
Co-change Clusters: Extraction and Application
on Assessing Software Modularity

Luciana Lourdes Silva1,3, Marco Tulio Valente1, and Marcelo de A. Maia2

1 Department of Computer Science,
Federal University of Minas Gerais,
{luciana.lourdes,mtov}@dcc.ufmg.br

2 Faculty of Computing,
Federal University of Uberlândia,

marcmaia@facom.ufu.br
3 Federal Institute of Triângulo Mineiro, Brazil

Abstract. The traditional modular structure defined by the package hi-
erarchy suffers from the dominant decomposition problem and it is widely
accepted that alternative forms of modularization are necessary to in-
crease developer’s productivity. In this paper, we propose an alternative
form to understand and assess package modularity based on co-change
clusters, which are highly inter-related classes considering co-change re-
lations. We evaluate how co-change clusters relate to the package decom-
position of four real-world systems. The results show that the projection
of co-change clusters to packages follows different patterns in each sys-
tem. Therefore, we claim that modular views based on co-change clusters
can improve developers’ understanding how well-modularized are their
systems, considering that modularity is the ability to confine changes
and evolve components in parallel.

Keywords: Modularity, software change, version control systems, co-
change graphs, co-change clusters, agglomerative hierarchical clustering
algorithm

1 Introduction

Modularity is the key concept to embrace when designing complex software sys-
tems [3]. The central idea is that modules should hide important design decisions
or decisions that are likely to change [33]. In this way, modularity contributes to
improve productivity both during initial development and maintenance phases.
Particularly, well-modularized systems are easier to maintain and evolve, be-
cause their modules can be understood and changed independently from each
other.

For this reason, it is fundamental to consider modularity when assessing the
internal quality of software systems [28, 23]. Typically, the standard approach
to assess modularity is based on coupling and cohesion, calculated using the
structural dependencies established between the modules of a system (coupling)

and between the internal elements from each module (cohesion) [9, 45]. However,
typical cohesion and coupling metrics measure a single dimension of the software
implementation (the static-structural dimension). On the other hand, it is widely
accepted that traditional modular structures and metrics suffer from the domi-
nant decomposition problem and tend to hinder different facets that developers
may be interested in [22, 38, 39]. Therefore, to improve current modularity views,
it is important to investigate the impact of design decisions concerning modu-
larity in other dimensions of a software system, as the evolutionary dimension.

Specifically, we propose a novel approach for assessing modularity, based on
co-change graphs [5]. The approach is directly inspired by the common criteria
used to decompose systems in modules, i.e., modules should confine implementa-
tion decisions that are likely to change together [33]. We first extract co-change
graphs from the history of changes in software systems. In such graphs, the nodes
are classes and the edges link classes that were modified together in the same
commits. After that, co-change graphs are automatically processed to produce
a new modular facet: co-change clusters, which abstract out common changes
made to a system, as stored in version control platforms. Therefore, co-change
clusters represent sets of classes that changed together in the past.

Our approach relies on distribution maps [14]—a well-known visualization
technique—to reason about the projection of the extracted clusters in the tradi-
tional decomposition of a system in packages. We then rely on a set of metrics de-
fined for distribution maps to characterize the extracted co-change clusters. Par-
ticularly, we describe some recurrent distribution patterns of co-change clusters,
including patterns denoting well-modularized and crosscutting clusters. More-
over, we also evaluate the meaning of the obtained clusters using information
retrieval techniques. The goal in this particular case is to understand how simi-
lar the issues are whose commits were clustered together. We used our approach
to assess the modularity of four real-world systems (Geronimo, Lucene, Eclipse
JDT Core, and Camel) and observed different patterns of co-change modularity
in such systems.

Our main contributions are threefold. First, we propose a methodology for
extracting co-change graphs and co-change clusters, including several pre and
post-processing filters to avoid noise in the generated clusters. This methodol-
ogy relies on a graph clustering algorithm designed for sparse graphs, as is the
case of co-change graphs, that was capable to identify high density clusters. Sec-
ond, we propose a methodology to contrast the co-change modularity with the
standard package decomposition. This methodology includes metrics to detect
both well-modularized and crosscutting co-change clusters. Third, we found that
the generated clusters not only are dense in terms of co-changes, but they also
have high similarity from the point of view of the meaning of the maintenance
issues that originated the respective commits.

This paper is an extended version of our work that appeared in [43]. The key
additions of this paper version are as follows. First, Section II describes several
concepts needed to comprehend our methodology and result analysis. Second, we
improved Section III by adding examples and new information concerning the

extraction of co-change clusters. Third, this paper contains new experimental
results in Sections V and VI, including the extraction of co-change clusters for
a new system. Finally, we improved the discussion on using association rules to
retrieve co-change relations in Section 7.2.

The paper is organized as follows. Section 2 presents background on cluster-
ing techniques and Latent Semantic Analysis. Section 3 presents the method-
ology to extract co-change graphs and co-change clusters from version control
systems. Section 4 presents the results of co-change clustering, when applied to
four systems. Section 5 analyzes the modularity of such systems under the light
of co-change clusters. Section 6 analyzes the semantic similarity within the set
of issues related to the extracted clusters. Section 7 discusses our results and
presents threats to validity. Section 8 describes related work and finally Section
9 concludes the paper.

2 Background

This section provides background on clustering and information retrieval tech-
niques. We use clustering techniques to retrieve clusters of software artifacts
that changed together in the past – co-change clusters. We also use linguistic
preprocessing, LSA, and cosine similarity techniques to evaluate the meaning of
issue reports related to software maintenance activities.

2.1 Clustering Techniques

Clustering techniques are broadly classified in partitioning and hierarchical. A
partitioning approach divides the set of data objects into K clusters such that
each data object is in exactly one cluster. On the other hand, hierarchical cluster-
ing yields a tree of clusters, known as a dendrogram. It is further subdivided into
agglomerative (bottom-up) and divisive (top-down). An agglomerative clustering
starts with each data object being a single cluster and repeatedly merges two, or
more, most appropriate clusters. A divisive clustering starts with a single cluster
containing all data objects and repeatedly splits the most appropriate cluster.
The process continues until a stop criterion is achieved, usually the requested
number of K clusters.

Chameleon [20] is an agglomerative hierarchical clustering algorithm designed
to handle sparse graphs in which nodes represents data objects, and weighted
edges represent similarities among these objects.

Input. Chameleon requires as input a matrix whose entries represent the simi-
larity between data objects. A sparse graph representation is created following
a k-nearest-neighbor graph algorithm. Each vertex represents a data object and
there is an edge between two vertices u and v if v is among the k most similar
points to u or vice-versa.

Constructing a Sparse Graph. In this step, data objects that are far away
are disconnected in order to reduce noise. As Chameleon operates on a sparse
graph, each cluster is a subgraph of the sparse graph. The sparse graph allows
Chameleon to deal with large data sets and to successfully use data sets in
similarity space.

First Phase (Partition the Graph): A min-cut graph partitioning algorithm is
used to partition the k-nearest-neighbor graph into a pre-defined number of
subclusters M. If the graph contains a single connected component, then the
algorithm returns k subclusters. Otherwise, the number of subclusters after this
phase is M plus C, where C is the number of connected components. Since
each edge represents similarity among objects, a min-cut partitioning is able to
minimize the connection among data objects through the partitions.

Second Phase (Merge Partitions): This phase uses an agglomerative hierarchi-
cal algorithm to merge the small clusters, created by the first phase, repeatedly.
Clusters are combined to maximize the number of links within a cluster (inter-
nal similarity) and to minimize the number of links between clusters (external
similarity). Chameleon models similarity based on the Relative Interconnectiv-
ity (RI) and Relative Closeness (RC) of the clusters. A pair of clusters Ci and
Cj is selected to merge when both RI and RC are high, suggesting that they
are well interconnected as well as close together. Chameleon’s authors provide a
software package, named Cluto4, which supports different agglomerative merg-
ing schemes in this second phase. As our goal is to find co-change clusters in a
sparse graph, we are interested in functions that do not cluster all data objects
(in our case, classes). The artifacts discarded by Chameleon are considered noisy
data because they do not share any edges with the rest of the artifacts.

2.2 Latent Semantic Analysis

The discussion of Latent Semantic Analysis (LSA) [13] is relevant to our ap-
proach, since we evaluate the semantic similarity of issue reports that are re-
lated to a specific cluster in order to improve our understanding of the clus-
ters’ meaning. LSA is a statistical approach for extracting and representing the
meaning of words. The semantic information is retrieved from a word-document
co-occurrence matrix, where words and documents are considered as points in an
Euclidean space. LSA is based on the Vector Space Model (VSM), an algebraic
representation of documents frequently used in information retrieval [41]. The
vector space of a text collection is constructed by representing each document as
a vector with the frequencies of its words. The document vectors add to a term-
by-document matrix representing the full text collection. First, the vocabulary
of terms is determined using feature selection techniques such as tokenization,
stop words removal, domain vocabulary, case-folding, stemming and weighting

4 http://glaros.dtc.umn.edu/gkhome/views/cluto

schemes (TF-IDF, binary weight) before representing the textual data in a nu-
merical form. Moreover, LSA applies singular value decomposition (SVD) to the
term-by-document matrix as a way of factor analysis. In SVD, a rectangular
matrix is decomposed into the product of three other matrices — an orthogonal
matrix U, a diagonal matrix Σ, and the transpose of an orthogonal matrix V.
Suppose an original term-document matrix CM×N , where M is the number of
terms and N is the number of documents. The matrix C is then decomposed
via SVD into the term vector matrix U , the document vector matrix V, and the
diagonal matrix Σ (consisting of eigenvalues) as follows:

Cm×n = Um×mΣm×nV T
n×n

where U TU = I and V TV = I . The columns of U are the orthogonal eigenvec-
tors of CCT and I is the identity matrix. The columns of V are the orthogonal
eigenvectors of CTC, and Σ is a diagonal matrix containing the square roots of
eigenvalues from U or V in descending order.

Text Pre-processing Tasks When analyzing text documents, an adequate
pre-processing step is crucial to achieve good results [27]. After collecting the
documents to be analyzed, some steps are usually performed as follows:

Tokenization. The tokenization process is applied on the text chopping charac-
ter streams into tokens, discarding special characters, such as punctuation and
numbers. Furthermore, in software artifacts, CamelCase identifiers are also split
into tokens.

Stop words removal. In this step, common words that are irrelevant when se-
lecting documents matching an end-user needs are removed from the vocabulary.
For example, words such as a, an, and, was, and were.

Case-folding. It is a common strategy by reducing all letters to lower case.

Stemming. Due to grammatical reasons, documents usually contain different
forms of a word, such as run, runs, and running. The goal of stemming is to
reduce the possible inflectional forms of a word to a common base form.

Cosine Similarity Since we consider the semantic similarity between two issue
reports, i and j, cosine similarity measures the cosine of the angle between the
vectors −→vi and −→vj corresponding to the issue reports di and dj in the semantic
space constructed by LSA, sim(−→vi ,−→vj) ∈ [−1, 1]:

sim(−→vi ,−→vj) =
−→vi • −→vj
|−→vi | × |−→vj |

where −→v is the vector norm and • is the vector internal product operator.

3 Methodology

This section presents the methodology we followed for retrieving co-change graphs
and then for extracting the co-change clusters.

3.1 Extracting Co-Change Graphs

As proposed by Beyer et al. [5], a co-change graph is an abstraction for a version
control system (VCS). Suppose a set of change transactions (commits) in a
VCS, defined as T = {T1, T2, . . . , Tn}, where each transaction Ti changes a set
of classes. Conceptually, a co-change graph is an undirected graph G = {V,E},
where V is a set of classes and E is a set of edges. An edge (Ci, Cj) is defined
between classes (vertices) Ci and Cj whenever there is a transaction Tk, such
that Ci, Cj ∈ Tk, for i 6= j. Finally, each edge has a weight that represents the
number of transactions changing the connected classes.

Our approach relies on two inputs: issue reports available in issue tracker,
e.g., Jira, Bugzilla, and Tigris; and commit transactions retrieved from version
control repositories (SVN or GIT). In a further step, several processing tasks
are applied and then a co-change graph is build. Finally, sets of classes that
frequently change together are retrieved, called co-change clusters.

Pre-processing Tasks When extracting co-change graphs, it is fundamental
to preprocess the considered commits to filter out commits that may pollute the
graph with noise. More specifically, we propose the following preprocessing tasks:

Removing commits not associated to maintenance issues: In early implementa-
tion stages, commits can denote partial implementations of programming tasks,
since the system is under construction [29]. When such commits are performed
multiple times, they generate noise in the edges’ weights. For this reason, we
consider just commits associated to maintenance issues. More specifically, we
consider as maintenance issues those that are registered in an issue tracking
system. Moreover, we only considered issues labeled as bug correction, new fea-
ture, or improvement. We followed the usual procedure to associate commits to
maintenance issues: a commit is related to an issue when its textual description
includes a substring that represents a valid Issue-ID in the system’s bug tracking
system [12], [44], [51].

Removing commits not changing classes: The co-changes considered by our ap-
proach are defined for classes. However, there are commits that only change
artifacts like configuration files, documentation, script files, etc. Therefore, we
discard such commits in order to only consider commits that change at least one
class. Finally, we eliminate unit testing classes from commits because co-changes
between functional classes and their respective testing classes are usually com-
mon and therefore may dominate the relations expressed in co-change graphs.

Merging commits related to the same maintenance issue: When there are multiple
commits refer to the same Issue-ID, we merge all of them—including the changed
classes—in a single commit. Figure 1 presents an example for the Geronimo
system.5 The figure shows the short description of four commits related to the
issue GERONIMO-3003. In this case, a single change set is generated for the four
commits, including 13 classes. In the co-change graph an edge is created for each
pair of classes in this merged change set. In this way, we have edges connecting
classes modified in different commits, but referring to the same maintenance
issue.

Revision: 918360
Date: Wed Mar 03 05:07:00 BRT 2010
Short Description: GERONIMO-3003 create karaf command wrpaper
for encryptCommand
Changed Classes: [1 class]

Revision: 798794
Date: Wed Jul 29 03:54:50 BRT 2009
Short Description: GERONIMO-3003 Encrypt poassoreds and morked
attributes in serialized gbeans and config.xml. Modified from
patch by [developer name], many thanks.
Changed Classes: [9 new classes]

Revision: 799023
Date: Wed Jul 29 16:13:02 BRT 2009
Short Description: GERONIMO-3003 Encrypt poassoreds and morked
attributes in serialized gbeans and config.xml. Modified from
patch by [developer name], many thanks. 2nd half of patch.missed
adding one file and several geronimo-system changes earlier.
Changed Classes: [3 new classes]

Revision: 799037
Date: Wed Jul 29 16:49:52 BRT 2009
Short Description: GERONIMO-3003 Use idea from [developer name]
to encrypt config.xml attributes that are encryptable but reset
to plaintext by users
Changed Classes: [1 class, also modified in revision 799023]

Fig. 1. Multiple commits for the issue GERONIMO-3003

Removing commits associated to multiple maintenance issues: We remove com-
mits that report changes related to more than one maintenance issue, which are
usually called tangled code changes [17]. Basically, such commits are discarded
because otherwise they would generate edges connecting classes modified to im-
plement semantically unrelated maintenance tasks (which were included in the
same commit just by convenience, for example). Figure 2 presents a tangled code
change for the Geronimo system.

Removing highly scattered commits: We remove commits representing highly
scattered code changes, i.e., commits that modify a massive number of classes.

5 Geronimo is an application server, http://geronimo.apache.org.

Revision: 565397
Date: Mon Aug 13 13:21:44 BRT 2007
Short Description: GERONIMO-3254 Admin Console Wizard to auto
generate geronimo-web.xml and dependencies GERONIMO-3394,
GERONIMO-3395, GERONIMO-3396, GERONIMO-3397,
GERONIMO-3398
- First commit of "Create Plan" portlet code.
Changed Classes: [25 classes]

Fig. 2. Single commit handling multiple issues (3254, 3394 to 3398)

Typically, such commits are associated to refactorings (like rename method) and
other software quality improving tasks (like dead code removal), implementation
of new features, or minor syntactical fixes (like changes to comment styles) [50].
Figure 3 illustrates a highly scattered commit in Lucene. This commit changes
251 classes, located in 80 packages. Basically, in this commit redundant throws
clauses were refactored.

Revision: 1355069
Date: Thu Jun 28 13:39:25 BRT 2012
Short Description: LUCENE-4172: clean up redundant throws clauses
Changed Classes: [251 classes]

Fig. 3. Highly scattered commit (251 changed classes)

Recent research showed that scattering in commits tends to follow heavy-
tailed distributions [50]. Therefore, the existence of massively scattering commits
cannot be neglected. Particularly, such commits may have a major impact when
considered in co-change graphs, due to the very large deviation between the
number of classes changed by them and by the remaining commits in the system.
Figure 4 illustrates this fact by showing a histogram with the number of packages
changed by commits made to the Lucene system 6. As we can observe, 1,310
commits (62%) changed classes in a single package. Despite this fact, the mean
value of this distribution is 51.2, due to the existence of commits changing for
example, more than 10 packages.

Considering that our goal is to model recurrent maintenance tasks and con-
sidering that highly scattered commits typically do not present this character-
istic, we decided to remove them during the co-change graph creation. For this
purpose, we define that a package pkg is changed by a commit cmt if at least one
of the classes modified by cmt are located in pkg. Using this definition, we ignore
commits that change more than MAX SCATTERING packages. In Section 4,
we define and explain the values for thresholds in our method.

6 An information retrieval library, http://lucene.apache.org.

Fig. 4. Packages changed by commits in the Lucene system

Post-processing Task In co-change graphs, the edges’ weights represent the
number of commits changing the connected classes. However, co-change graphs
typically have many edges with small weights, i.e., edges representing co-changes
that happened very few times. Such co-changes are not relevant considering that
our goal is to model recurrent maintenance tasks. For this reason, there is a
post-processing phase after extracting a first co-change graph. In this phase,
edges with weights less than a MIN WEIGHT threshold are removed. In fact,
this threshold is analogous to the support threshold used by co-change mining
approaches based on association rules [52].

3.2 Extracting Co-Change Clusters

After extracting the co-change graph, our goal is to retrieve sets of classes that
frequently change together, which we call co-change clusters. We propose to
extract co-change clusters automatically, using a graph clustering algorithm de-
signed to handle sparse graphs, as is typically the case of co-change graphs [5].
More specifically, we decided to use the Chameleon clustering algorithm, which
is an agglomerative and hierarchical clustering algorithm recommended to sparse
graphs.

As reported in Section 2.1, there are several clustering criterion functions
that can be applied in the agglomeration phase available in Cluto package. We
conducted pre-experiments with those functions to find which one produced clus-
ters with higher internal similarity, lower external similarity and higher density.
The function i2 (Cohesion based on graphs) was the one that best fitted to our

goal. We observed that other functions retrieved several undesirable clusters with
low density. This function searches for subclusters to combine, maximizing the
similarity by evaluating how close are the objects in a cluster, as follows:

maximize

k∑
i=1

√ ∑
v ,u∈Si

sim(v , u)

Defining the Number of Clusters A critical decision when applying Chame-
leon—and many other clustering algorithms—is to define the number of parti-
tions M that should be created in the first phase of the algorithm. To define the
“best value” for M we execute Chameleon multiple times, with different values
of M , starting with a M INITIAL value. Furthermore, in the subsequent execu-
tions, the previous tested value is decremented by a M DECREMENT constant.

After each execution, we discard small clusters, as defined by a MIN CLUS-
TER SZ threshold. Considering that our goal is to extract groups of classes that
may be used as alternative modular views, it is not reasonable to have clusters
with only two or three classes. If we accept such small clusters, we may eventually
generate a decomposition of the system with hundreds of clusters.

For each execution, the algorithm provides two important statistics to eval-
uate the quality of each cluster:

– ESim - The average similarity of the classes of each cluster and the remaining
classes (average external similarity). This value must tend to zero because
minimizing inter-cluster connections is important to support modular rea-
soning.

– ISim - The average similarity between the classes of each cluster (average
internal similarity).

After pruning the small clusters, the following clustering quality function is
applied to the remaining clusters:

coefficient(M) =
1

k
∗

k∑
i=1

ISimCi − ESimCi

max (ISimCi
, ESimCi

)

where k is the number of clusters after pruning small clusters.

The measure coefficient(M) combines the concepts of cluster cohesion (tight
co-change clusters) and cluster separation (highly separated co-change clusters).
The coefficients ranges from [-1; 1], where -1 indicates a very poor round and 1 an
excellent round. The selected M value is the one with the highest coefficient(M).
If the highest coefficient(M) is the same for more than one value of M , then
the highest mean(ISim) is used as a tiebreaker. Clearly, internal similarity is
relevant because maintainers are interested in clusters containing classes that
frequently change together.

Table 1. Target systems (size metrics)

System Description Release LOC NOP NOC

Geronimo Web application server 3.0 234,086 424 2,740
Lucene Text search library 4.3 572,051 263 4,323
JDT Core Eclipse Java infrastructure 3.7 249,471 74 1,829
Camel Integration framework 2.13.1 964,938 828 11,395

Table 2. Initial commits sample

System Commits Period

Geronimo 9,829 08/20/2003 - 06/04/2013 (9.75 years)
Lucene 8,991 01/01/2003 - 07/06/2013 (10.5 years)
JDT Core 24,315 08/15/2002 - 08/21/2013 (10 years)
Camel 13,769 04/18/2007 - 06/14/2014 (7 years)

4 Co-Change Clustering Results

In this section, we report the results we achieved after following the methodology
described in Section 3 to extract co-change clusters for four systems.

4.1 Target Systems and Thresholds Selection

Tables 1 and 2 describe the systems considered in our study, including infor-
mation on their function, number of lines of code (LOC), number of packages
(NOP), and number of classes (NOC), the number of commits extracted for each
system and the time frame used in this extraction.

In order to run the approach, we defined the following thresholds:

– MAX SCATTERING = 10 packages, i.e., we discard commits changing classes
located in more than ten packages. We based on the hypothesis that large
transactions typically correspond to noisy data, such as comments format-
ting and rename method [52], [1]. Excessive pruning is undesirable, so we
adopted a conservative approach working at package level.

– MIN WEIGHT = 2 co-changes, i.e., we discard edges connecting classes with
fewer than two co-changes because an unitary weight does not reflect how
often two classes usually change together [5].

– M INITIAL = NOCG ∗ 0 .20 , i.e., the first phase of the clustering algorithm
creates a number of partitions that is one-fifth of the number of classes in the
co-change graph (NOCG). The higher the M , the higher the final clusters’
size because the second phase of the algorithm works by aggregating the
partitions. In this case, the ISim tend to be lower because subgraphs that
are not well connected are grouped in the same cluster. We made several
experiments varying M ′s value, and observed that whenever M is high, the
clustering tend to have clusters of unbalanced size.

– M DECREMENT = 1 class, i.e., after each clustering execution, we decre-
ment the value of M by 1, meaning that no value for M is discarded from
one iteration to another.

– MIN CLUSTER SZ = 4 classes, i.e., after each clustering execution, we re-
move clusters with less than 4 classes.

We defined the thresholds after some preliminary experiments with the target
systems. We also based this selection on previous empirical studies reported in
the literature. For example, Walker showed that only 5.93% of the patches in the
Mozilla system change more than 11 files [50]. Therefore, we claim that commits
changing more than 10 packages are in the last quantiles of the heavy-tailed
distributions that normally characterize the degree of scattering in commits. As
another example, in the systems included in the Qualitas Corpus—a well-known
dataset of Java programs—the packages on average have 12.24 classes [47, 46]. In
our four target systems, the packages have on average 15.87 classes. Therefore,
we claim that clusters with less than four classes can be characterized as small
clusters.

4.2 Co-Change Graph Extraction

We start by characterizing the extracted co-change graphs. Table 3 shows the
percentage of commits in our sample, after applying the preprocessing filters
described in Section 3.1): removal of commits not associated to maintenance
issues (Pre #1), removal of commits not changing classes and also testing classes
(Pre #2), merging commits associated to the same maintenance issue (Pre #3),
removal of commits denoting tangled code changes (Pre #4), and removal of
highly scattering commits (Pre #5).

Table 3. Percentage of unitary commits discarded in the first phase and commits after
each preprocessing filters

System Pre #1
Unitary

Pre #2 Pre #3 Pre #4 Pre #5
Commits

Geronimo 32.6 39.6 25.2 17.3 16.1 14.3
Lucene 39.2 35.3 34.6 23.6 23.3 22.4
JDT Core 38.4 58.1 32.8 21.7 20.3 20.1
Camel 45.0 44.5 39.7 25.7 21.7 21.3

As can be observed in Table 3, our initial sample for the Geronimo, Lucene,
JDT Core, and Camel systems was reduced to 14.3%, 22.4%, 20.1% and 21.3%
of its original, respectively. The most significant reduction was due to the first
preprocessing task. Basically, only 32.6%, 39.2%, 38.4%, and 45.0% of the com-
mits in the Geronimo, Lucene, JDT Core, and Camel systems are associated
to maintenance issues (as stored in the systems issue tracking platforms). More-
over, we analyzed the commits discarded in first preprocessing task. We observed

a substantial number of commits changing a single software artifact, 39.6% of
Geronimo’s, 35.3% of Lucene’s, 58.1% of JDT’s, and 44.5% of Camel’s commits.
These unitary commits may can contain configuration or/and script files, for in-
stance. In addition, as some of these commits are not linked to any issue report,
we cannot be sure if they represent a complete maintenance task. We had not
analyzed if these unitary commits are micro-commits of a maintenance tasks.
This could be done by inspecting their time frame, for instance. However, these
unitary commits are not useful anyway to evaluate the system in terms of co-
changes. There were also significant reductions after filtering out commits that
do not change classes or that only change testing classes (preprocessing task #2)
and after merging commits related to the same maintenance issue (preprocessing
task #3). Finally, a reduction affecting 3% of the Geronimo’s commits, 4% of
the Camel’s commits, and nearly 1% of the commits of the other systems was
achieved after the last two preprocessing tasks.

After applying the preprocessing filters, we extracted a first co-change graph
for each system. We then applied the post-processing filter defined in Section 3.1,
to remove edges with unitary weights. Table 4 shows the number of vertices (|V |)
and the number of edges (|E|) in the co-change graphs, before and after this
post-processing task. The table also presents the graph’s density (column D).

Table 4. Number of vertices (|V |), edges (|E|) and co-change graphs’ density (D)
before and after the post-processing filter

System
Post-Processing

Before After
|V| |E| D |V| |E| D

Geronimo 2,099 24,815 0.01 695 4,608 0.02
Lucene 2,679 63,075 0.02 1,353 18,784 0.02
JDT Core 1,201 75,006 0.01 823 25,144 0.04
Camel 3,033 42,336 0.01 1,498 15,404 0.01

By observing the results in Table 4, two conclusions can be drawn. First,
co-change graphs are clearly sparse graphs, having density close to zero in the
evaluated systems. This fact reinforces our choice to use Chameleon as the clus-
tering algorithm, since this algorithm is particularly well-suited to handle sparse
graphs [20]. Second, most edges in the initial co-change graphs have weight
equal to one (more precisely, around 81%, 70%, 66%, and 64% of the edges for
Geronimo, Lucene, JTD Core, and Camel graphs, respectively). Therefore, they
connect classes that changed together in just one commit and for this reason
they were removed after the post-processing task. As result, the number of ver-
tices after post-processing was reduced to 33.1% (Geronimo), 50.5% (Lucene),
68.5% (JDT Core), and 49.4% (Camel) of their initial value.

4.3 Co-Change Clustering

We executed the Chameleon graph clustering algorithm having as input the co-
change graphs created for each system (after applying the pre-processing and
post-processing filters).7 Table 5 shows the value of M that generated the best
clusters, according to the clustering selection criteria defined in Section 3.2.
The table also reports the initial number of co-change clusters generated by
Chameleon and the number of clusters after eliminating the small clusters,
i.e., clusters with fewer than four classes, as defined by the MIN CLUSTER SZ
threshold. Finally, the table shows the ratio between the final number of clusters
and the number of packages in each system (column %NOP).

Table 5. Number of co-change clusters

System M
clusters

%NOP
All |V| ≥ 4

Geronimo 108 46 21 0.05
Lucene 68 98 49 0.19
JDT Core 100 35 24 0.32
Camel 251 130 47 0.06

For example, for the Geronimo system, we achieved the “best clusters” for
M = 108, i.e., the co-change graph was initially partitioned into 108 clusters, in
the first phase of the algorithm. In the second phase (agglomerative clustering),
the initial clusters were successively merged, stopping with a configuration of
46 clusters. However, only 21 clusters have four or more classes (|V | ≥ 4) and
the others were discarded, since they represent “small modules”, as defined in
Section 4.1. We can also observe that the number of clusters is considerably
smaller than the number of packages. Basically, this fact is an indication that
the maintenance activity in the system is concentrated in few classes.

For the Lucene system, we achieved the best clusters for M = 68, since the
number of clusters returned in the first phase is M plus the number of connected
components.

Table 6 shows standard descriptive statistics measurements regarding the
size of the extracted co-change clusters, in terms of number of classes. As we can
observe, the extracted clusters have 8.8±4.7 classes, 11.7±7.0 classes, 14±10.4
classes, and 10.2±11.48 (average± standard deviation) in the Geronimo, Lucene,
JDT Core, Camel systems, respectively. Moreover, the biggest cluster has a
considerable number of classes: 20 classes (Geronimo), 27 classes (Lucene), 43
classes (JDT Core), and 74 classes (Camel).

Table 7 presents standard descriptive statistics measurements regarding the
density of the extracted co-change clusters. The clusters have density of 0.80±
7 To execute Chameleon, we relied on the CLUTO clustering package,
http://glaros.dtc.umn.edu/gkhome/cluto/cluto/overview.

Table 6. Co-change clusters size (in number of classes)

System
Cluster size

Min Max Avg Std

Geronimo 4 20 8.8 4.7
Lucene 4 27 11.7 7.0
JDT Core 4 43 14.0 10.4
Camel 4 74 10.2 11.48

0.24 (Geronimo), 0.68± 0.25 (Lucene), 0.54± 0.29 (JDT Core), and 0.77± 0.25
(Camel). The median density is 0.90 (Geronimo), 0.71 (Lucene), 0.49 (JDT
Core), and 0.83 (Camel). Therefore, although co-change graphs are heavily
sparse graphs, the results in Table 7 show they have dense subgraphs with a con-
siderable size (at least four classes). Density is a central property in co-change
clusters, because it assures that there is a high probability of co-changes between
each pair of classes in the cluster. In other words, high-density co-change clusters
can be viewed as related program units, at least under evolutionary terms.

Table 7. Co-change clusters density

System
Cluster density

Min Max Avg Std Median

Geronimo 0.31 1.0 0.80 0.24 0.90
Lucene 0.17 1.0 0.68 0.25 0.71
JDT Core 0.18 1.0 0.54 0.29 0.49
Camel 0.16 1.0 0.77 0.25 0.83

Table 8 presents standard descriptive statistics measurements regarding the
average weight of the edges in the extracted co-change clusters. For a given co-
change cluster, we define this average as the sum of the weights of all edges
divided by the number of edges in the cluster. We can observe that the median
edges’ weight is not high, being slightly greater than two in Geronimo, Lucene,
and Camel. Whereas, in the JDT Core is about four. However, it is important
to mention that after applying the preprocessing filters we only considered a
small sample of the initial commits to create the co-change graphs (14.3% of the
commits in Geronimo, 22.4% of the commits in Lucene, 20.1% in JDT Core, and
21.3% in Camel).

5 Modularity Analysis

In this section, we investigate the application of co-change clusters to assess
the quality of a system’s package decomposition. Particularly, we investigate the

Table 8. Average edges’ weight

System
Cluster average edges weight
Min Max Avg Std Median

Geronimo 2 5.5 2.4 0.8 2.1
Lucene 2 7.1 2.7 1.0 2.4
JDT Core 2 7.6 4.3 1.5 3.8
Camel 2 5 2.6 0.8 2.3

distribution of the co-change clusters over the package structure. For this pur-
pose, we rely on distribution maps [14], which are typically used to compare
two partitions P and Q of the entities from a system S. In our case, the en-
tities are classes, the partition P is the package structure, and Q is composed
by the co-change clusters. Moreover, entities (classes) are represented as small
squares and the partition P (package structure) groups such squares into large
rectangles (packages). In the package structure, we only consider classes that
are members of co-change clusters, in order to improve the maps visualization.
Finally, partition Q (co-change clusters) is used to color the classes (all classes
in a cluster have the same color).

In addition to visualization, distribution maps can be used to quantify the
focus of a given cluster q in relation to the partition P (package structure), as
follows:

focus(q, P) =
∑
pi∈P

touch(q, pi) ∗ touch(pi, q)

where

touch(p, q) =
|p ∩ q|
|q|

In this definition, touch(q, pi) is the number of classes of cluster q located in the
package pi divided by the number of classes in pi that are included in at least a
co-change cluster. Similarly, touch(pi, q) is the number of classes in pi included
in the cluster q divided by the number of classes in q. Focus ranges between 0
and 1, where the value one means that the cluster q dominates the packages that
it touches, i.e., it is well-encapsulated in such packages. On the other hand, when
co-change clusters crosscut many packages, but touching few classes in each of
them, their focus is low.

There is also a second metric, described below, that measures how spread is
a cluster q in P , i.e., the number of packages touched by q.

spread(q, P) =
∑
pi∈P

{
1, touch(q, pi) > 0

0, touch(q, pi) = 0

Tables 9 and 10 show the standard descriptive statistics measurements re-
garding respectively the focus and spread of the co-change clusters. We can
observe that the co-change clusters in Geronimo and Camel have a higher focus

than in Lucene and JDT Core. For example, the median focus in Geronimo and
Camel is 1.00, against 0.55 and 0.30 in Lucene and JDT Core, respectively. Re-
garding spread, Camel has a lower value than the others, on average the spread
is 2.96 against 3.50 (Geronimo), 3.35 (Lucene), and 3.83 (JDT Core). Figure 5
shows a scatterplot with the values of focus (horizontal axis) and spread (vertical
axis) for each co-change cluster. In Geronimo and Camel, we can see that there
is a concentration of clusters with high focus. On the other hand, for Lucene,
the clusters are much more dispersed along the two axis. Eclipse JDT tends to
have lower focus, but also lower spread.

Table 9. Focus

System
Focus

Min Max Avg Std Median

Geronimo 0.50 1.00 0.93 0.12 1.00
Lucene 0.06 1.00 0.57 0.30 0.55
JDT Core 0.07 1.00 0.36 0.26 0.30
Camel 0.23 1.00 0.87 0.20 1.00

Table 10. Spread

System
Spread

Min Max Avg Std Median Mode

Geronimo 1 8 3.50 2.10 3 1
Lucene 1 8 3.35 1.90 3 3
JDT Core 1 10 3.83 2.60 3 1
Camel 1 13 2.96 2.52 2 1

In the following sections, we analyze examples of well-encapsulated and cross-
cutting clusters, using distribution maps.8 Section 5.1 emphasizes well-encapsu-
lated clusters, since they are common in Geronimo. On the other hand, Sec-
tion 5.2 emphasizes crosscutting concerns, which are most common in Lucene.
Section 5.3 reports on both types of clusters in Eclipse JDT. Section 5.4 em-
phasizes well-encapsulated clusters and partially encapsulated, since they are
common in Camel.

5.1 Distribution Map for Geronimo

Figure 6 shows the distribution map for Geronimo. To improve the visualization,
besides background colors, we use a number in each class (small squares) to

8 To extract and visualize distribution maps, we used the Topic Viewer tool [42],
available at https://code.google.com/p/topic-viewer).

Fig. 5. Focus versus Spread

indicate their respective clusters. The large boxes are the packages and the text
below is the package name.

Considering the clusters that are well-encapsulated (high focus) in Geronimo,
we found three package distribution patterns:

– Clusters well-encapsulated (focus = 1.0) in a single package (spread = 1).
Four clusters have this behavior. As an example, we have Cluster 2, which
dominates the co-change classes in the package main.webapp.WEBINF.view-
.realmwizard (line 1 in the map, column 9). This package implements a
wizard to configure or create security domains. Therefore, since it implements
a specific functional concern, maintenance is confined in the package. As
another example, we have Cluster 5 (package mail, line 1 in the map, column
10) and Cluster 11 (package security.remoting.jmx, line 1, column 3).

– Clusters well-encapsulated (focus = 1.0) in more than one package (spread
> 1). We counted eight clusters with this behavior. As an example, we
have Cluster 18 (spread = 4), which touches all co-change classes in the fol-

Fig. 6. Distribution map for Geronimo

lowing packages: security.jaas.server, security.jaas.client, secu-

rity.jaas, and security.realm (displayed respectively in line 1, columns
7 and 8; line 2, column 6; and line 4, column 6). As suggested by their names,
these packages are related to security concerns, implemented using the Java
Authentication and Authorization Service (JAAS) framework. Therefore, the
packages are conceptually related and their spread should not be regarded

as a design problem. In fact, the spread in this case is probably due to a
decision to organize the source code in sub-packages.
As another example, we have Cluster 20 (spread = 5), which touches all
classes in connector.outbound, connector.work.pool, connector.work,
connector.outbound.connectiontracking, and timer.jdbc (displayed re-
spectively in line 1, column 4; line 2, column 5; line 4, column 4; line 7,
column 1; line 5 and column 3). These packages implement EJB connectors
for message exchange.

– Clusters partially encapsulated (focus ≈ 1.0), but touching classes in other
packages (spread > 1).9 As an example, we have Cluster 8 (focus = 0.97,
spread = 2), which dominates the co-change classes in the package tomcat.-
model (line 1 and column 1 in the map), but also touches the class Tomcat-
ServerGBean from package tomcat (line 2, column 8). This class is respon-
sible for configuring the web server used by Geronimo (Tomcat). Therefore,
this particular co-change instance suggests an instability in the interface
provided by the web server. In theory, Geronimo should only call this in-
terface to configure the web server, but in fact the co-change cluster shows
that maintenance in the model package sometimes has a ripple effect on this
class, or vice-versa.
As another example, we have Cluster 14 (focus = 0.92 and spread = 2),
which dominates the package tomcat.connector (line 1 and column 6 in the
map) but also touches the class TomcatServerConfigManager from package
tomcat (line 2, column 8). This “tentacle” in a single class from another
package suggests again an instability in the configuration interface provided
by the underlying web server.

5.2 Distribution Map for Lucene

We selected for analysis clusters that are crosscutting (focus≈ 0.0), since they are
much more common in Lucene. More specifically, we selected the three clusters
in Lucene with the lowest focus and a spread greater than two. Figure 7 shows a
fragment of the distribution map for Lucene, containing the following clusters:

– Cluster 12 (focus = 0.06 and spread = 3) with co-change classes in the
following packages: index, analysis, and store. Since the cluster crosscuts
packages that provide very different services (indexing, analysis, and storing),
we claim that it reveals a modularization flaw in the package decomposition
followed by Lucene. For example, a package like store that supports binary
I/O services should hide its implementation from other packages. However,
the existence of recurring maintenance tasks crosscutting store shows that
the package fails to hide its main design decisions from other packages in the
system.

9 These clusters are called octopus, because they have a body centered on a single
package and tentacles in other packages [14].

Fig. 7. Part of the Distribution map for Lucene

– Cluster 13 (focus = 0.2 and spread = 3), with co-change classes in the follow-
ing packages: search, search.spans, and search.function. In this case, we
claim that crosscutting causes less harm to modularity, because the packages
are related to a single service (searching).

– Cluster 28 (focus = 0.21 and spread = 6), with co-change classes in the fol-
lowing packages: index, search, search.function, index.memory, search-
.highlight, and store. instantiated. These packages are responsible for
important services in Lucene, like indexing, searching, and storing. There-
fore, as in the case of Cluster 12, the crosscutting behavior of this cluster
suggests a modularization flaw in the system.

We also analyzed the maintenance issues associated to the commits respon-
sible for the co-changes in Cluster 28. Particularly, we retrieved 37 maintenance
issues related to this cluster. We then manually read and analyzed the short
description of each issue, and classified them in three groups: (a) maintenance
related to functional concerns in Lucene’s domain (like searching, indexing, etc);
(b) maintenance related to non-functional concerns (like logging, persistence, ex-
ception handling, etc); (c) maintenance related to refactorings. Table 11 shows
the number of issues in each category. As can be observed, the crosscutting be-
havior of Cluster 28 is more due to issues related to functional concerns (59.5%)
than to traditional non-functional concerns (8%). Moreover, changes motivated
by refactorings (32.5%) are more common than changes in non-functional con-
cerns.

Table 11. Maintenance issues in Cluster 28

Maintenance Type # issues % issues

Functional concerns 22 59.50%
Non-functional concerns 3 8.00%
Refactoring 12 32.50%

Finally, we detected a distribution pattern in Lucene that represents nei-
ther well-encapsulated nor crosscutting clusters, but that might be relevant for
analysis:

– Clusters well-confined in packages (spread = 1). Although restricted to a
single package, these clusters do not dominate the colors in this package.
But when considered as a single cluster, they dominate their package. As a
concrete example, we have Cluster 20 (focus = 0.22) and Cluster 29 (focus
= 0.78) that are both confined in package util.packed (line 1, column 3).
Therefore, in this case a refactoring that splits the package in sub-packages
can be considered, in order to improve the focus of the respective clusters.

Fig. 8. Part of the Distribution map for JDT Core

5.3 Distribution Map for JDT Core

Figure 8 shows the distribution map for JDT Core. We selected three distinct
types of clusters for analysis: a crosscutting cluster (focus ≈ 0.0 and spread >=
3), clusters confined in a single package with (spread = 1), and a cluster with
high spread.

– Clusters with crosscutting behavior. We have Cluster 4 (focus = 0.08 and
spread = 4) with co-change classes in the following packages: internal.-
compiler.lookup, internal.core, core.dom, and internal.core.util.
The core.util package provides a set of tools and utilities for manipulat-
ing .class files and Java model elements. Since the cluster crosscuts pack-
ages providing very different services (document structure, files and elements
manipulation, population of the model, compiler infrastructure), we claim
that it reveals a modularization flaw in the system.

– Clusters well-confined in packages (spread = 1). We have Cluster 0 (focus =
0.48), Cluster 5 (focus = 0.35), and Cluster 6 (focus = 0.07) in the core.dom
package (line 1, column 1).

– Clusters partially encapsulated (focus ≈ 1.0), but touching classes in other
packages (spread > 1). We have Cluster 3 (focus = 0.87 and spread = 8),
which dominates the co-change classes in the packages search.jdt.inter-
nal.core.search .matching and search.jdt.core.search. These pack-
ages provide support for searching the workspace for Java elements matching
a particular description. Their spread should not be regarded as a design
problem, because the packages are related to a single service (searching).
However, the cluster also touches classes in other packages. For example, the
class core.index.Index maps document names to their referenced words in
various categories.

5.4 Distribution Map for Camel

Figure 9 shows the distribution map for Camel. We selected two types of cluster
patterns for analysis: a well-encapsulated cluster (focus = 1.0) and a cluster
partially encapsulated (focus ≈ 1.0).

– Clusters well-encapsulated (focus = 1.0) in a single package (spread = 1).
Twelve clusters have this behavior. As an example, we have Cluster 0, which
dominates the co-change classes in the package component.smpp (line 3 in
the map, column 5). This package provides access to a short message service.
Therefore, since it implements a particular functional concern, the mainte-
nance is confined in the package.

– Clusters well-encapsulated (focus = 1.0) in more than one package (spread
> 1). We counted thirteen clusters with this behavior. As an example, we
have Cluster 17 (spread = 9), which touches all co-change classes in the fol-
lowing packages: component.twitter, component.twitter.data, compo-

nent.twitter.producer, component.twitter.consumer.streaming, com-
ponent.twitter.consumer.directmessage, component.twitter.consum-
er.search, component.twitter.util, component.twitter.consumer, and

Fig. 9. Distribution map for Camel

component.twitter.consumer.timeline. As suggested by their names, these
packages are related to the Twitter API. Therefore, these packages are con-
ceptually related and their spread should not be regarded as a design prob-
lem. In fact, the spread in this case is probably due to a decision to organize
the source code in sub-packages.

– Clusters partially encapsulated (focus ≈ 1.0), but touching classes in other
packages (spread > 1). We counted eleven clusters with this behavior. As an
example, we have Cluster 10 (focus = 0.94, spread = 3), which dominates the
co-change classes in the packages api.management and api.management.-

mbean (line 5, column 3; line 1, column 6 in the map), but also touches the
class MBeanInfoAssembler from package management (line 2, columns 2).
This class is responsible for reading details from different annotations, such
as ManagedResource and ManagedAttribute. The co-change cluster shows
that maintenance in api.management and api.management.mbean packages
sometimes have a ripple effect on this class, or vice-versa.

6 Semantic Similarity Analysis

The previous section showed that the package structure of Geronimo and Camel
have more adherence to co-change clusters than Lucene’s and JDT Core’s. We
also observed that patterns followed by the relation clusters vs. packages can help
to assess the modularity of systems. This section aims at evaluating the semantic

similarity of the issues that are related to a specific cluster in order to improve
our understanding of the clusters’ meaning. We consider that if the issues related
to a cluster have high semantic similarity, then the classes within that cluster
are also semantically related and the cluster is semantically cohesive. We assume
that an issue is related to a cluster if the change set of the issue contains at least
a pair of classes from that cluster, not necessarily linked with an edge. In our
strategy to evaluate the similarity of the issues related to a cluster, we consider
each short description of a issue as a document and the collection of documents
is obtained from the collection of issues related to a cluster. We will use Latent
Semantic Analysis - LSA [13] to evaluate the similarity among the collection of
documents related to a cluster because it is a well-known method used in other
studies concerning similarity among issues and other software artifacts [36], [35].

6.1 Pre-processing Issue Description

When analyzing text documents with Information Retrieval techniques, an ade-
quate pre-processing of the text is important to achieve good results. We deter-
mined a domain vocabulary of terms based on words found in commits of the
target system. The first step is stemming the terms. Next, the stop-words were
removed. The final step produces a term-document matrix, where the cells have
value 1 if the term occurs in the document and 0 otherwise. This decision was
taken after some qualitative experimentation, in which we observed that differ-
ent weighting mechanisms based on the frequency of terms, such as td-idf [27],
did not improved the quality of the similarity matrix.

6.2 Latent Semantic Analysis

The LSA algorithm is applied to the binary term-document matrix and produces
another similarity matrix among the documents (issues) with values ranging from
-1 (no similarity) to 1 (maximum similarity). The LSA matrix should have high
values to denote a collection of issues that are all related among them. However,
not all pairs of issues have the same similarity level, so it is necessary to analyze
the degree of similarity between the issues to evaluate the overall similarity
within a cluster. We used heat maps to visualize the similarity between issues
that are related to a cluster. Figure 10 shows examples of similarity within
specific clusters. We show for each system the two best clusters in terms of
similarity to the left, and the two clusters with several pairs of issues with low
similarity to the right. The white cells represent that the issues do not have any
word in common, blue cells represent very low similarity, and yellow cells denote
the maximum similarity between the issues.

We can observe that even for the cluster with more blue cells, there is still
a dominance of higher similarity cells. The white cells in JDT’s clusters suggest
that there are issues with no similarity between the others in their respective
cluster.

Fig. 10. Examples of heat maps for similarity of issues

6.3 Scoring clusters

We propose the following metric to evaluate the overall similarity of a cluster c:

similarity score(c) =

∑
0<i,j<n−1

j<i

similar(i, j)

(n2

2 − n)

where

similar(i, j) =

{
0, if LSA Cosine(i, j) < SIM THRS
1, if LSA Cosine(i, j) ≥ SIM THRS

n = number of issues related to cluster c
SIM THRS = 0.4

The meaning of the similarity score of a cluster is defined upon the percentage
of similar pair of issues. So, a cluster with score = 0.5, means that 50% of pairs
of issues related to that cluster are similar to each other.

In this work, we had to define a threshold to evaluate if two issues are similar
or not. We consider the semantic similarity between two issue reports, i and j,
as the cosine between the vectors corresponding to i and j in the semantic space
created by LSA. After experimental testing, we observed that pairs of issues
(i, j) that had LSA Cosine(i , j) ≥ 0 .4 had a meaningful degree of similarity.
Nonetheless, we agree that this fixed threshold cannot be free of imprecision.
Similar to our study, Poshyvanyk and Marcus [36] used LSA to analyze the
coherence of the user comments in bug reports. The system’s developers classified
as high/very high similar, the comments with average similarity greater than
0.33, so our more conservative approach seems to be quite adequate.

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Ordered Clusters

S
co

re

● ●
●

● ● ● ●
●

● ●
●

●
● ● ●

●
● ●

●
●

● ●

●

●
● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●
● ●

●
● ●

● ●
●

●
● ●

●
●

● ● ●
● ● ● ●

● ●
●

●
● ●

●

●

●

●

Geronimo
Lucene
JDT
Camel

Fig. 11. Distribution of the clusters’ score

Moreover, because our goal is to have an overall evaluation of the whole
collection of co-change clusters, some imprecision in the characterization of sim-
ilarity between two issues would not affect significantly our analysis of the dis-
tribution of clusters’ scores. Figure 11 shows the distribution of score values for
Geronimo’s, Lucene’s, JDT’s, and Camel’s clusters.

We can observe that the systems’ clusters follow a similar pattern of scoring,
with 100% (for Lucene, JDT, and Camel) and more than 90% (for Geronimo)
of clusters having more than half pairs of issues similar to each other. Only two
Camel’s clusters have score less than 50% of similarity. Interestingly, one of these
two clusters have 226 issue reports and their similarity is very low.

6.4 Correlating Similarity, Focus, and Spread

Another analysis that we carried out with clusters’ scores was to evaluate the
degree of correlation between the score, focus and spread. Table 12 shows the
results obtained by applying the Spearman correlation test. For Geronimo, we
observed a strong negative correlation between spread and score. In other words,
the higher is the number of similar issues in a cluster, the higher is the capacity
of the cluster to encompass a whole package in Geronimo. Interestingly, Lucene
does not present the same behavior as Geronimo. We observe a weak correlation
between focus and score, but we encounter no significant correlation between
spread and score. In the case of Lucene, the higher is the number of similar
issues in a cluster, the lower is the number of packages touched by the cluster.
In the case of Eclipse JDT Core, there is no significant correlation between focus
and score. Although, there is a moderate negative correlation between spread
and score, it is only significant at p-value 0.074. Considering that the clusters of
the analyzed systems followed a similar pattern of similarity, this result suggests
that the reasonable similarity between co-change induces different properties in
the clusters, either in spread or in focus. For Camel, we observed a moderate
negative correlation between spread and score. Similar to Geronimo, the higher
is the number of similar issues in a cluster, the higher is the capacity of the
cluster to enfold a whole package in Camel.

Table 12. Correlation between score, focus and spread of clusters for Geronimo,
Lucene, JDT Core, and Camel

Correlation Coefficient Score Score Score Score
p-value Geronimo Lucene JDT Camel

Focus 0.264 0.308 −0.015 0.067
0.131 0.016 0.473 0.327

Spread −0.720 −0.178 −0.304 −0.337
1.71× 10−4 0.111 0.074 0.010

7 Discussion

7.1 Practical Implications

Software architects can rely on the approach proposed in this paper to assess
modularity under an evolutionary dimension. More specifically, we claim that
our approach helps to reveal the following patterns of co-change behavior:

– When the package structure is adherent to the cluster structure, as in Geron-
imo’s and Camel’s clusters (43% and 53% well encapsulated, respectively),
localized co-changes are likely to occur.

– When there is not a clear adherence between co-change clusters and packages,
a restructuring of the package decomposition may be necessary to improve
modularity. Particularly, there are two patterns of clusters that may suggest
modularity flaws. The first pattern denotes clusters with crosscutting behav-
ior (focus ≈ 0 and high spread). For example, in Lucene and JDT Core, we
detected 12 and 10 clusters related to this pattern, respectively. The second
pattern is the octopus cluster that suggest a possible ripple effect during
maintenance tasks. In Geronimo, Lucene, and Camel, we detected four, five,
and eleven clusters related to this pattern, respectively.

On the other hand, modular designs usually demand well-trained, skilled,
and experienced software architects. Nonetheless, we have no evidence that the
proposed co-change clusters may fully replace traditional modular decomposi-
tions. Indeed, a first obstacle to this proposal is the fact that co-change clusters
do not cover the whole population of classes in a system. On the other hand, we
believe that they can be used as an alternative modular view during program
comprehension tasks. For example, they may provide a better context during
maintenance tasks (similar for example to the task context automatically in-
ferred by tools like Mylyn [22]).

7.2 Clustering vs Association Rules Mining

Our approach is centered on the Chameleon hierarchical clustering algorithm,
since this algorithm was designed to handle sparse graphs [20]. In our case stud-
ies, for example, the co-change graphs have densities ranging from 1% (Camel),
2% (Geronimo and Lucene) to 4% (Eclipse JDT Core).

Particularly, in traditional clustering algorithms, like K-Means [26], the map-
ping of data items to clusters is a total function, i.e., each data item is allocated
to a specific cluster. Likewise K-Means, Chameleon tries to cluster all data items
(vertices). However, it is possible that some vertices are not allocated to any clus-
ter. This may happen when some vertices do not share any edge with the rest
of the vertices or when a vertice share edges to other vertices that belong to
different clusters with no significant discrepancy among weights.

We also performed an algorithm to detect communities (clusters) [6], pro-
vided by Gephi Tool10, to compare with our co-change clusters. Similar to K-
Means, this algorithm also allocate each vertice to a particular cluster. Thus,

10 http://gephi.github.io/

vertices with few or even one edge are assigned to a cluster leading these clus-
ters to have lower density than Chameleon’s. Nonetheless, we could define a
pos-processing task to prune such vertices from clusters detected by the commu-
nity algorithm to increase their densities. In spite of clusters with lower density,
the result suggested the same pattern we presented in this paper, e.g., for Geron-
imo the package structure is adherent to the cluster structure and for Lucene,
there is not a clear adherence between co-change clusters and packages.

An alternative to retrieve co-change relations is to rely on association rules
mining [2]. In the context of evolutionary coupling, an association rule Cant ⇒
Ccons expresses that commit transactions changing the classes Cant (antecedent
term) also change Ccons classes (consequent term), with a given probability.

However, hundreds of thousands of association rules can be easily retrieved
from version histories. For example, we executed the Apriori algorithm [2] to
retrieve association rules on Lucene’s pre-processed dataset. By defining a min-
imum support threshold of four transactions, a minimum confidence of 50%,
and limiting the size of the rules to 10 classes, we mined 976,572 association
rules, with an average size of 8.14 classes. We repeated this experiment with the
confidence threshold of 90%. In this case, we mined 831,795 association rules,
with an average size of 8.23 classes. This explosion in the number of rules is
an important limitation for using association rules to assess modularity, which
ultimately is a task that requires careful judgment and analysis by software de-
velopers and maintainers. Another attempt to reduce the number of rules is to
select the more interesting ones. There are several alternative measures available
to complement the support and confidence measures [34], [31]. One of the most
well-known is the lift [8]. However, if the rules present high values of lift, it is
very hard to make a precise selection. Another way to reduce the number of
rules is to combine association rules and clustering [25].

7.3 Threats to Validity

In this section, we discuss possible threats to validity, following the usual classi-
fication in threats to internal, external, and construct validity:

Threats to External Validity: There are some threats that limit our ability to
generalize our findings. The use of Geronimo, Lucene, JDT Core, and Camel
may not be representative to capture co-change patterns present in other sys-
tems. However, it is important to note that we do not aim to propose general
co-change patterns, but instead we just claim that the patterns founded in the
target systems show the feasibility of using co-change clusters to evaluate mod-
ularity under a new dimension.

Threats to Construct Validity: A possible design threat to construct validity is
that developers might not adequately link commit with issues, as pointed out
by Herzing and Zeller [17]. Moreover, we also found a high number of commits
not associated to maintenance issues. Thus, our results are subjected to miss-
ing and to incorrect links between commits and issues. However, we claim at

least that we followed the approach commonly used in other studies that map
issues to commits [12],[51], [11], [10]. We also filtered out situations like com-
mits associated to multiple maintenance issues and highly scattered commits.
Another possible construction threat concerns the time frame used to collect the
issues. We considered activity in a period of approximately ten years, which is
certainly a large time frame. However, we did not evaluate how the co-change
clusters evolved during this time frame or whether the systems’ architecture
substantially changed.

Finally, our approach only handles co-changes related to source code artifacts
(.java files). However, the systems we evaluated have other types of artifacts, like
XML configuration files. Geronimo for example has 177 Javascript files, 1004
XML configuration files, 19 configuration files, and 105 image files. Therefore,
it is possible that we missed some co-change relations among non-Java based
artifacts or between non-Java and Java-based artifacts. On the other hand, con-
sidering only source code artifacts makes possible the projection of co-change
clusters to distribution maps, using the package structure as the main partition
in the maps.

Threats to Internal Validity: Our approach relies on filters to select the commits
used by the co-change graphs and clusters. Those filters are based on thresholds
that could be defined differently, despite of our careful pre-experimentation. We
also calibrated the semantic similarity analysis with parameters that define the
dimensionality reduction in the case of LSA, and with a threshold in the case of
the LSA Cosine coefficient that defines when a pair of issues is similar. Although
this calibration has some degree of uncertainty, it was not proposed to get better
results favoring one system instead of the other. We defined the parameters and
constants so that coherent results were achieved in all systems. Moreover, we
observed that variations in the parameters’ values would affect the results for all
systems in a similar way.

8 Related Work

In this section, we discuss work related to our approach. The discussion is orga-
nized in three sections: concern mapping, co-change mining, and aspect mining.

8.1 Concern Mapping

Several approaches have been proposed to help developers and maintainers to
manage concerns and features. For example, concern graphs model the subset of
a software system associated with a specific concern [38, 39]. The main purpose
is to provide developers with an abstract view of the program fragments related
to a concern. FEAT is a tool that supports the concern graph approach by
enabling developers to build concern graphs interactively, as result of program
investigation tasks. Aspect Browser [16] and JQuery [18] are other tools that
rely on lexical or logic queries to find and document code fragments related to

a certain concern. ConcernMapper [40] is an Eclipse Plug-in to organize and
view concerns using an hierarchical structure similar to the package structure.
However, in such approaches, the concern model is created manually or based
on explicit input information provided by developers. Moreover, the relations
between concerns are typically only syntactical and structural. On the other
hand, in the approach proposed in this paper, the elements and relationships are
obtained by mining the version history.

8.2 Co-change Mining

Kouroshfar investigated the impact of co-change dispersion on software qual-
ity [24]. His results revealed that co-changes localized in the same subsystem
involve fewer bugs than co-changes crosscutting distinct subsystems.

Zimmermann et al. proposed an approach that uses association rule min-
ing on version histories to suggest possible future changes [52]. Their approach
differs from ours because they rely on association rules to recommend further
changes (e.g., if class A usually co-changes with B, and a commit only changes
A, a warning is given suggesting to check whether B should not be changed too).
On the other hand, we use co-change graphs to retrieve clusters semantically
related to a target system’s concern. Robillard and Barthélémy evaluated on
seven open-source systems whether change clusters can support developers in
their investigation of a software [37]. Similar to one of our pre-processing tasks,
their approach discards commit transactions that contain too few or too many
changed elements before clustering. Furthermore, in order to select clusters, like
we do by using the MIN CLUSTER SZ threshold, they retrieved clusters that
matched to a query. A quantitative analysis revealed that less than one in five
tasks overlapped with a change cluster. The qualitative analysis of the recom-
mended clusters showed that only 13% of the recommendation for applicable
change tasks were feasible to be useful. However, our goal is not to recommend
future changes, but to assess modularity, using distribution maps to compare
and contrast co-change clusters with packages.

Beyer and Noack introduced the concept of co-change graphs and proposed
a visualization of such graphs to reveal clusters of frequently co-changed ar-
tifacts [5]. Their approach clusters all co-change artifacts (code, configuration
scripts, documentation, etc), representing files as co-change graphs’ vertices.
These vertices are displayed as circles and their area is proportional to the fre-
quency that the file was changed. Vanya et al. used co-change clusters to support
the partitioning of system, reducing the coupling between its parts [49]. Their
approach detects co-change clusters in which a group of files from one part of
the system often changes with a group from another part. After clustering step,
they pruned clusters containing files from the same part of the system. However,
our central goal is not directly related with improving the visualization of co-
change clusters as proposed by Beyer and Noack, but on using them to assess
modularity. Finally, we do not prune clusters, such as Vanya et al., but we also
use them to visualize and to understand the system’ package decomposition.

Oliva et al. mined version histories to extract logical dependencies between
software artifacts to identify their origins [30]. They conducted a manual in-
vestigation of the origins of logical dependencies by reading revision comments
and analyzing code diffs. Beck and Diehl combined evolutionary dependencies
with syntactic dependencies to retrieve the modular structure of a system [4].
However, they clustered all classes in a system, since their original goal was to
compare both approaches to software clustering. On the other hand, since our
goal is to assess modularity, we consider only high-density co-change clusters.

Huzefa et al. presented an approach that combines conceptual and evolution-
ary couplings for impact analysis in source code [19], using information retrieval
and version history mining techniques. Gethers et al. proposed an impact analy-
sis that adapts to the specific maintenance scenario using information retrieval,
historical data mining, and dynamic analysis techniques [15]. However, they did
not use maintenance issues reports to discard noisy commits.

Palomba et al. proposed HIST, an approach that uses association rule min-
ing on version histories to detect code smells [32]. For each smell, they de-
fined a heuristics to use the association rules discovery or analyze co-changed
classes/methods for detecting the distinct bad smells. However, our goal is not
to detect code smells but to assess modularity using co-change clusters.

A recent study by Negara et al. revealed that the use of data from version
history presents many threats when investigating source code properties [29]. In
this work, we proposed five pre-processing tasks and one post-processing task to
tackle some of such threats.

8.3 Aspect Mining

Breu and Zimmermann proposed an approach (HAM) based on version his-
tory to detect cross-cutting concerns in an object-oriented program to guide its
migration to an aspect-oriented program [7]. They defined the notion of transac-
tion, which is the set of methods inserted by the developer to complete a single
development task. They also considered that method calls inserted in eight or
more locations (method bodies) define aspect candidates. One important differ-
ence from their work and ours is that they consider not only methods that were
changed together, but also those changes that were the same. Moreover, they
rely on a fine-grained notion of change that is interested in finding methods calls
to define aspect candidates.

Adams et al. proposed a mining technique (COMMIT) to identify concerns
from functions, variables, types, and macros that were changed together [1].
Similarly to HAM, COMMIT is based on the idea that similar calls and references
that are added or removed into different parts of the program are candidates to
refer to the same concern. This information produces several seed graphs which
are concern candidates because nodes in the graph represent program entities
to which calls or references have been co-added or co-removed. Their approach
differs from ours because they generate independent seed graphs, while we are
centered on a unique graph.

9 Concluding Remarks

In this work, we proposed a method to extract an alternative view to the pack-
age decomposition based on co-change clusters. We applied our method to four
real software systems, Geronimo, Lucene, JDT Core, and Camel. Our results
show that meaningful co-change clusters can be extracted using the information
available in version control systems. Although co-change graphs extracted from
repositories are sparse, the co-change clusters were dense and have high internal
similarity concerning co-changes and semantic similarity concerning their origi-
nating issues. We have shown that co-change clusters and their associated metrics
were useful to assess the hierarchical modular decomposition of the target sys-
tems. Even if in some cases co-change clusters may be used to restructure the
original package decomposition, we suggest that they can also be use as an alter-
native view during maintenance tasks to improve the developer’s understanding
of the change impact.

We still need to investigate the reasons that induce co-change clusters and
to identify the eventual patterns that produce those clusters, which would con-
tribute in early modularization decisions. We plan to investigate and to com-
pare our approach with other clustering algorithms for sparse graphs, like the
approach proposed by Beyer et al. [5] and clustering algorithms based on den-
sity property. We also plan to consider co-changes at a finer-granularity level,
more specifically among methods, and also including non-source code artifacts,
like XML configuration files. Finally, we plan to investigate whether co-change
clusters can be used as an alternative to the Package Explorer, supporting a
mechanism for the virtual separation of concerns, inspired on the CIDE [21] and
CIDE+ tools [48]. However, CIDE supports the virtual separation of features
whose implementation physically crosscuts many classes. On the other hand,
our goal is to support the virtual separation of features with a strong temporal
relationship, in terms of co-changes.

Acknowledgments

This work was partially supported by FAPEMIG, CAPES, and CNPq.

References

1. Adams, B., Jiang, Z.M., Hassan, A.E.: Identifying crosscutting concerns using his-
torical code changes. In: 32nd International Conference on Software Engineering.
pp. 305–314. ACM (2010)

2. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large
databases. In: 20th International Conference on Very Large Data Bases (VLDB).
pp. 487–499 (1994)

3. Baldwin, C.Y., Clark, K.B.: Design Rules: The Power of Modularity. MIT Press
(2003)

4. Beck, F., Diehl, S.: Evaluating the impact of software evolution on software clus-
tering. In: 17th Working Conference on Reverse Engineering (WCRE). pp. 99–108
(2010)

5. Beyer, D., Noack, A.: Clustering software artifacts based on frequent common
changes. In: 13th International Workshop on Program Comprehension (IWPC).
pp. 259–268 (2005)

6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), P10008 (2008)

7. Breu, S., Zimmermann, T.: Mining aspects from version history. In: 21st Auto-
mated Software Engineering Conference (ASE). pp. 221–230 (2006)

8. Brin, S., Motwani, R., Ullman, J.D., Tsur, S.: Dynamic itemset counting and impli-
cation rules for market basket data. In: ACM SIGMOD International Conference
on Management of Data. pp. 255–264 (1997)

9. Chidamber, S., Kemerer, C.: Towards a metrics suite for object oriented design. In:
6th Object-oriented programming systems, languages, and applications Conference
(OOPSLA). pp. 197–211 (1991)

10. Couto, C., Pires, P., Valente, M.T., Bigonha, R., Anquetil, N.: Predicting software
defects with causality tests. Journal of Systems and Software pp. 24–41 (2014)

11. Couto, C., Silva, C., Valente, M.T., Bigonha, R., Anquetil, N.: Uncovering causal
relationships between software metrics and bugs. In: 16th European Conference on
Software Maintenance and Reengineering (CSMR). pp. 223–232 (2012)

12. D’Ambros, M., Lanza, M., Robbes, R.: An extensive comparison of bug prediction
approaches. In: 7th Working Conference on Mining Software Repositories (MSR).
pp. 31–41 (2010)

13. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Index-
ing by latent semantic analysis. Journal of the American Society for Information
Science, 41, 391–407 (1990)

14. Ducasse, S., Gı̂rba, T., Kuhn, A.: Distribution map. In: 22nd IEEE International
Conference on Software Maintenance (ICSM). pp. 203–212 (2006)

15. Gethers, M., Kagdi, H., Dit, B., Poshyvanyk, D.: An adaptive approach to im-
pact analysis from change requests to source code. In: 26th Automated Software
Engineering Conference (ASE). pp. 540–543 (2011)

16. Griswold, W.G., Yuan, J.J., Kato, Y.: Exploiting the map metaphor in a tool
for software evolution. In: 23rd International Conference on Software Engineering
(ICSE). pp. 265–274 (2001)

17. Herzing, K., Zeller, A.: The impact of tangled code changes. In: 10th Working
Conference on Mining Software Repositories (MSR). pp. 121–130 (2013)

18. Janzen, D., Volder, K.D.: Navigating and querying code without getting lost. In:
2nd International Conference on Aspect-oriented Software Development (AOSD).
pp. 178–187 (2003)

19. Kagdi, H., Gethers, M., Poshyvanyk, D.: Integrating conceptual and logical cou-
plings for change impact analysis in software. Empirical Software Engineering
(EMSE) (2013)

20. Karypis, G., Han, E.H.S., Kumar, V.: Chameleon: hierarchical clustering using
dynamic modeling. Computer 32(8), 68–75 (1999)

21. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software product lines. In:
30th International Conference on Software Engineering (ICSE). pp. 311–320 (2008)

22. Kersten, M., Murphy, G.C.: Using task context to improve programmer produc-
tivity. In: 14th International Symposium on Foundations of Software Engineering
(FSE). pp. 1–11 (2006)

23. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M.,
Irwin, J.: Aspect-oriented programming. In: 11th European Conference on Object-
Oriented Programming (ECOOP). LNCS, vol. 1241, pp. 220–242. Springer Verlag
(1997)

24. Kouroshfar, E.: Studying the effect of co-change dispersion on software quality.
In: 35th International Conference on Software Engineering (ICSE). pp. 1450–1452
(2013)

25. Lent, B., Swami, A.N., Widom, J.: Clustering association rules. In: 13th Interna-
tional Conference on Data Engineering. pp. 220–231. ICDE (1997)

26. MacQueen, J.B.: Some methods for classification and analysis of multivariate obser-
vations. In: 5th Berkeley Symposium on Mathematical Statistics and Probability.
pp. 281–297 (1967)

27. Manning, C.D., Raghavan, P., Schtze, H.: Introduction to Information Retrieval.
Cambridge University Press (2008)

28. Meyer, B.: Object-Oriented Software Construction. Prentice-Hall (2000)
29. Negara, S., Vakilian, M., Chen, N., Johnson, R.E., Dig, D.: Is it dangerous to

use version control histories to study source code evolution? In: 26th European
conference on Object-Oriented Programming (ECOOP). pp. 79–103 (2012)

30. Oliva, G.A., Santana, F.W., Gerosa, M.A., de Souza, C.R.B.: Towards a classifica-
tion of logical dependencies origins: a case study. In: 12th International Workshop
on Principles of Software Evolution and the 7th annual ERCIM Workshop on Soft-
ware Evolution (EVOL/IWPSE). pp. 31–40 (2011)

31. Omiecinski, E.: Alternative interest measures for mining associations in databases.
IEEE Transactions on Knowledge and Data Engineering 15(1), 57–69 (2003)

32. Palomba, F., Bavota, G., Penta, M.D., Oliveto, R., de Lucia, A., Poshyvanyk, D.:
Detecting bad smells in source code using change history information. In: 28th
IEEE/ACM International Conference on Automated Software Engineering (ASE).
pp. 11–15 (2013)

33. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of the ACM 15(12), 1053–1058 (1972)

34. Piatetsky-Shapiro, G.: Discovery, analysis and presentation of strong rules. In:
Knowledge Discovery in Databases, pp. 229–248 (1991)

35. Poshyvanyk, D., Marcus, A.: Using information retrieval to support design of in-
cremental change of software. In: 22th IEEE/ACM International Conference on
Automated Software Engineering (ASE). pp. 563–566 (2007)

36. Poshyvanyk, D., Marcus, A.: Measuring the semantic similarity of comments in
bug reports. In: 1st International ICPC Workshop on Semantic Technologies in
System Maintenance (STSM). pp. 265–280 (2008)

37. Robillard, M.P., Dagenais, B.: Recommending change clusters to support software
investigation: An empirical study. Journal of Software Maintenance and Evolution:
Research and Practice 22(3), 143–164 (2010)

38. Robillard, M.P., Murphy, G.C.: Concern graphs: finding and describing concerns
using structural program dependencies. In: 24th International Conference on Soft-
ware Engineering (ICSE). pp. 406–416 (2002)

39. Robillard, M.P., Murphy, G.C.: Representing concerns in source code. ACM Trans-
actions on Software Engineering and Methodology 16(1), 1–38 (2007)

40. Robillard, M.P., Weigand-Warr, F.: Concernmapper: simple view-based separation
of scattered concerns. In: OOPSLA Workshop on Eclipse Technology eXchange.
pp. 65–69 (2005)

41. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Communications of the ACM 18(11), 613–620 (1975)

42. Santos, G., Valente, M.T., Anquetil, N.: Remodularization analysis using semantic
clustering. In: 1st CSMR-WCRE Software Evolution Week. pp. 224–233 (2014)

43. Silva, L., Valente, M.T., Maia, M.: Assessing modularity using co-change clusters.
In: 13th International Conference on Modularity. pp. 49–60 (2014)

44. Śliwerski, J., Zimmermann, T., Zeller, A.: When do changes induce fixes? In: 2nd
Working Conference on Mining Software Repositories (MSR). pp. 1–5 (2005)

45. Stevens, W.P., Myers, G.J., Constantine, L.L.: Structured design. IBM Systems
Journal 13(2), 115–139 (Jun 1974)

46. Tempero, E., Anslow, C., Dietrich, J., Han, T., Li, J., Lumpe, M., Melton, H.,
Noble, J.: Qualitas corpus: A curated collection of Java code for empirical studies.
In: Asia Pacific Software Engineering Conference (APSEC). pp. 336–345 (2010)

47. Terra, R., Miranda, L.F., Valente, M.T., Bigonha, R.S.: Qualitas.class corpus: A
compiled version of the qualitas corpus. Software Engineering Notes pp. 1–4 (2013)

48. Valente, M., Borges, V., Passos, L.: A semi-automatic approach for extracting
software product lines. IEEE Transactions on Software Engineering 38(4), 737–
754 (2012)

49. Vanya, A., Hofland, L., Klusener, S., van de Laar, P., van Vliet, H.: Assessing soft-
ware archives with evolutionary clusters. In: 16th IEEE International Conference
on Program Comprehension (ICPC). pp. 192–201 (2008)

50. Walker, R.J., Rawal, S., Sillito, J.: Do crosscutting concerns cause modularity
problems? In: 20th International Symposium on the Foundations of Software En-
gineering (FSE). pp. 1–11 (2012)

51. Zimmermann, T., Premraj, R., Zeller, A.: Predicting defects for Eclipse. In: 3rd
International Workshop on Predictor Models in Software Engineering. p. 9 (2007)

52. Zimmermann, T., Weissgerber, P., Diehl, S., Zeller, A.: Mining version histories to
guide software changes. IEEE Transactions on Software Engineering 31(6), 429–445
(2005)

