and Lucena, C.: Applying and Evaluating 

Concern-Sensitive Design Heuristics. In: 23rd Brazilian Symposium on Software 

Engineering (SBES). Fortaleza, Brazil (2009) 



 

 

18. Gaia, F., Ferreira, G., Figueiredo, E., and de Almeida Maia, M. A Quantitative Assessment 

of Aspectual Feature Modules for Evolving Software Product Lines. In: Proceedings of the 

16th Brazilian Symposium on Programming Languages, pp. 134-149. Natal, Brazil. (2012) 

19. Garcia, A., Sant’Anna, C., Figueiredo, E., Kulesza, U., Lucena, C., and von Staa, A. 

(2005). Modularizing design patterns with aspects: a quantitative study. In Proceedings of 

the 4th international conference on Aspect-oriented software development, AOSD’05, 

pages 3–14, New York, NY, USA. ACM. (2005) 

20. Godfrey, M., German, D. The past, present, and future of software evolution, in: Frontiers 

of Software Maintenance, 2008, pp. 129–138. 

21. Greenwood, P. et al.: On the Impact of Aspectual Decompositions on Design Stability: An 

Empirical Study. In: ECOOP, Berlin ( 2007) 

22. Hu, Y., Merlo, E., Dagenais, M. and Lague, B. C/C++ Conditional Compilation Analysis 

Using Symbolic Execution. In Proceedings of the IEEE International Conference on 

Software Maintenance (ICSM), 2000. 

23. Jones, C., Software metrics: good, bad and missing, Computer 27 (1994) 98–100. 

24. Kästner, C., Apel, S., Batory, D.: A Case Study Implementing Features using AspectJ. In: 

International SPL Conference (2007) 

25. Lee, K., Kang, K. C., Koh, E., Chae, W., Bokyoung, K., Choi, B. W. Domain-oriented 

engineering of elevator control software: a product line practice, in: Proceedings of the 

First Conference on Software Product Lines: Experience and Research Directions, Kluwer 

Academic Publishers, 2000, pp. 3–22. 

26. Maletic, J., Kagdi, H. Expressiveness and effectiveness of program comprehension: 

thoughts on future research directions, in: Frontiers of Software Maintenance, 2008, pp. 

31–40  

27. Mayer, T., Hall, T. A critical analysis of current OO design metrics, Softw. Qual. J. 8 

(1999) 97–110. 

28. Mens, T., Wermelinger, M., Ducasse, S., Demeyer, S., Hirschfield, R., Jazayeri, M. 

Challenges in software evolution, in: IWPSE’05 : Proceedings of the Eighth International 

Workshop on Principles of Software Evolution, IEEE Computer Society, 2005, pp. 13–22.  

29. Mezini, M., Ostermann, K. Conquering Aspects with Caesar. In 2nd International 

Conference on Aspect-Oriented Software Development (AOSD). 2003. Boston, USA. 

30. Mezini, M., Ostermann, K.: Variability Management with Feature-Oriented Programming 

and Aspects. In: 12th ACM SIG-SOFT twelfth international symposium on Foundations of 

software engineering, SIGSOFT’04/FSE-12, pages 127--136, New York, NY, USA. ACM. 

(2004) 

31. Murphy, G. C., Lai, A., Walker, R. J. and Robillard M. P. Separating Features in Source 

Code: An Exploratory Study. In Proceedings of the 23rd International Conference on 

Software Engineering (ICSE), pages 275–284. IEEE Computer Society, (2001). 

32. Pettersson, U., Jarzabek, S. Industrial experience with building a web portal product line 

using a lightweight, reactive approach. In Proceedings of the 10th European Software 

Engineering Conference Held Jointly with 13th ACM SIGSOFT International Symposium 

on Foundations of Software Engineering, ACM, 2005, pp. 326–335. 

33. Prehofer, C. Feature-oriented programming: A fresh look at objects. ECOOP 1997: p 419–

443. (1997) 

34. Sant’Anna, Sant'anna, C., Garcia, A., Chavez, C., von Staa, A., and Lucena, C. On the 

Reuse and Maintenance of Aspect-Oriented Software: An Assessment Framework. In.: 

Brazilian Symposium. on Software Engineering (SBES), pp. 19-34 (2003) 

35. Sutton, A. and Maletic, J. I. (2007). How We Manage Portability and Configuration with 

the C Preprocessor. In Proceedings of 23rd International Conference on Software 

Maintenance (ICSM), pages 275–284. IEEE. (2007) 

36. Svahnberg, M., Gurp, J.v., Bosch, J. A taxonomy of variability realization techniques, 

Software—Practice and Experience. pp.705–754, (2005). 



 

 

37. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B., and Wesslén, A. 

Experimentation in Software Engineering: An Introduction, Kluwer Academic Publishers, 

Boston, MA, USA, (1999). 

38. Yau, S. S. and Collofello, J. S. Design Stability Measures for Software Maintenance. IEEE 

Transactions on Software Engineering, 11(9), pp. 849-856, (1985). 

39. Young, T. J. Using AspectJ to Build a Software Product Line for Mobile Devices. MSc 

dissertation. Master's thesis, University of British Columbia, Department of Computer 

Science. (2005) 

40. Meyer, B.: Object-Oriented Software Construction, 1st ed. Prentice-Hall, Englewood 

Cliffs (1988) 

41. Lopez-Herrejon, R. E., Batory, D., Cook, W. R. Evaluating Support for Features in 

Advanced Modularization Technologies. In ECOOP Lecture Notes in Computer Science,. 

Springer, pp 169—194 (2005). 

42. Gomes, J. L. and Monteiro, M. P. Design pattern implementation in object teams. In 

Proceedings of the 2010 ACM Symposium on Applied Computing (SAC’10), pp 2119-

2120, (2010). 

43. Gamma, E., Helm, R., Johnson, R., Vlissides, J., Design Patterns – Elements of Reusable 

Object-Oriented Software, Addison Wesley, (1994). 

44. Schaefer, I., Bettini, L., Bono, V., Damiani, F. and Tanzarella, N. Delta-oriented 

programming of software product lines. In Proceedings of Software Product Line 

Conference (SPLC’10), pp 77-91, (2010). 

 

 

 


