
Journal of the
Brazilian Computer Society

Delfim et al. Journal of the Brazilian Computer
Society  (2016) 22:9 
DOI 10.1186/s13173-016-0049-0

RESEARCH Open Access

Redocumenting APIs with crowd
knowledge: a coverage analysis based on
question types
Fernanda Madeiral Delfim1* , Klérisson V. R. Paixão1, Damien Cassou2 and Marcelo de Almeida Maia1

Abstract

Background: Software libraries and frameworks play an important role in software system development. The
appropriate usage of their functionalities/components through their APIs, however, is a challenge for developers.
Usually, API documentation, when it exists, is insufficient to assist them in their programming tasks. There are few API
documentation writers for the many potential readers, resulting in the lack of explanations and examples concerning
different scenarios and perspectives. The interaction of developers on the Web, on the other hand, generates content
concerning APIs from different perspectives, which can be used to document APIs, also known as crowd documentation.

Methods: In this paper, we present a study regarding the knowledge generated by the crowd on the Stack Overflow
question-and-answer website. Our main goal is to understand how the crowd can contribute for API documentation
on two programming tasks: how to implement a scenario using an API (how-to-do-it), and how to fix
domain-independent bugs in an existing code where there was a misunderstanding regarding the usage of an API
(debug-corrective). We classified questions available on Stack Overflow by the main concerns of askers, and we used
those classified as how-to-do-it and debug-corrective to analyze the coverage of API elements on the discussions
related to such questions. Our cases included the well-known and popular Swing and Android APIs.

Results: Our main findings showed that the crowd provides more content for debug-corrective tasks than for
how-to-do-it tasks, regardless of the API. Android API elements are more discussed by the crowd compared to Swing.
Moreover, we observed that some API elements are frequently mentioned together in discussions, and that there is a
strong association between API coverage on Stack Overflow and its usage in real software systems.

Conclusions: Crowd documentation may not be a complete substitute for official documentation because of its
partial coverage, especially for how-to-do-it tasks. However, it can still significantly enhance the existent
documentation, especially for the most commonly used API elements, providing code samples and explanations on a
large variety of usage nuances. Finally, taking advantage of the high coverage for debug-corrective tasks, a new kind of
debugging assistant may be conceived.

Keywords: API documentation, Crowd knowledge, Stack Overflow, Question classification, Coverage analysis

Introduction
New development platforms are being deployed at an
unprecedented pace. Software developers are required
to deeply learn their respective APIs (application pro-
gramming interface) to take maximum advantage of the
underlying innovations, while avoiding misuses that could

*Correspondence: fernanda@doutorado.ufu.br
1Faculty of Computing, LASCAM-FACOM, Federal University of Uberlândia,
Uberlândia, Brazil
Full list of author information is available at the end of the article

decrease the final product quality. Meanwhile, develop-
ers have reported that inadequate or absent resources for
learning APIs, e.g., documentation, is a major obstacle for
adequate learning [1, 2].
The social interaction of developers in blogs, forums,

and question-and-answer (Q&A) websites generates a
partially structured content. This can be considered one
of the thriving forms of software documentation avail-
able nowadays [3]. Different to the traditional software
documentation, which is produced mostly by a central

© The Author(s). 2016 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13173-016-0049-0&domain=pdf
http://orcid.org/0000-0003-2048-7648
mailto: fernanda@doutorado.ufu.br
http://creativecommons.org/licenses/by/4.0/


Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 2 of 34

authority, this phenomenon allows anyone to produce
and share relevant content for documentation. The con-
tent available in such repositories is also known as crowd
knowledge [4, 5].
An example of the channels that support developer

social interaction is Stack Overflow [6], a question-and-
answer website where developers collaborate with each
other in order to solve issues related to software devel-
opment. In the Stack Overflow, developers post questions
related to a programming topic, e.g., an API, while other
developers can provide answers to help solve their issues
[7]. In the context of Stack Overflow, a question is an entry
consisting of a title, tags and text body, and an answer
is an entry consisting of a text body (which may include
code samples) where a solution, a clarification and/or a
in-depth discussion are provided concerning the question.
Stack Overflow has been studied to help researchers

to understand the knowledge/mechanisms available on it
and how that can be used to assist software development.
To investigate the feasibility of using crowd knowledge
on Stack Overflow for API documentation, Parnin et al.
[8] carried out a study on how content related to a set
of APIs is being produced on Stack Overflow. They ana-
lyzed the coverage of API elements over threads, which is
the composition of a question with no or with a collec-
tion of answers. However, they did not analyze the nature
of threads, which can impact significantly on how suitable
threads are for documentation purposes.
The nature of threads can be distinguished by the

main concerns of the askers. These concerns are being
used in the literature for the definition of question types
[7, 9, 10]. Examples of question types are how-to-do-
it – providing a scenario and asking how to imple-
ment it—debug-corrective—dealing with problems in code
already written —seeking-something—looking for some-
thing objective (e.g., tutorial, tool, library) or subjective
(e.g., an opinion, a suggestion, a recommendation)—and
conceptual—regarding conceptual questions on a particu-
lar topic (e.g., definition of concepts, best practices for a
given technology). The definition itself of the how-to-do-
it question type reveals that this type is more adherent
to the purpose of documenting how to use API ele-
ments. Nonetheless, questions of type debug-corrective
are still useful as complementary documentation on how
to fix frequent problems related to the usage of API
elements, while the other types seems to be marginally
useful.
In our previous work [11], we conducted a study on

the coverage of API elements on Stack Overflow for API
documentation, introducing the idea that the coverage
analysis should take into account the API documentation
purpose.We reported the coverage of Swing API elements
by threads with how-to-do-it question type in order to
measure how much elements are covered in discussions

that provide code samples on how to implement a specific
task by using the API elements.
In this paper, we extend the previous study, providing

coverage analysis of the Swing and Android APIs on threads
containing how-to-do-it and debug-corrective question
types. Our main goal is to measure the coverage of API
elements to understand how the crowd can contribute
for (1) API documentation on how to use API elements
through code samples to accomplish a specific task given
a scenario (coverage on threads containing how-to-do-it
questions) and (2) API documentation on how to fix
domain-independent bugs in an existing code where there
was a misunderstanding regarding the usage of an API
(coverage on threads containing debug-corrective questions).
Our overall contribution consists of the intersection of

the Parnin et al.’s coverage analysis [8] with two ques-
tion types defined by Nasehi et al. [9]. Our specific
contributions are threefold. First, we developed a clas-
sifier by using supervised machine learning algorithms
to automatically classify Stack Overflow questions, in
order to select threads containing how-to-do-it and debug-
corrective question types. Second, we proposed a method-
ology for analyzing API coverage on Stack Overflow
based on question types, and consequently improving the
knowledge for using Stack Overflow content for API doc-
umentation. Third, we analyzed the co-occurrence of API
elements on threads, i.e., how threads discuss multiple
API elements. As complementary analyzes, we investi-
gated (i) the growth of the coverage of API elements as
compared to the growth in the number of threads on Stack
Overflow related to the same API and (ii) the association
between API coverage and its respective usage in a large
code base repository.
The remainder of this paper is organized as follows. In

the “API coverage by Stack Overflow” section, we posi-
tioned our work regarding the work of Parnin et al.. In the
“Automatic classification of questions” section, we explain
how we classified Stack Overflow questions. And in the
“Linking Stack Overflow threads with API elements”
section, we explain how we identified API elements on
threads. Our methods and experimental setup regarding
coverage analysis are presented in the “Methods” section.
We present and discuss the obtained results in the “Results
and discussion” section, as well as the threats to validity,
limitations, and practical implications of the work. In the
“Related work” section, we present the related work on
(re)documenting APIs, Stack Overflow, and linking doc-
uments with code elements. Finally, our conclusions and
future work are presented in the “Conclusions” section.

API coverage by Stack Overflow
The analysis of API-related crowd knowledge available on
Stack Overflow is essential for providing indicators on
how reliable the crowd is at generating as much content as



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 3 of 34

possible for a completeAPI documentation. The complete-
ness of the crowd knowledge for an API can be measured
by analyzing how many elements of the API are discussed
by the crowd, i.e., by coverage analysis.
A study on API coverage analysis by the crowd on Stack

Overflow was conducted by Parnin et al. [8], which is the
work most related to ours. They claimed that a high cov-
erage would suggest that it is feasible to use the crowd
knowledge for API documentation as a comprehensive
source of knowledge concerning an API.
To analyze API coverage, they built a traceability model

between API classes and Stack Overflow threads where
these classes are mentioned. Then, they calculated the
percentage of API classes linked with at least one thread,
resulting in the coverage of API classes. They found that
87.2, 77.3, and 54.3% of the Android, Java, and GWT
classes, respectively, are covered by the crowd. They also
concluded that despite the potential of a documentation
by the crowd to provide many examples and explanations
on API elements, the crowd is not reliable for providing
content over an entire API.
Their analysis, however, is still too general. They ana-

lyzed coverage of API classes with no criterion or filter
on Stack Overflow threads regarding the type of API
documentation that they target. The type of API docu-
mentation can be characterized by the type of content that
the documentation should include, which is defined by the
intentions from the point of view of the API users, i.e.,
what they wish to accomplish through its use or knowl-
edge concerning a given API. For example, an intention
type can be how to implement specific tasks using an API
[5]. Hence, without considering types of API documentation,
an understanding of how the API elements are covered by
the crowd and how the crowd knowledge can be used for
generating API documentation was not possible.
In our work, on the other hand, we have introduced the

notion that coverage analysis must be conducted accord-
ing to the intended type of API documentation. With that
in mind, we performed a coverage analysis considering
types of StackOverflow questions related to themain con-
cerns of askers, and thus, subsidizing the choice of threads
for different types of API documentation. We took into
account the how-to-do-it and debug-corrective question
types:

• How-to-do-it : the asker describes a scenario and asks
how to implement it (sometimes with a given
technology or API) [7, 9]. Figure 1 shows an example
of a how-to-do-it question.

• Debug-corrective: the asker describes or presents
problems in the code under development, such as
run-time errors, notifications, and unexpected
behavior [7, 9]. Figure 2 shows an example of a
debug-corrective question.

Therefore, the main difference between our work and
that of Parnin et al.’s work is that we analyzed the coverage
of API elements by the crowd on Stack Overflow consider-
ing types of questions for different types of API documen-
tation. We can also point out the following differences:

• We presented an analysis of co-occurrence of API
elements on threads, i.e., how threads discuss
multiple API elements;

• Instead of analyzing the speed of the crowd at
covering API elements over time, as Parnin et al. did,
we analyzed the growth of coverage of API elements
comparing to the growth in the number of threads on
Stack Overflow related to the same API;

• We also analyzed the coverage of API elements with
their actual usage, as Parnin et al. did; however, we
collected API usage from a large code base repository
instead of Google Code Search API (which is no
longer available), and we searched for usage in any
type of statement instead of searching only in import
statements as they did.

• We evaluated our implementation of the linking
approach (the identification of API elements in the
content of threads), which is based on Parnin et al.’s
linking approach and other works [12, 13]. However,
as they did not carry out the same evaluation, we
cannot judge the reliability of their linking
implementation or perform comparisons.

• The Parnin et al.’s coverage analysis relies on API
classes, while our coverage analysis relies on three
types of API intermediate elements: classes,
interfaces, and enumerations.

Additionally, we replicated Parnin et al.’s coverage anal-
ysis to quantify the difference of coverage considering
threads with specific question types (how-to-do-it and
debug-corrective), i.e., our coverage, regarding coverage
considering all threads, i.e., their coverage.

Automatic classification of questions
The selection of Stack Overflow threads by specific ques-
tion types can be characterized as a text classification
problem. A classification problem consists of mapping a
data sample (in our case, text) for an appropriate class (or
label) that is previously known.
Therefore, we rely on supervisedmachine learning algo-

rithms to classify questions for selecting threads with
how-to-do-it and debug-corrective question types. We
could not reuse the classifier built by Souza et al. [7]
and Campos et al. [14], as this classifier does not address
debug-corrective questions. Also the classifier built by
Campos and Maia [15] does not focus only on how-to-do-
it and debug-corrective.
The fact that how-to-do-it and debug-corrective ques-

tions are more directly related to API documentation



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 4 of 34

Fig. 1 Example of a how-to-do-it question

than seeking-something and conceptual, the latter are
considered as belonging to the others class, and so we have
a ternary classification problem.
In the remainder of this section, we present the used

classification algorithms and tools, the training set con-
struction, the generation of input data for classification,
and finally, the evaluation and selection of classification
algorithms.

Classification algorithms and tools
There does not exist any classification algorithm that per-
forms better than others for all application domains. For
this reason, to select an appropriate algorithm for the clas-
sification of Stack Overflow questions, we evaluated and
compared the performance of different algorithms, which
are listed as follows:

• IBk° (nearest neighbor method) [16]
• J48° (decision tree) [17]
• C45• (decision tree) [18]
• NaiveBayes°• (Bayesian approach) [19]
• BayesNet° (Bayesian approach) [20]
• DecisionTable° (rule-based method) [21]

• MultilayerPerceptron° (neural network) [22]
• SMO° (support vector machine) [23]
• RandomForest° (random forest) [24]
• SimpleLogistic° (linear logistic regression) [25]
• Logistic° (multinomial logistic regression) [26]
• MaxEnt• (maximum entropy) [27]
• MaxEntL1• (multinomial logistic regression with L1

regularization) [27]

These algorithms belong to different types of classi-
fiers. For instance, J48 and C45 are decision tree-based
algorithms, while NaiveBayes and BayesNet are Bayesian
approaches and SimpleLogistic, Logistic, MaxEnt and
MaxEntL1 are logistic regression models. We chose these
algorithms because (1) we want to evaluate algorithms
from different types of classifiers, (2) they are well-known
algorithms, and (3) their implementations are available.
Our evaluation was conducted using Weka [28] and

Mallet [29], two open source tools containing a collection
of machine learning algorithms, including classification
algorithms and support for their evaluation. The differ-
ence between these tools is that Mallet is specialized in
machine learning applications to text, such as information
extraction and document classification, while Weka is for

Fig. 2 Example of a debug-corrective question



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 5 of 34

general machine learning and data mining tasks. In the
above list of the algorithms selected for evaluation, ° and •
flag algorithms fromWeka and Mallet, respectively.

Training set construction
Classification algorithms fall within the category of super-
vised machine learning algorithms. It means that they
must be trained with a set of labeled samples (training
data) to be able to distinguish unlabeled samples (test
data) between a set of classes.
Since we are interested in the selection of Android

and Swing threads, we randomly selected 400 questions
related to each API from the Stack Overflow database to
construct the training sets. We consider that a question is
related to an API if some of its tags contain the name of the
API (“android” or “swing”). We decided to use non-exact
wordmatching on tags, i.e., to not accept only those which
match the exact “android” and “swing” keywords, as we
observed that there are Android- and Swing-related ques-
tions tagged with packages of the API. For example, the
question 951121 has been tagged with “android-widget”.
The 800 questions were manually and independently

classified by two of the four authors to obtain reliable
training sets. At the end of the classification process,
we calculate the Kappa statistic [30] for assessing the
agreement between the two manual classifications. The
observed agreement and the Kappa value for each train-
ing set and for both together are presented in Table 1.
The observed agreement for Swing (84.75%) was higher
than that for Android (78.75%), as the Kappa value as well.
For both Android and Swing, individually or together,
the strength of the agreements based on Kappa value is
considered substantial [30].
Then, the same two authors analyzed only the disagree-

ments to reach a consensus on the correct classification
for each question. Table 2 presents the number ofmistakes
of each author by training set. Interestingly, we observed
that some questions were classified differently, but we can
accept either of the two classifications, i.e., both classifi-
cations are right. In fact, according to Nasehi et al. [9],
questions might belong to more than one question type
(overlapping).
After the disagreement analysis, we built the final train-

ing sets with the correct classifications. We also applied

Table 1 Kappa statistic on the training sets built by manual
classification

Observed
Kappa Strengthagreement (%)

Android 78.75 0.675 Substantial

Swing 84.75 0.750 Substantial

Both 81.75 0.712 Substantial

Table 2 Disagreement analysis of the manual classification

# Author 1’s # Author 2’s # Both are
mistakes mistakes right

Android 14 37 34

Swing 10 23 28

Total 24 60 62

two filters on the training questions. First, we removed the
questions where types of question are overlapped. Since
the classification maps only one class to a question, we
would need to decide which class to assign to questions
of overlapped types. Our decision was to discard these, as
the training data should be as discriminative as possible.
We are not claiming that our training sets are free of ques-
tions of overlapped types because they would still exist
even if authors 1 and 2 agreed upon a single classification
for these. Second, we removed the unanswered questions.
Unanswered questions are not useful, and could introduce
some sort of misunderstanding into the classifier.
Table 3 presents the numbers of the initial training

sets, the numbers of questions of overlapped types and
those unanswered (removed), and the numbers of the final
training sets. The final training set for Android contains
315 questions, and for Swing 359, totaling 674 questions.
Additionally, Table 4 presents the number of questions
classified in each of the three classes.

Input data for the tools
The data source used to extract the input data for the tools
consists of both the content of questions and the con-
tent of one of their answers (the selection of the answer
is described in the next paragraph). We used the content
of answers since Souza et al. [7] classified Q&A pairs and
reported that the answer body provides relevant infor-
mation to make decision of the Q&A pair class, even
considering that the classification applies to questions.
In addition, we used the content of exactly one answer

for each question to acquire greater uniformity across
the dataset since a question with ten answers has more
content than a question with one answer. So, for each
question, we selected one of its answers by passing them
through a conditional selection sequence: (1) if the ques-
tion has an accepted answer, select it; otherwise, (2) if
there is only one answer with the highest score, select it;

Table 3 Filtering of the training sets

# Questions

Initial Overlap. typ. Unanswered Final

Android 400 34 51 315

Swing 400 28 13 359

Total 800 62 64 674



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 6 of 34

Table 4 Distribution of the training sets’ questions in the classes

# Questions

Class Android Swing Total

How-to-do-it 112 157 269

Debug-corrective 118 156 274

Others 85 46 131

Total 315 359 674

otherwise, (3) if there is only one answer with the largest
code (in bytes), select it; otherwise, (4) the answer with the
largest body (in bytes) is selected.
The classification process in Weka uses attribute values

extracted from the source data (question plus answer) and
in Mallet their textual content is used.
In the case of Weka, we relied on the Souza et al. [7]’s

definition of attributes. They defined attributes related to
the frequency of predefined terms and expressions (key-
words) in the content of questions and answers. Each
one of these attributes is related to a type of question
(how-to-do-it, seeking-something, conceptual and debug-
corrective), and each keyword has a weight (1 = less
important or 5 = more important).
We adopted their keywords of the how-to-do-it and

debug-corrective classes, adding some extra missing key-
words. For the others class, we used the keywords of
the seeking-something and conceptual classes. Table 5
presents the keywords by class, and those highlighted in
bold have weight 5.
We adjusted the keyword weighting method where key-

words found in the question title have their weights dou-
bled. This was performed as we observed, during the

construction of the training sets, that the asker tends to
summarize his main concern in the title of the question.
Moreover, Souza et al. [7] defined one attribute for the

frequency of the question mark (“?”), and four boolean
attributes for the presence or absence of code or link in
the question and answer bodies. We also reused these
attributes, and defined four more for the body and code
sizes of questions and answers. Table 6 presents those nine
attributes used in the construction of the input data for
Weka algorithms. The attributes flagged with “*” are the
ones reused from Souza et al. [7].

Algorithms evaluation and selection
The classification algorithms were evaluated on three
training sets: one built for Android, another one built for
Swing, and both together with the aim of choosing which
alternative has the best performance.
ForWeka algorithms, we defined three different settings

for entering the keyword frequencies for the algorithms as
follows:

1. The frequencies of the keywords are grouped by class
(how-to-do-it, debug-corrective and others). For
example, the frequencies of the keywords defined to
characterize how-to-do-it question type are grouped
together. So, we obtain three attributes related to
frequencies of the keywords.

2. The frequencies of the keywords are used separately,
independent of the class that the keywords were
defined as belonging to. The frequencies of the
keywords are grouped with the frequencies of their
variants instead. For example, the keyword “solve”
has the variant “resolve”, then their frequencies are
grouped into a single attribute.

Table 5 Keywords defined for the three classes

Keywords for how-to-do-it class:
how to/do/does/can/i/we, accomplish, achieve, implement,way(s), anyway, (re)solve, solution(s), step(s), approach(es), function(s), algorithm(s),
pseudocode, script(s), manner, mode, workaround, idea(s), suggest, suggestion(s), thought(s), no error(s), no problem(s), is working, work(s/ing)
fine/well/ok

Keywords for debug-corrective class:
how [...] fix, not working, does not/doesn’t/doesnt work, did not/didn’t/didnt work, does not/doesn’t/doesnt seem to work, nothing
works/happens, no effect(s), fix, bug(s), error(s), exception(s),wrong, incorrect, problem(s), issue(s), mistake(s), missing, trouble(s), debug(ging),
fault, fail(ed), unexpected, warning, notice, notification, denied, breakpoint, unhandled, tracker(s), permission(s), weird, strange, crash(es/ed),
struggle(ing), does not/doesn’t/doesnt

Keywords for others class (seeking + conceptual keywords):
looking/searching for/forward/at/around, tutorial(s),manual(s), book(s), tool(s), package(s), client(s), plugin(s), plug-in, app, application(s),
lib(s), library(ies), framework(s), ide(s), article(s), system(s), software, repository(ies), platform(s), video(s), resource(s), technique(s), editor(s), blog(s),
debugger(s), interpreter(s), compiler(s), profiler(s), generator(s), guide(s), guidance, guideline(s), orientation(s), direction(s), recommend(ation),
suggest, suggestion(s), advice(s), opinion(s), hint(s), point(ers), alternative(s), choice(s), idea(s), thought(s), option(s), clue(s), experience(s), experienced,
search(ing), research(ing), google(ing), look(ed), seek(ing), scan(ing), learning, getting, migrate(ing), migration(s), upgrade(ing), convert(ing), conversion,
porting, freeware, strategy, started, tips, tricks, caveats, insight(s), light, share, provide, find, material, available, beginner, possibilities, concept(ual),
explain, explanation, explanatory, clarify, clarification, explicate, elucidate, illuminate, expound, practice(s),best practice(s), difference(s)
between, mean(ing), significance, signification, possible, level, metrics, statistics, reason(s), motive(s), cause(s), justification(s), potential, distinction(s),
consensus, lesson(s), understand, purpose(s), how much, how many

The keywords in bold have weight 5 and the remaining ones have weight 1



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 7 of 34

Table 6 Attributes for question types characterization

Attribute name Description

QUESTION_MARK* Frequency of the question mark (“?”) in the
question and answer.

QUESTION_HAS_CODE*
Boolean value indicating whether exists
source code in the question.

ANSWER_HAS_CODE*
Boolean value indicating whether exists
source code in the answer.

QUESTION_HAS_LINK*
Boolean value indicating whether exists link
in the question.

ANSWER_HAS_LINK*
Boolean value indicating whether exists link
in the answer.

QUESTION_BODY_SIZE Bytes value of the question size.

ANSWER_BODY_SIZE Bytes value of the answer size.

QUESTION_CODE_SIZE Bytes value of the question code size.

ANSWER_CODE_SIZE Bytes value of the answer code size.

The attributes flagged with “*” were reused from Souza et al. [7]

3. The frequencies of the keywords are grouped by class
as in setting number 1, but taking into account only
keywords considered relevant (by the method
described below).

Furthermore, Weka algorithms were evaluated twice for
each one of those settings: (A) with no attribute selec-
tion filter on the training sets and (B) with attribute
selection filter. We evaluated the algorithms with a fil-
ter of attribute selection for two reasons. First, with a
limited amount of training samples, excessive attributes
may cause the classifier to overfit the training data,
i.e., the learning mechanism fits to peculiarities in the
training data and decreases the generalization perfor-
mance for classifying new samples [31]. Second, irrelevant
or redundant attributes may confuse the classification
algorithm [32].
We used the information gain method to select the

relevant attributes. In this method, each attribute is inde-
pendently evaluated and a score is assigned to it. Then, the
selected attributes are the ones with the score higher than
a threshold. In our work, we removed the attributes with
score zero. See Appendix “Attribute selection based on the
information gain method” for information on the num-
bers of selected attributes and the attributes with highest
information gain value.
Table 7 summarizes the settings of the evaluations on

Weka algorithms. For future reference, “1A”, for example,
refers to a test where the frequencies of the keywords
were grouped by class and no attribute selection filter was
applied to the attributes.
The evaluation of each algorithm was performed using

10-fold cross-validation, where the training data is split
in k equal parts (folds), and for each kth iteration, the

Table 7 Settings of the evaluations on Weka algorithms

Attribute selection

No Yes

Frequencies of keywords
grouped by class 1A 1B

Frequencies of keywords grouped
with the frequencies of their variants 2A 2B

Frequencies of keywords with information
gain grouped by class 3A 3B

classification algorithm is trained with k − 1-folds and
tested with the remaining one [33]. At the end of the
process, fold accuracies (correct classification rates) are
aggregated by average calculation.
Table 8 presents, by tool (Weka and Mallet), the classi-

fication algorithms and their respective evaluation results
(overall accuracy) on the three training sets. The highest
accuracy obtained for each training set is highlighted in
bold. For presentation reasons, we do not present all accu-
racies obtained by Weka algorithms with the six different
settings. Only the highest accuracy of each algorithm on
each training set is presented, flagged by the setting in
which it was obtained (see Table 7 for the meaning of the
flags).
For the Android training set, the best algorithm was

SimpleLogistic with an overall accuracy of 78.45%, and for
the Swing training set it was Logistic with 78.83%. The
best accuracy for both Android and Swing together was
78.19%, obtained with the Logistic algorithm. Due to the

Table 8 Evaluation of the classification algorithms: overall
accuracies based on 10-fold cross-validation on the training sets
of the Android and Swing

Tool
Classification Android Swing Android +
algorithm (%) (%) Swing (%)

Weka

IBk 73.353B 76.333B 74.791A

J48 73.021B 78.561A 73.313B

NaiveBayes 68.212B 74.662A 71.673B

BayesNet 73.3523AB 75.231AB 74.651AB

DecisionTable 70.833AB 77.733AB 73.021B

MultilayerPercep. 73.973B 76.061B 76.441B

SMO 72.73B 75.242A 75.982B

RandomForest 73.661A 78.021A 75.543A

SimpleLogistic 78.452B 78.282B 77.462B

Logistic 77.53B 78.832B 78.192B

Mallet

C45 57.14 53.47 54

NaiveBayes 67.24 64.94 63.24

MaxEnt 71.76 69.37 76.58

MaxEntL1 77.5 69.95 77.01



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 8 of 34

fact that there is no advantage gained using both training
sets together, we chose to select the best algorithm for
each API in order to classify its questions.
We also observed that some algorithms have similar per-

formance, in terms of accuracy, with the SimpleLogistic
algorithm for Android and with the Logistic algorithm
for Swing. For example, for Android, the SimpleLogis-
tic algorithm had an overall accuracy of 78.45% and the
Logistic and MaxEntL1 algorithms had 77.5% of accu-
racy. To check if the performance of these algorithms
are significantly different, we used McNemar’s test [34,
35]. This test employs the z score equation, which uses
the number of samples where one of the algorithms
failed and the other succeeded, i.e., the performance
discrepancies.
We calculated the z score for each API considering

the algorithm with the highest accuracy and the algo-
rithms with accuracy 1% lower than the highest rank-
ing algorithm. When the z score value is equal to 0,
the two algorithms are said to show similar perfor-
mance, and when the z score diverges from 0 in positive
direction, this indicates that their performance differs
significantly [35].
We concluded that, for Android, the performance of

the SimpleLogistic algorithm differs significantly from
the performance of the Logistic (z score = 0.38) and
MaxEntL1 (z score = 0.23) algorithms, thus we chose
to use SimpleLogistic to classify Android questions. For
Swing, the performance of the Logistic algorithm differs
significantly from the performance of the SimpleLogis-
tic (z score = 0.2) and RandomForest (z score = 0.26)
algorithms, but it is similar to the performance of the
J48 algorithm (z score = 0). It means that we could
choose any of the two algorithms (Logistic or J48) to clas-
sify Swing questions, and so we opted for the Logistic
algorithm.
In addition, Tables 9 and 10 present the performance

of the selected algorithms (SimpleLogistic and Logistic,
respectively) for the APIs (Android and Swing, respec-
tively) by class. Noted here through an analysis of the
f-measure is that for both APIs, the selected algorithm
performs better at classifying debug-corrective questions
but shows an inferior performance when classifying others
questions.

Linking Stack Overflow threads with API elements
The coverage analysis of API elements by the crowd on
Stack Overflow requires the creation of links between
Stack Overflow threads and API elements. Our linking
approach style relies on three works [8, 12, 13]: from a list
of elements of a given API, the names of these elements
are searched for within content of given threads (related
to the API), and when a match is found, a link is created
between the thread and the API element. At the end of the

Table 9 Performance of the SimpleLogistic algorithm for
Android by class

Class Precision Recall F-measure

How-to-do-it 0.824 0.821 0.822

Debug-corrective 0.804 0.864 0.833

Others 0.733 0.625 0.675

process, each API element has a list of threads where its
name is mentioned.
The search for API elements is performed by their

short names, i.e., their names without their respective
package names. The short name of a top-level element
is its non-qualified name, i.e., the single name of the
element. For instance, the short name of the element
javax.swing.JFrame is JFrame. The short name of
an inner element, on the other hand, is its non-qualified
name preceded by the non-qualified name of its top-level
element plus a dot. For instance, the short name of the ele-
ment javax.swing.JFrame.AccessibleJFrame
is JFrame.AccessibleJFrame.
In the remainder of this section, we present the link

types considered for linking threads with API elements,
the preprocessing of threads, the identification of API ele-
ments in Stack Overflow posts strategy, and finally, the
evaluation of the linking approach.

Link types
There are different types of textual content on Stack Over-
flow posts in which the name of API elements can be
mentioned [8, 12, 13], called link types. We adopted the
four link types from Parnin et al. [8], with some minor
modifications on how the name of API elements may
match in the content of some link types. The link types are
described as follows:
Code sample link: A match for an API element name

occurring in the text inside <code></code> tags;
Code markup link: A match for an API element name

partially enclosed by <code></code> tags;
Href markup link: A match for an API element name

occurring in the text inside <a></a> tags;
Word link: A match for an API element name occurring

in the text outside of <code></code> and <a></a>
tags.

Table 10 Performance of the Logistic algorithm for Swing by
class

Class Precision Recall F-measure

How-to-do-it 0.788 0.795 0.791

Debug-corrective 0.832 0.885 0.858

Others 0.695 0.425 0.527



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 9 of 34

Threads preprocessing
Before performing the linkage of threads with API ele-
ments, we preprocessed the content of threads. This pre-
processing consists of separating the content of each post
of threads (question and answer) according to the link
types. We used Jericho HTML Parser [36] to perform this
task.
Given a post, for code sample and code markup links,

we first collect all <code> elements existing in the post.
Then, we verify if there exists white-space between strings
in the content of each <code> element. In those cases
where it does not occur, we consider the content of the
<code> element as codemarkup. Otherwise, that content
is separated for code sample link.
For href markup link, we just collect all <a> elements

existing in the post. For word link, we removed the con-
tent of <code> and <a> elements from a copy of the
whole post body.
We also removed comments and natural language texts

contained in the code samples (content separated for code
sample link). We used the regular expressions numbers
1 and 2 presented in Table 11 for finding comments and
texts.

Identification of API elements in Stack Overflow posts
For creating links between Stack Overflow threads and
API elements, it is necessary to identify mentions of the
API elements in the (preprocessed) content of thread
posts. So, for each thread, the mention of API element
short names (names without package names) are searched
for within the content of its posts by regular expressions
(regex) based on word boundary matching.
A word boundary can be defined as a position

where a word character (normally letter or digit) is
followed or preceded by a non-word character (such
as white-space). For instance, the regex (search)

matches the “search” word, but also matches the
“research” and “searcher” words. For finding only
exact matches for the “search” word, word boundaries
must be used in the regex, which are specified by
\b ((\bsearch\b)).
We used word boundaries for finding matches of

API element short names in Stack Overflow posts to
ensure that these names occur at the beginning and the
end of a sequence of characters. We used the regex
number 3 presented in Table 11 for performing this
task.
Moreover, there are three situations where threads can

be mistakenly linked with API elements. These situations,
and how we handled these to avoid false positives, are
presented as follows.
First, since we search for API elements by their short

names, we could acquire false positives by linking threads
with API elements that share the same short name. For

Table 11 Regular expressions used in the process of linking
Stack Overflow threads with API elements

1) ((?s)(/.*?/))|(//.*)
Regex for matching comments inside “/* */” or preceded by “//”

2) ((?s)(.̈*?)̈)
Regex for matching natural language text inside “”

3) (\bElementShortName\b)
Regex for API element short name boundary matching. For example:
the regex (\bJCheckBox\b)matches JCheckBox but does
not match JCheckBoxMenuItem

4) (\bElementShortName\b)(?!.PartialShortNames)
Regex for API element short name boundary
matching with negative look-ahead. For example: the regex
(\bDefaultTableCellRenderer\b)(?!.UIResource)
matches DefaultTableCellRenderer but does not match
DefaultTableCellRenderer.UIResource

5) (?<!PartialShortNames.)(\bElementShortName\b)
Regex for API element short name boundary
matching with negative look-behind. For example:
the regex (?<!ScrollPaneLayout.
|BasicComboBoxEditor.) (\bUIResource\b)
matches UIResource but does not match neither
ScrollPaneLayout.UIResource nor
BasicComboBoxEditor.UIResource

6) (\b([A-Z_]+[a-z_0-9]+)2,\b)| (\b([A-Z_])2,
[a-z_0-9]+\b)| ([

¯
A-Z_]+[a-z_0-9]+[A-Z_]+\b)

Regex for matching multi-word API element short name
(camel case). For example: the regex matches SwingUtilities,
JFrame, HTMLDocument and TextUI, but does not match
View and HTML

such elements, we check if their package names appear in
the threads where their short names matched. If the pack-
age name of an API element is found, the thread is linked
with that API element. Otherwise, i.e., if no package of
those API elements is found, the thread is not linked with
any of those API elements.
Second, the existence of inner elements in the API

raises a problem of matching API elements using
word boundaries, as the dot character is considered
a non-word character. This problem occurs in two
forms. Form A: the name of outer elements also
matches the name of their inner elements. For example,
at searching the DefaultTableCellRenderer
element name by using the regex number 3, the
DefaultTableCellRenderer.UIResource name
will also be a match. Form B: the name of (inner or non-
inner) elements can also match with the name of inner
elements. For example, when searching the UIResource
element name, the ScrollPaneLayout.UIResource
and BasicComboBoxEditor.UIResource element
names will also be matches.
To avoid this problem, we used negative look-ahead

for form A and negative look-behind for form B.
Negative look-ahead and look-behind aim at ensuring



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 10 of 34

that the pattern of interest is not immediately fol-
lowed or preceded by another pattern, respectively. In
our case, regarding the DefaultTableCellRenderer
element name, we used negative look-ahead (regex
number 4 in Table 11) for ensuring that the name
is not followed by .UIResource. In a similar way,
we used negative look-behind (regex number 5 in
Table 11) in order to ensure that the UIResource
name is not preceded by ScrollPaneLayout. and
BasicComboBoxEditor..
Third, one-word API element short names, like View,

can be confused with English words in natural language
texts. To avoid false positives regarding this issue, we only
search for multi-word API element short names in the
content of word and href markup links. The regex 6 was
used to check if an API element short name consists of a
multi-word name.

Linking approach evaluation
We evaluated the implementation of our linking algorithm
for Stack Overflow threads with API elements to obtain
an indicator on how reliable it is. We randomly selected
50 threads, 25 related to each API.
First, we manually analyzed each thread and identified

the API elements that are mentioned on it. We found 129
Swing and 134 Android element occurrences in these 50
threads by the manual analysis, totaling 263 API elements
occurrences. Second, we executed the linking algorithm
on these threads.
Then, for each thread, we verified if the API ele-

ments linked with respective threads are the same API
elements identified manually. The overall precision was
99.20% and recall was 94.68%. We observed that our
linking algorithm is not able to identify occurrences
of API elements when an API element is not men-
tioned exactly by its short name. For instance, in the
thread containing the question 9785173, the Android
element android.widget.BaseAdapter was men-
tioned as “Base Adapter”. This type of occurrence of
API element is missed by the linking approach, and
consequently the thread is not linked with the API
element.

Analysis of actual semantic links
One characteristic of our linking approach used for cov-
erage analysis is that we do not deepen on the type of
occurrence of an API element in a Stack Overflow post.
Our coverage results (which are presented in the “Results
and discussion” section) are based on the analysis of any
type of occurrence of API elements in the content of
threads. In other words, those threads may be poten-
tially useful to document those API elements based on
their nature: how-to-do-it or debug-corrective. However,

the occurrence of an API element in the content of a
thread does not necessarily mean that such discussion,
or part of it, is in fact useful for documenting that ele-
ment. There would be different types of API element
occurrences that would require a semantic analysis of the
post content to define the respective type of API element
occurrences.
Due to the fact that our linking approach does not work

at a semantic level, we cannot assure with certainty the
exact number of API elements that are actually semanti-
cally covered for either how-to-do-it or debug-corrective
posts. Nonetheless, in this section we perform a manual
and qualitative study in order to understand a possible
decrease in our coverage results when the semantics of
Stack Overflow posts is taken into account.
The challenge of discovering if the content (or part of it)

of an informal documentation, as Stack Overflow posts, is
pertinent to API elements was addressed in the works of
Rigby and Robillard [37] and Petrosyan et al. [38]. Rigby
and Robillard proposed a classification-based solution to
detect which code elements in a document are salient to
the topic of the Stack Overflow post—“a code element is
salient, if it is central to an example code fragment or if
there is some discussion defining its function or describ-
ing its use” [37]. Petrosyan et al. [38], on the other hand,
proposed a classification-based solution to discover tuto-
rial sections that explain a given API type (classes and
interfaces), i.e., relevant tutorial sections to API types.
They considered that a tutorial section is relevant to an
API type if it would help a reader unfamiliar with the cor-
responding API to decide when or how to use the API type
to complete a programming task.
In the context of our work, however, the concepts of

salient code element [37] and relevant tutorial sections
to API types [38] are not exactly adequate. By these def-
initions, even if an API element mentioned in a Stack
Overflow post is not salient, or even if a tutorial section
(a thread, in our case) is not relevant to an API element,
it does not mean that there is no useful content there for
documenting the element.
In this sense, we define what is relevant for docu-

menting: a thread is relevant for documenting an API
element if it contains any relevant content for a spe-
cific type of documentation of that API element. Since we
are interested in two types of documentation, i.e., doc-
umentation containing how-to-do-it and debug-corrective
content, and the nature of threads containing these two
types of discussions are different, we defined that a
thread is relevant for documenting an API element as
follows:

• a thread of how-to-do-it nature, or a part of it, is
considered relevant for documenting an API element
if there is any example code fragment in an answer



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 11 of 34

demonstrating the use of the element, even when it is
not the central point of the thread;

• a thread of debug-corrective nature, or a part of it, is
considered relevant for documenting an API element
if the element is part of the central point of the bug
reported by the asker (where the asker thought that
the bug had occurred) or the central point of the bug
fixing (where the bug actually occurred).

Then, to quantify a potential decrease in our cover-
age results when the semantics of Stack Overflow posts
is taken into account, we manually analyzed a sample of
threads to investigate in how many cases there exists con-
tent for documenting API elements in how-to-do-it and
debug-corrective discussions. We randomly selected 200
threads for each API, where 100 were classified as how-to-
do-it and the other 100 as debug-corrective, totaling 400
threads.
Each of those 100 threads were not sampled completely

randomly—we noted the need of selecting threads that
mention API elements of different ways, so we decided to
perform a stratified random sampling based on previous
data analysis. First, we decided to select 30% out of those
100 threads to compose group 1 of samples:
Group 1: threads that are unique for API elements, i.e.,

threads that mention API elements covered only by one
thread.
It is important that threads contained in group 1 to be

part of our sample as we need to be sure that we also
assess if that only one thread citing a given API element
is relevant for its documentation. Second, we decided
sampling the remaining 70% of threads by the amount
of API elements that they cover, composing groups 2
and 3:
Group 2: threads that cover only one element of the API

under analysis.
Group 3: threads that cover multiple elements of the API

under analysis.
Threads that cover only one element of the API under

analysis do not necessarily concern that API. For instance,
a thread that covers only one Android element can be,
actually, about another API. Therefore, we selected these
threads to investigate how many of these were tagged
as being on Android and Swing but are actually not
on those APIs. As we noted, from Table 23, there are
a small percentage of threads that cover only one ele-
ment of the API under analysis. Based on the Table, for
how-to-do-it and debug-corrective threads, we decided to
select 70 and 85% of them, respectively, as threads that
cover multiple API elements. Table 12 presents a sum-
mary of the numbers of threads and Table 13 presents
a summary of the numbers of occurrences of API ele-
ments (in those threads) contained in the groups of
samples.

The samples were manually and independently ana-
lyzed by two of the four authors to obtain more reli-
able results. At the end of the analysis process, we cal-
culate the Kappa statistic [30] for assessing the agree-
ment between the two manual analyses. The observed
agreement and the Kappa value for each type of dis-
cussion are presented in Table 14. The strength of the
agreements based on the Kappa value is considered
substantial for debug-corrective and slight for how-to-
do-it [30]. The observed agreement, however, for both
debug-corrective (91.32%) and how-to-do-it (88.73%), were
high.
The same two authors analyzed only the disagreements

to reach a consensus on the correct answer for each occur-
rence of API element in the threads, i.e., if a given thread
contains any relevant content for a type of documentation
of a given API element or not. In this analysis, we observed
that the task of finding relevant content for documenting
specific API elements is not trivial: sometimes it can be
subjective. For example, we found a reason for why the
strength of the agreements concerning how-to-do-it was
slight: one of the authors did not consider XML code as
an example code fragment in an answer that demonstrates
the use of an API element. As an example, the thread con-
taining the question #15751365, entitled “android how to
code dialog layout”, contains an answer that demonstrates
the use of the android.widget.RelativeLayout
element in an XML code, but one author marked that
thread as not being relevant for documenting that ele-
ment. In the discussion of the disagreements, the two
authors decided to consider XML code as an example
of code fragment. Concerning debug-corrective related
threads, the two authors also have some difficulties to
reach a consensus. One of those cases was to understand
which are the actual API elements that the asker thinks
that the bug/problem is. For instance, in the analysis
of the thread containing the question #7549887, enti-
tled “Can’t figure out how to overlap images in java”,
one author marked that javax.swing.JPanel ele-
ment was involved in the problem reported by the asker,
and the other author marked javax.swing.JFrame
element. In the disagreement analysis, the authors agreed
that both elements were involved.
After the agreement analysis, we obtained the final

results of the manual analysis with the correct answers.

Table 12 Summary of the numbers of threads contained in the
groups of samples, for each APIs, for both types of discussion

# Threads

Discussion type Group 1 Group 2 Group 3 Total

How-to-do-it 30 21 49 100

Debug-corrective 30 10 60 100



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 12 of 34

Table 13 Summary of the numbers of occurrences of API
elements contained in the groups of samples, for both APIs and
both types of discussion

# Occurrences analyzed

API Discussion type Group 1 Group 2 Group 3 Total

Swing
how-to-do-it 36 21 244 301

debug-corrective 30 10 353 393

Android
how-to-do-it 33 21 204 258

debug-corrective 32 10 452 494

Table 15 presents the results regarding the proportion
of occurrence of API element that the analyzed threads
are relevant for documenting such. For both APIs, there
exists relevant how-to-do-it content for documenting a
high number of occurrence of API elements—the total
percentages of occurrences that threads are actually rel-
evant for are 94.35% for Swing and 86.82% for Android.
Debug-corrective content, on the other hand, is not rele-
vant for documenting a high number of occurrence of API
elements—there exists relevant debug-corrective content
for only 40.71 and 23.89% of the occurrences of Swing and
Android elements, respectively.
However, concerning coverage of API elements, those

proportions are not exactly adequate to quantify how
much coverage can potentially be decreased from our cov-
erage based on our non-semantic linking approach. Those
proportions are based on the occurrences of API ele-
ments, which means that a given API element can occur
in more than one thread. So, even if a given thread were
not considered relevant for documenting that element, it
does not mean that there is no other thread relevant for
such element.
To perform that quantification, for each API element

mentioned in the threads of our sample, we searched for
at least one occurrence in a thread that was considered
relevant for documenting it. Then, we calculated the per-
centage of API elements that we found relevant content
for documenting them. Table 16 presents the numbers
of API elements contained in the sample and the overall
percentage of API elements actually contained in relevant
content.
Based on the sample estimate results, we can note that

the percentages of API elements mentioned in how-do-
to-it related threads and that are actually contained in
relevant content for their documentation are high—there
exists content in the sampled threads for almost 90%

Table 14 Kappa statistic on the manual analysis

Observed agreement (%) Kappa Strength

How-to-do-it 88.73 0.119 Slight

Debug-corrective 91.32 0.796 Substantial

Table 15 Proportion of occurrence of API element which
threads are relevant for documenting such, for both APIs and
both types of discussion

API Discussion type Relevant for documenting (%)

Swing
how-to-do-it 94.35

debug-corrective 40.71

Android
how-to-do-it 86.82

debug-corrective 23.89

of the Swing and Android elements. Regarding debug-
corrective content, on the other hand, the decrease from
the amount of API elements mentioned in the threads
to the amount of API elements contained in relevant
content of such threads is higher—there exists content
in the sampled threads for only 50% of the Swing ele-
ments and for only 43.3% of the Android elements.
Although these numbers show that there is a higher
decrease on the coverage for debug-corrective documen-
tation than for how-to-do-it, the numbers should not
be used absolutely to infer the increase in the nomi-
nal coverage results we will show for RQ #1 and RQ
#2, as the decrease tends to be lower as we enlarge the
sample.

Methods
Our main goal is to analyze Stack Overflow discussions
for the purpose of understanding how the crowd can con-
tribute to document APIs, with respect to coverage of API
elements in threads for how-to-do-it and debug-corrective
tasks. To achieve our goal, we formulated five research
questions:
RQ #1. To what extent does Stack Overflow cover

API elements of Swing and Android APIs with threads
containing how-to-do-it question? This research ques-
tion aims at providing an indicator on how well API
elements are covered by threads that can be potentially
useful to document these elements regarding how-to-do-it
tasks.
RQ #2. To what extent does Stack Overflow cover API

elements of Swing and Android APIs with threads con-
taining debug-corrective question? This research question

Table 16 Results on API elements actually contained in relevant
content of the sampled threads, for both APIs and both types of
discussion

API Discussion type # Elements Relevant for documenting (%)

Swing
how-to-do-it 115 89.57

debug-corrective 118 50

Android
how-to-do-it 144 89.58

debug-corrective 194 43.3



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 13 of 34

aims at the same as RQ #1, but regarding debug-corrective
tasks.
RQ #3. How often do threads cover multiple API ele-

ments? This research question aims at providing an indi-
cator on howmany threads are dedicated for only one spe-
cific API element, and how many threads cover multiple
API elements. Moreover, it aims at providing indicators
on API elements that are frequently mentioned together.
This analysis can provide insights on API elements that
must be documented together.
RQ #4. How does Stack Overflow cover API elements

over time? This research question aims at investigating
the growth of coverage of API elements compared to the
growth of threads related to the API over time. This analy-
sis can provide an indicator of themaximum coverage that
the crowd can reach for an API whether Stack Overflow
reaches saturation when covering API elements.
RQ #5. Is there an association between coverage of

API elements on how-to-do-it and debug-corrective dis-
cussions by the crowd and actual usage of these elements
in software systems? This research question aims at veri-
fying whether API elements covered by a high number of
threads are used in a high number of projects, and API ele-
ments covered by a low number of threads, or not covered,
are used in a low number of projects, or not used at all.
This analysis can provide an explanation for API elements
that are not discussed by the crowd.

Data collection
The necessary data for answering the research questions
are (1) the Stack Overflow threads on Swing and Android,
(2) a list of classes, interfaces and enumerations existing
in Swing and Android, and (3) usage references of Swing
and Android elements in source code of real software
projects.
1) We downloaded the Stack Overflow threads from the

Stack Exchange Data Dump [39], release of January 2014
of the Stack Overflow public data dump, and we imported
these into a relational database to facilitate queries. Spe-
cific threads for Swing and Android were selected in
the same way as shown in one of the previous sections,
i.e., by searching for threads where their questions have
a tag containing the name of the API (“android” or
“swing”).
2) We obtained the lists of Swing and Android inter-

mediate elements from javadoc jar files. For Swing, we
obtained the jar file from the Java official documentation
[40], containing 923 Swing intermediate elements: 823
classes, 90 interfaces and 10 enumerations, distributed in
18 packages. For Android, we obtained the jar file from
The Central Repository [41], containing 1678 Android
intermediate elements: 1259 classes, 361 interfaces and
58 enumerations, distributed in 66 packages. It is worth
mentioning that these numbers of API elements include

top-level and inner elements. A top-level element is a
direct member of a package, while an inner element is
defined as a member inside another element. Since inner
elements are public, they are also part of the API of a
library or framework, so we consider them in the cover-
age analysis. Also, we selected only elements in packages
that begin with “javax.swing” and “android”, for Swing and
Android, respectively, although those jar files contained
other utilities.
3) We obtained the usage of Swing and Android ele-

ments from the Boa infrastructure [42], which pro-
vides the metadata for almost 8,000,000 GitHub projects.
Projects identified as Java projects also include repository
history and source code. The source code of a Java file is
stored as abstract syntax tree (AST). Boa provides a syntax
inspired by the object-oriented visitor pattern to analyze
projects and their ASTs using depth-first search traver-
sal strategy. In a visit function, visit clauses are defined to
visit AST node types, and when the visitor visits any node
matching the specified node type, the body of the clause is
executed.
We coded a visit function for collecting Swing and

Android usage, which traverses the ASTs of full develop-
ment histories of Java projects. The types of AST node
of interest are Project, ASTRoot and Type ones. We col-
lected the name of the projects in a visit clause defined
for Project node. API usage information is obtained in the
visit clauses defined for the ASTRoot and Type nodes. In
ASTRoot nodes, we searched imports (generic or not) of
the APIs. In Type nodes, we searched (i) fully-qualified
name of types (classes, interfaces and enumerations) used
in statements and (ii) any other types used in statements
of an ASTwhere an import of the API was found. For find-
ing imports and fully qualified name of types, we check
if their names start with “javax.swing” and “android”, for
Swing and Android, respectively. We post processed the
non-qualified types found in ASTs where an import of
the API was also found. We check whether these types
belong to any package found as a generic import in the
same AST. Types not found in any these packages are
discarded.

Thread selection based on question types
To select threads containing how-to-do-it and debug-
corrective question types for coverage analysis, we per-
formed the classification of the collected questions by
using the classifiers developed in the “Automatic classifi-
cation of questions” section. We trained the SimpleLogis-
tic and Logistic algorithms with the Android and Swing
training sets, respectively. Then, we filtered questions
used in the training sets from the initially collected set
of questions. This filtered set was preprocessed to gener-
ate the input data files for the classifiers and finally, we
ran the classifiers with the respective API input data files



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 14 of 34

(Android files for SimpleLogistic and Swing files for Logis-
tic). Table 17 presents the number of questions for each
API by class according to the produced classification.
Noted here is that the difference of proportions between

Swing and Android in the distribution of the classified
questions in the classes is mainly caused by the fact that
a larger fraction of questions from Android API was clas-
sified as others. Moreover, we note that there are more
questions classified as debug-corrective than how-to-do-it
for Android. Differently, the proportions of questions clas-
sified as debug-corrective and how-to-do-it are pretty close
for Swing.
It is worth mentioning that the thread selection based

on question types for coverage analysis consider those
questions classified and presented in Table 17, along with
those in the training sets. For example, for Android cover-
age analysis that only considers threads with how-to-do-it
questions, the input threads for coverage analysis consist
of 151,843 (see Table 17) plus 112 (see Table 4), total-
ing 151,955 threads. Table 18 presents the total number
of questions by class, which were selected for coverage
analysis.

API coverage analysis
For coverage analysis, we propose some filters on the
Stack Overflow threads. First, threads are filtered on
their respective type of analysis (how-to-do-it or debug-
corrective). Moreover, for how-to-do-it questions, we
defined that for an API element to be considered as
covered, it should necessarily be mentioned at least once
in a code sample of an answer of a thread. We defined
these two filters based on the nature of the how-to-do-it
question type, in which the questioner provides a sce-
nario and asks about how to implement it. For the specific
documentation purpose of explaining how to use API ele-
ments, we argue that API elements should necessarily be
mentioned in code samples of answers to be considered
covered as follows. If an API element is mentioned in the
question but is not mentioned in an example (code sam-
ples) in the answer, the element is not part of the solution
of the scenario provided. Then, that thread seems to have
little relevance for how-to-do-it documentation [5], so the
API element should not be considered covered by the
thread.

Table 17 Distribution of the classified questions in the classes

# Questions

Class Android Swing

How-to-do-it 151,843 (35.79%) 17,426 (45.87%)

Debug-corrective 180,577 (42.56%) 17,391 (45.78%)

Others 91,879 (21.65%) 3169 (8.34%)

Total 424,299 37,986

Table 18 Distribution of all questions in the classes

# Questions

Class Android Swing

How-to-do-it 151,955 17,583

Debug-corrective 180,695 17,547

Others 91,964 3215

Total 424,614 38,345

Figure 3 provides an overview of the coverage analy-
sis process. The input is a list of Stack Overflow threads
and a list of API elements. After the filters are applied
on threads, we linked the threads with the API elements
by using the approach detailed in the “Linking Stack
Overflow threads with API elements” section.
Observe that there are three entries for coverage anal-

ysis regarding Stack Overflow threads. The dotted flow
indicates the preprocessing of the threads for coverage
analysis on how-to-do-it questions, i.e., the thread filter to
select threads with how-to-do-it question, the post filter to
discard the questions from the threads, and the content fil-
ter to select the code samples of the answers. The dashed
flow indicates the preprocessing of the threads for cover-
age analysis on debug-corrective questions, i.e., the thread
filter to select threads with debug-corrective questions.
Finally, the dashed and dotted flow illustrates Parnin et al.’s
coverage analysis approach [8], where no preprocessing on
threads is performed.

Results and discussion
In this section, we present the results for the posed
research questions.

How-to-do-it coverage of API elements
To answer RQ #1, we performed coverage analysis on
the threads containing questions classified as how-to-do-
it: 17,583 threads related to Swing and 151,995 threads
related to Android. Only code samples in answers of these
threads were analyzed. Table 19 presents the coverage
results. Noteworthy here is that almost half of the threads
of both APIs was linked with some API element: 47.77%
of the Swing threads and 46.28% of the Android threads.
For Swing, we observed that there is at least one answer

containing code sample to a how-to-do-it question for
40.83% of the classes, 83.33% of the interfaces, and 70% of
the enumerations, totaling 45.29% of the Swing elements.
The coverage values of interfaces and enumerations are
reasonably high, but not even half of the Swing classes
are covered by the crowd regarding the purpose of docu-
menting on how to use API elements by code samples to
accomplish a specific task. This may suggest that a large
part of the API may either be very easy to use dismissing



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 15 of 34

Fig. 3 Overview of the coverage analysis process

further support or that it is barely used by developers in
general.
Moreover, we observed that among all the Swing classes,

43.38% are inner classes. Only 14.29% of these are cov-
ered, and 62.83% of the uncovered classes are inner ones.
Considering only top (non-inner) classes, the coverage is
20% higher (61.16%). Although there are less interfaces
and enumerations than classes, the coverage for inner ele-
ments of those elements is also low. Only 25% of the inner
interfaces are covered, and 60% of the uncovered inter-
faces are inner. For enumerations, the three uncovered
ones are inner enumerations.
For Android, we observed that there is at least one

answer containing code sample to a how-to-do-it ques-
tion for 71.17% of the classes, 64.27% of the interfaces,
and 58.62% of the enumerations, totaling 69.25% of the
Android elements. These coverage values indicate that
classes are better covered than interfaces and enumera-
tions in Android.
Regarding the inner elements, among all the Android

classes, 27.96% are inner classes and 58.52% are covered.
Moreover, 40.22% of the uncovered classes are inner ones.
Considering only top classes for Android, we observed
that the coverage is higher (76.07%), but it is not much
higher than the overall class coverage. In regards to
interfaces, among all the Android interfaces, 74.52% are
inner and 58.74% are covered. Moreover, 86.05% of the

uncovered interfaces are inner. For enumerations, all the
uncovered ones are inner enumerations.
We also analyzed the coverage of elements

intra-package. The results for Swing are pre-
sented with different perspectives in Fig. 4 and
Table 20, column “Coverage/How-to-do-it”. We
observed that two packages (out of 18) are com-
pletely covered: javax.swing.filechooser
and javax.swing.text.rtf, which are also
the smallest. Considering the two largest packages,
javax.swing has an average coverage (63.07%),
and javax.swing.plaf.basic is poorly covered
(18.13%). Moreover, there is one package completely
uncovered (javax.swing.plaf.multi), which is
represented by the scratched rectangle.
To verify whether the size of package influences cov-

erage, we calculated Spearman’s rank correlation coeffi-
cient (ρ) between package size and coverage. Correlation
coefficients measure the extent to which two variables
tend to change together. In the case of ρ, a positive value
indicates that coverage tends to increase when package
size increases, and a negative value indicates that cover-
age tends to decrease when package size increases. For the
sizes and the how-to-do-it coverage of the Swing packages,
we found ρ = −0.33, which means a weak negative cor-
relation, i.e., the coverage tends to decrease when package
size increases.

Table 19 Coverage results on Swing- and Android-related threads containing how-to-do-it question type

API
# Threads # Threads Coverage considering all elements Coverage considering only non-inner elements

analyzed linked Classes Interfaces Enums Total Classes Interfaces Enums Total

Swing 17,583 8400 40.83% 83.33% 70% 45.29% 61.16% 92.31% 100% 65.75%

336 75 7 418 285 72 2 359

Android 151,955 70,325 71.17% 64.27% 58.62% 69.25% 76.07% 80.43% 100% 76.52%

896 232 34 1,162 690 74 2 766



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 16 of 34

Fig. 4 Swing intra-package coverage for how-to-do-it tasks considering the three API element types. The color scale represents percentage values of
coverage of the elements—white represents the lowest value > 0% and red represents 100%. Scratched rectangle represents 0%. The size of each
rectangle is proportional to the number of existing elements in the package

Table 20 Swing intra-package coverage considering the three API element types

# Threads linked Coverage (%)

Package # Elements How-to-do-it Debug-corrective How-to-do-it Debug-corrective

javax.swing 241 7932 16,458 63.07 68.05

.plaf.basic 193 135 445 18.13 27.98

.text 116 523 952 57.76 68.1

.plaf.metal 70 35 66 22.86 28.57

.plaf.synth 50 12 48 18 50

.event 49 571 1205 91.84 95.92

.plaf 49 114 206 53.06 69.39

.text.html 44 66 143 36.36 50

.plaf.multi 31 0 1 0 3.23

.tree 20 159 243 75 70

.table 15 757 1748 73.33 86.67

.border 11 382 998 90.91 100

.text.html.parser 10 7 53 20 60

.undo 9 3 9 55.56 66.67

.plaf.nimbus 6 25 68 50 83.33

.colorchooser 4 6 5 25 75

.filechooser 4 58 138 100 100

.text.rtf 1 1 8 100 100

Spearman’s ρ between −0.33 −0.58
package size and coverage



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 17 of 34

For Android (see Fig. 5 and Table 21, column
“Coverage/How-to-do-it”), we observed that nine
packages (out of 66) are completely covered, but they
are also small (maximum ten elements). The second
largest package with 166 elements, android.widget,
is reasonably well covered (90.96%). This package con-
tains (mostly visual) UI elements. However, the largest
package with 169 elements (android.provider) is
only half covered (50.89%). This package provides conve-
nience classes to access the content providers that store
common data, such as contact information, calendar
information, and media files. There are also three smaller
Android packages completely uncovered (scratched
rectangles): android.drm, android.mtp and
android.service.textservice. We observed that
there is a very weak positive correlation between coverage
and package size, ρ = 0.04. It suggests that there is no ten-
dency for coverage increases/decreases when package size
increases.
So far, we have presented results of the coverage

analysis considering if API elements are covered or not.
In addition, we present, for the covered API elements, the
distribution of the numbers of threads (containing how-
to-do-it question) to which these were linked. Figures 6a
and 7a present the distribution for Swing and Android ele-
ments, respectively, in boxplots. Note that the y-axis is in
a log scale.
Highlighted here is that, in general, the distributions

for both Swing and Android follow a similar pattern.

The long-tailed distribution indicates that only a small
part of the API is responsible for the largest numbers of
threads. For Swing, 50% of the covered elements are cov-
ered by numbers of threads in the interval [1, 8], and for
Android in the interval [1, 14], i.e., a large part of the
covered elements are not related to a very large number
of threads.
Also, interesting outliers are noted in those box-

plots indicating that a very small part of the APIs
has a very high number of threads (hundreds, even
thousands in the extreme cases). For Swing, any
number of threads in the interval [95, 3645] is con-
sidered outlier, and for Android, in the interval
[169, 16124].

RQ #1. To what extent does Stack Overflow cover API
elements of Swing and Android APIs with threads
containing how-to-do-it question?
Swing is covered on around 45% of all elements and
Android is covered on around 69%. However, if we con-
sider only top-level elements, Swing coverage is around
66% and Android coverage is around 77%. A few of small
packages are completely covered and completely uncov-
ered in both APIs. The distributions of the numbers of
threads that were linked with API elements are long-tailed
distributions for both APIs with significant outliers indi-
cating that a small part of the APIs is responsible for
the largest numbers of threads containing how-to-do-it
question.

Fig. 5 Android intra-package coverage for how-to-do-it tasks considering the three API element types



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 18 of 34

Table 21 Android intra-package coverage considering the three API element types

# Threads linked Coverage (%)

Package # Elements How-to-do-it Debug-corrective How-to-do-it Debug-corrective

.provider 169 2580 6448 50.89 66.27

.widget 166 29,091 87,204 90.96 96.99

.view 104 21,371 66,212 81.73 90.38

.app 85 13,630 65,509 81.18 90.59

.renderscript 84 482 2235 19.05 57.14

.graphics 78 8,383 19,927 84.62 91.03

.content 68 23,222 63,025 73.53 92.65

.media 68 1432 5671 73.53 82.35

.os 64 16,144 74,437 76.56 93.75

.text 44 2287 4843 77.27 88.64

.util 42 9773 37,691 69.05 85.71

.webkit 42 1,488 5,095 76.19 88.1

.text.style 41 401 343 78.05 78.05

.database.sqlite 28 801 6554 46.43 89.29

.database 26 2,815 11,270 80.77 92.31

.text.method 25 250 644 72 72

android 24 23,318 75,180 91.67 87.5

.graphics.drawable 24 1960 5034 83.33 100

.media.audiofx 24 13 61 33.33 54.17

.net 24 4778 11,635 62.5 87.5

.view.animation 24 960 1882 79.17 87.5

.preference 23 1056 2675 78.26 82.61

.content.pm 22 1293 9834 90.91 86.36

.drm 22 0 6 0 9.09

.animation 20 135 310 65 80

.hardware 20 473 1933 90 90

.opengl 20 142 1,167 55 80

.bluetooth 16 216 850 62.5 75

.net.wifi.p2p 16 10 35 56.25 68.75

.view.inputmethod 16 530 1,263 62.5 75

.content.res 14 1761 5534 71.43 92.86

.net.wifi 14 313 559 92.86 100

.accounts 13 178 472 76.92 100

.gesture 13 38 129 53.85 84.62

.inputmethodservice 13 67 156 46.15 76.92

.telephony 12 605 1200 83.33 100

.app.backup 11 11 120 45.45 81.82

.location 11 1132 4726 90.91 100

.net.sip 11 8 48 81.82 90.91

.nfc 11 127 461 81.82 90.91

.nfc.tech 10 31 123 100 100

.speech.tts 9 79 375 55.56 88.89

.hardware.usb 8 19 129 100 100



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 19 of 34

Table 21 Android intra-package coverage considering the three API element types (Continued)

# Threads linked Coverage (%)

Package # Elements How-to-do-it Debug-corrective How-to-do-it Debug-corrective

.view.textservice 8 1 4 12.5 50

.sax 7 9 64 71.43 100

.view.accessibility 7 35 72 42.86 100

.graphics.drawable.shapes 6 57 164 100 100

.net.wifi.p2p.nsd 6 1 5 33.33 100

.speech 6 67 225 66.67 83.33

.appwidget 5 189 838 100 100

.mtp 5 0 1 0 20

.net.http 5 44 247 80 100

.net.nsd 5 1 6 40 100

.telephony.gsm 5 31 90 60 60

.text.util 5 59 115 60 60

.media.effect 4 3 17 25 75

.net.rtp 4 1 17 25 100

.text.format 4 513 1,473 100 100

.app.admin 3 34 90 66.67 100

.security 3 3 15 100 100

.accessibilityservice 2 12 33 100 100

.hardware.input 2 3 23 50 100

.os.storage 2 7 17 100 100

.service.textservice 2 0 5 0 100

.service.wallpaper 2 4 115 50 100

.telephony.cdma 1 3 9 100 100

Spearman’s ρ between
0.04 −0.43

package size and coverage

Debug-corrective coverage of API elements
To answer RQ #2, we performed coverage analysis on
the threads containing questions classified as debug-
corrective: 17,547 threads related to Swing and 180,695
threads related to Android. Table 22 presents the cov-
erage results. Noteworthy here is that a large num-
ber of the threads of both APIs was linked with some
API element: 94.76% of the Swing threads (compared
to 47.77% in how-to-do-it coverage) and 84.21% of the
Android threads (compared to 46.28% in how-to-do-it
coverage).
For Swing, we observed that there is at least one thread

containing a debug-corrective question for 51.52% of the
classes, 85.56% of the interfaces, and 80% of the enumera-
tions, totaling 55.15% of the Swing elements. The coverage
values of interfaces and enumerations are reasonably high,
but just slightly more than half of the Swing classes are
covered by the crowd regarding the purpose of document-
ing on how to solve common problems in the usage of API
elements.

Moreover, we observed that 20.17% of the Swing inner
classes are covered (slightly higher compared to 14.29%
of how-to-do-it coverage). Considering only top classes,
the coverage is higher (75.54%). Only 25% of the inner
interfaces are covered, as observed for how-to-do-it. For
enumerations, the two uncovered ones are inner enumer-
ations.
For Android, we observed that there is at least one

thread containing a debug-corrective question for 86.18%
of the classes, 75.62% of the interfaces, and 75.86% of the
enumerations, totaling 83.55% of the Android elements.
These coverage values indicate that classes are better cov-
ered than interfaces and enumerations in Android, as the
values of how-to-do-it coverage.
Regarding the inner elements, 75% of the Android inner

classes are covered (compared to 58.52% in how-to-do-it
coverage). Considering only top classes for Android, we
observed that the coverage is reasonably high (90.52%),
but it is not much higher than the overall class coverage.
In regards to interfaces, 69.52% of the Android inner ones



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 20 of 34

Fig. 6 Distribution of number of threads per Swing API element. a
Coverage on threads with how-to-do-it question. b Coverage on
threads with debug-corrective question. c Coverage on all API-related
threads (replication of Parnin et al.’s work)

are covered (compared to 58.74% in how-to-do-it cover-
age). For enumerations, all the uncovered ones are inner
enumerations.
We also analyzed the coverage of elements intra-

package. The results for Swing are presented with
different perspectives in Fig. 8 and Table 20, col-
umn “Coverage/Debug-corrective”. We observed that
three packages (out of 18) are completely covered: the
two completely covered in RQ #1, javax.swing.
filechooser and javax.swing.text.rtf, which

Fig. 7 Distribution of number of threads per Android API element. a
Coverage on threads with how-to-do-it question. b Coverage on
threads with debug-corrective question. c Coverage on all API-related
threads (replication of Parnin et al.’s work)

are also the smallest ones, and the javax.swing.
border package, the seventh smallest. Considering the
two largest packages, javax.swing has an average cover-
age (68.05%), slightly better than in how-to-do-it coverage
(63.07%), and javax.swing.plaf.basic is poorly
covered (27.98%), although it is better than the how-to-
do-it coverage (18.13%). Moreover, there is no package
completely uncovered.We observed that only 3.23% of the
elements of the package completely uncovered in RQ #1,
javax.swing.plaf.multi, are covered in threads
for debug-corrective tasks. We also observed that there
is a moderate negative correlation between coverage and
package size, ρ = −0.58, compared to a weak negative
correlation in how-to-do-it coverage (ρ = −0.33).
For Android (see Fig. 9 and Table 21, column

“Coverage/Debug-corrective”), we observed that 24 pack-
ages (out of 66) are completely covered, compared to
nine packages in RQ #1. The second largest pack-
age (166 elements), android.widget, is well cov-
ered (96.99%). However, the largest package (169 ele-
ments), android.provider is not so well covered
(66.27%), but still better covered compared to how-to-
do-it coverage (50.89%). There is no package completely
uncovered as in how-to-do-it. We also observed that
there is a moderate negative correlation between cov-
erage and package size, ρ = −0.43, compared to a
very weak positive correlation in how-to-do-it coverage
(ρ = 0.04).
In addition, we present, for the covered API elements,

the distribution of the numbers of threads (containing
debug-corrective question) to which these were linked.
Figures 6b and 7b present the distribution for Swing and
Android elements, respectively, in boxplots (y-axis is in a
log scale).
Highlighted here is that, in general, the distributions

for both Swing and Android follow a similar pattern. The
long-tailed distribution indicates that only a small part of
the API is responsible for the largest numbers of threads.
For Swing, 50% of the covered elements are covered by
numbers of threads in the interval [1, 10], and for Android
in the interval [1, 28], i.e., a large part of the covered
elements are not related to a very large number of threads.
Comparing to the distributions for threads from how-

to-do-it questions, we observed that the median is higher:
for Swing, the median is 8 for threads from how-to-do-
it questions and 10 for threads from debug-corrective
questions, and for Android, the median increased from
14 to 28.
Also, interesting outliers are noted in those boxplots

indicating that a very small part of the APIs has a very
high number of threads. For Swing, any number of threads
in the interval [132, 10098] is considered outlier, and for
Android, in the interval [445, 55784]. Compared to the
distributions for threads from how-to-do-it questions, we



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 21 of 34

Table 22 Coverage results on Swing- and Android-related threads containing debug-corrective question type

API
# Threads # Threads Coverage considering all elements Coverage considering only non-inner elements

analyzed linked Classes Interfaces Enums Total Classes Interfaces Enums Total

Swing 17,547 16,628 51.52% 85.56% 80% 55.15% 75.54% 94.87% 100% 78.39%

424 77 8 509 352 74 2 428

Android 180,695 152,166 86.18% 75.62% 75.86% 83.55% 90.52% 93.48% 100% 90.81%

1,085 273 44 1,402 821 86 2 909

also observed that the maximum outlier increased from
3,645 to 10,098 for Swing and from 16,124 to 55,784 for
Android.

RQ #2. To what extent does Stack Overflow cover API
elements of Swing and Android APIs with threads
containing debug-corrective question?
Swing is covered on around 55% of all elements and
Android is covered on around 84%. However, if we con-
sider only top-level elements, Swing coverage is around
78% and Android coverage is around 91%. Compared to
coverage for how-to-do-it tasks, for both APIs, the cov-
erage for debug-corrective tasks is higher. There is no
package completely uncovered in both APIs, and more
packages are completely covered compared to coverage
for how-to-do-it tasks. The distributions of the num-
bers of threads that were linked with API elements are
also long-tailed distributions for both APIs with signifi-
cant outliers indicating that a small part of the APIs is

responsible for the largest numbers of threads containing
debug-corrective question.

Threads covering multiple API elements and their
co-occurrence
To answer RQ #3, we calculate, for each API and for each
coverage analysis (how-to-do-it and debug-corrective),
how many threads linked with some API element cover
multiple API elements. Table 23 presents the results as
percentage values.
We observe that threads frequently cover multiple API

elements. At least about 70% of the threads were linked
with more than one API element. For coverage on threads
containing debug-corrective question, almost 90% of the
threads cover multiple API elements for both APIs.
In Fig. 10, we present, for the threads that cover multiple

API elements, the distribution of number of API elements
to which they were linked. Figure 10a, b presents the
distributions for Swing coverage regarding threads with

Fig. 8 Swing intra-package coverage for debug-corrective tasks considering the three API element types



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 22 of 34

Fig. 9 Android intra-package coverage for debug-corrective tasks considering the three API element types

how-to-do-it and debug-corrective question, respectively,
and Fig. 10c, d presents the distributions for Android
coverage.
We noted that 50% of the threads cover a very small

number of API elements—the higher median is six
(Fig. 10d). Also, the outliers indicate that a small part
of the threads was linked to a high number of API ele-
ments. For Swing, any number of API elements higher
than 12 (how-to-do-it) and 13 (debug-corrective) is consid-
ered outlier, and for Android, any number higher than 12
(how-to-do-it) and 21 (debug-corrective). Based on those
distributions, we can conclude that, in general, Android-
related threads cover more API elements than Swing-
related threads. In the extreme case, an Android-related
thread covers 57 API elements.
We also analyzed the co-occurrence of API elements. To

accomplish this, we used the Apriori algorithm for mining
association rules between API elements. An association
rule is an implication of the form A → B, where A and

Table 23 Percentage values concerning threads that cover
multiple API elements for Swing and Android from both
coverage analysis (how-to-do-it and debug-corrective)

API
How-to-do-it Debug-corrective

# Threads linked %Cover # Threads linked %Cover
multi elem multi elem

Swing 8400 69.98 16,628 88.34

Android 70,325 73.23 152,166 87.27

B are sets of API elements. The idea of this rule is that
threads covering the elements belonging to A tend to also
cover the elements belonging to B.
Association rules are mined from a database contain-

ing a set of transactions, and each transaction has a set
of items. In our case, threads are transactions, and API
elements mentioned in the threads are itemsets.
We used R [43] for mining association rules by using the

Apriori algorithm and for visualizing the results. Also, we
had to define thresholds for support (sup) and confidence

Fig. 10 Distribution of number of API elements per thread. a, b Swing
coverage on threads with how-to-do-it and debug-corrective question,
respectively; c, d Android coverage on threads with how-to-do-it and
debug-corrective question, respectively



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 23 of 34

(conf ) measures to find association rules of interest. The
support of an itemset A is the proportion of transactions
in the database which contain the itemset, and the confi-
dence of a rule A → B is the proportion of transactions
that support B among the transactions that support A.
The decision-making regarding the choice of thresholds

for such measures is challenging. There is no consen-
sus for such values. However, confidence of rules is more
interesting than support of itemsets to us, i.e., to which
degree can we rely on the occurrence of API elements
implies that the occurrence of other API elements is more
interesting than how much the API elements occur over
the whole database.
Therefore, we choose higher thresholds for the

confidence measure than for support. More specifically,
we defined sup = 0.01 and we generated association rules
for conf = {1.0, 0.9, . . . , 0.5}. Tables 24 and 25 present
the numbers of association rules obtained for Swing and
for Android, respectively, from both how-to-do-it and
debug-corrective coverage analysis.
Even the threshold for sup is low, the number of threads

that API elements must be mentioned together for creat-
ing association rules is high. For instance, in the how-to-
do-it coverage analysis for Swing, API elements must be
mentioned together in at least 84 threads. It means that
all association rules created have an absolute support that
is reasonably high, and then we can claim that the API
elements contained in the rules are frequently mentioned
together.
We observe that, for both APIs, the numbers of

association rules are higher for debug-corrective cover-
age analysis. This may suggest that threads containing
debug-corrective question frequently mention more API
elements that are frequently mentioned together than
threads containing how-to-do-it question.

Table 24 Summary of the numbers of association rules obtained
for Swing from both coverage analysis (how-to-do-it and
debug-corrective)

How-to-do-it Debug-corrective

Threads 8400 16,628

Elements 418 509

Min sup 84 166

Association rules:

conf = 1.0 5 79

conf = 0.9 106 582

conf = 0.8 224 1080

conf = 0.7 318 1430

conf = 0.6 417 1771

conf = 0.5 530 2102

Table 25 Summary of the numbers of association rules obtained
for Android from both coverage analysis (how-to-do-it and
debug-corrective)

How-to-do-it Debug-corrective

Threads 70,325 152,166

Elements 1162 1402

Min sup 703 1521

Association rules:

conf = 1.0 0 47

conf = 0.9 261 8882

conf = 0.8 420 13,224

conf = 0.7 597 16,043

conf = 0.6 755 17,873

conf = 0.5 865 20,249

Regarding the association rules themselves, for
presentation reasons, we do not present all of them.
We choose the top seven rules based on confidence for
each API, being that the top seven rules for Swing were
obtained from threads containing how-to-do-it question,
and the top seven rules for Android were obtained from
threads containing debug-corrective.
Figures 11 and 12 present graphs for the seven associ-

ation rules of the Swing and Android, respectively. API
elements are represented by green nodes and implications
of association rules are represented by orange nodes. The
graph is interpreted by analyzing the directed edges—the
incoming edges for an implication of association rule rep-
resent the antecedent API elements of the rule and the
outcoming edges represent the consequent API elements
of the rule.
For instance, by analyzing the implication in the top-

left corner of the Fig. 11, we observe that there are two
antecedent API elements, javax.swing.JFrame
and javax.swing.table.TableCellRenderer,
and there is one consequent API element,
javax.swing.JTable. Then, the association rule
is {.JFrame,.table.Table- CellRenderer} →
{.JTable}, which means that when the .JFrame
and .table.TableCellRenderer elements are
mentioned in a thread, the .JTable element is
also mentioned, with a confidence of 1.0, i.e., in all
threads. Similarly, for Android (Fig. 12), the implica-
tion at the top-center refers to the association rule
{.content.pm.ComponentInfo,.content.Intent,
.os.Lo- oper,.app.Instrumentation} →
{.os.Handler}.
These association rules are strong. Even the associa-

tion rules generated with 0.5 ≤ conf < 1.0 are strong,
since the absolute minimum support is reasonably high.
By “strong”, we mean that the API elements belonging to



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 24 of 34

Fig. 11 Top seven association rules based on confidence for Swing
obtained from threads containing how-to-do-it question. Green nodes
represent API elements and orange nodes represent implications of
association rules. The size of each orange node is proportional to the
confidence of the rule

the generated association rules are always or frequently
mentioned together.
We analyzed those most prominent co-occurrences to

determine the reason why those API elements are always
or frequently mentioned together. For Swing, we observed
that there are two consequent API elements in the top-7
association rules: .JTable and .UIManager. The rules
involving .JTable are:

• {.table.TableCellRenderer,.JFrame} →
{.JTable}

• {.table.DefaultTableModel,.JPanel} →
{.JTable}

• {.table.DefaultTableModel,.JFrame} →
{.JTable}

• {.table.DefaultTableModel,.JFrame,
.JScrollPane}
→ {.JTable}
JTable is used to display and edit regular

two-dimensional tables of cells. It is under-
standable that JTable is mentioned together
with .table.TableCell- Renderer and
.table.DefaultTableModel, as these two elements
are part of the javax.swing.table package, which
provides classes and interfaces for dealing with JTable.
TableCellRenderer is an interface that defines the

Fig. 12 Top seven association rules based on confidence for Android
obtained from threads containing debug-corrective question

method required by any object that would like to be a
renderer for cells in a JTable. DefaultTableModel
is an implementation of TableModel, an interface
that specifies the methods the JTable will use to
interrogate a tabular data model, that uses a Vector of
Vectors to store the cell value objects. So we concluded
that JTable is frequently mentioned together with
TableCellRenderer and DefaultTableModel
because of API design.
Regarding the involvement of JFrame in the rules, this

class is a top-level Swing container, specialized to provide
a place for other Swing components to paint themselves.
JTable, JPanel (a generic lightweight container) and
JScrollPane (a scrollable view of a lightweight com-
ponent), which also participate in the rules, are examples
of Swing components that always need to be put inside
a JFrame. Moreover, JPanel and JScrollPane are
mentioned with JTable because JTables are typically
placed inside these components.
The association rules involving .UIManager are:



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 25 of 34

• {.UnsupportedLookAndFeelException,
.JScrollPane, .JFrame} → {.UIManager}

• {.UnsupportedLookAndFeelException,
.JScrollPane} → {.UIManager}

• {.UnsupportedLookAndFeelException,
.JLabel} → {.UIManager}
UIManager manages the look and feel of GUI

applications—look refers to the appearance of GUI
widgets (as JComponents) and feel refers to the
way the widgets behave. Due to the API design, the
UnsupportedLookAndFeelException class is fre-
quently mentioned together with UIManager, since it
is an exception that indicates the requested look and
feel management classes are not present on the user sys-
tem. Moreover, JScrollPane and JLabel elements, as
these are extensions of JComponent, it is natural that
they are mentioned together with UIManager. However,
it is a little bit arbitrary—it could be that the JButton
element belongs to the association rules, for example,
as any other extension of JComponent. Finally, since
JComponents are used inside JFrames, it is not a sur-
prise that the JFrame element also participates in one
rule.
With Android, we also observe two consequent API ele-

ments in the top seven association rules: .os.Handler
and .view.View. The rules involving .os.Handler
are:

• {.os.Looper,.app.Instrumentation,
.content.Intent,
.content.pm.ComponentInfo} →
{.os.Handler}

• {.os.Looper,.app.Instrumentation,
.widget.Button} → {.os.Handler}

• {.os.Looper,.app.Instrumentation,
.content.Conte- xt} → {.os.Handler}
Handler class allows to send and process Message

and Runnable objects associated with a MessageQueue

from a particular thread. Each Handler instance is asso-
ciated with a single thread and the message queue for
that thread. For API design reasons, Handler interacts
with Looper (co-occurring in all three rules involving
Handler), as it is used to run a message loop for a thread.
Instrumentation, that also is part of all those three

rules, is a base class for implementing application instru-
mentation code. When running with instrumentation
turned on, this class is instantiated before any of the appli-
cation code, allowing to monitor all the interaction the
system has with the application. In other words, it can be
used to test activities as touching, clicks, typing, and other
user actions relevant for Android applications.
An Intent is an abstract description of an action

to be performed. Therefore, once a developer needs
to monitor operations, he ends up with a class that
holds instances of Instrumentation and Intent or

even an Instrumentation class that has an Intent
instance. A general use case that illustrates such co-
occurrence is on developing Android application unit
tests.
Context and ComponentInfo elements are not

exactly related to the other API elements involved in the
respective association rules with which they are co-occur.
ComponentInfo is a base class containing informa-
tion common to all application components, i.e., it shares
common definitions between all application components.
Context element is an interface to global information
regarding an application environment, and it allows access
to application-specific resources and classes, as well as
up-calls for application-level operations such as launching
activities and receiving intents. So that two API elements
hold no semantic relationship with other API elements.
The association rules involving .view.View are:
• {.content.Context,.widget.BaseAdapter,

.view.Vi- ewGroup,.view.LayoutInflater} →
{.view.View}

• {.content.Context,.widget.BaseAdapter,
.view.Vi- ewGroup,.widget.TextView} →
{.view.View}

• {.content.Context,.widget.BaseAdapter,
.view.Vi- ewGroup,.R.id} → {.view.View}

• {.content.Context,.widget.BaseAdapter,
.view.Vi- ewGroup,.R.layout} →
{.view.View}
View is the base class for widgets, which are used

to create interactive user interface components. A View
occupies a rectangular area on the screen and is respon-
sible for drawing and event handling. It co-occurs with
ViewGroup and TextView elements as they are direct
subclasses of View. ViewGroup is the base class for
layouts, which are invisible containers that hold other
Views/ViewGroups and define their layout properties,
and TextView displays text to the user and optionally
allows them to edit it.
BaseAdapter is a common base class of common

implementation for an Adapter that can be used in
ListView, a view that shows items in a vertically
scrolling list. BaseAdapter co-occur with View and
ViewGroup as ListView is a non-direct subclass of
View. LayoutInflater also co-occurs with View
because it creates View objects based on layouts defined
in XML.
Finally, after we analyzed the most prominent co-

occurrences, we concluded that the main reason for the
co-occurrence of API elements involved in strong associa-
tion rules is due to API design. It may mean that the com-
bined use of some API elements are potentially required
for the use of other API elements that they are highlymen-
tioned with. Consequently, this indicates that these ele-
ments should be documented together. Moreover, there



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 26 of 34

are API elements involved in association rules that are not
semantically related to the other API elements in the same
rule. It means that the content concerning these API ele-
ments needs to be preprocessed for their documentation.

RQ #3. How often do threads cover multiple API elements?
Threads frequently cover multiple API elements (at least
about 70% of them). Moreover, there are API elements
that are always or frequently mentioned together. This
may impose warnings concerning the use of the thread
content for documenting these API elements, as the need
of documenting API elements together or preprocessing
the thread content to filter relevant content for specific
API elements.

API coverage growth and API-related thread growth
To answer RQ #4, during coverage analysis, we obtained
for each API element the date in which the element was
covered (mentioned for the first time). Then, we calcu-
lated the coverage percentage of the APIs day by day,
resulting in the growth of API coverage.
Moreover, we collected, from our Stack Overflow

database, the number of threads related to the APIs
(tagged with the API name) grouped by day. From the total
number of threads related to each API, we calculated the
percentage of threads day by day, resulting in the growth
of API-related threads.
Figures 13 and 14 present charts, for Swing and

Android, respectively, containing three series: the growth
of API coverage on threads containing how-to-do-it (dot-
ted line) and debug-corrective questions (dashed line), and
the growth of the number of threads related to the API
(solid line).
Noteworthy here are some observations based on the

charts. First, in a general way, the growth of the two types

Fig. 13 Swing coverage growth and Swing-related thread growth

Fig. 14 Android coverage growth and Android-related thread growth

of coverage follow a linear pattern on average, mainly for
Swing. The growth of the number of threads related to the
APIs, however, follow an exponential pattern.
These patterns indicate that a high number of API ele-

ments were covered over a large time interval by a lower
number of threads. For instance, from August 2008 until
around June 2012, the percentage of coverage of the Swing
elements was higher than the percentage of existing Swing
threads at that time. For Android, the time interval is even
larger.
Moreover, after these large periods, the numbers of

threads related to the APIs continue to grow, overtak-
ing the coverage, which continues to stabilize in a certain
level. This indicates that Stack Overflow is reaching satu-
ration at covering API elements after approximately four
years for Swing and five years for Android.
In addition, we observed that, for each API, the cov-

erage on threads containing debug-corrective questions
is higher than the coverage on threads containing how-
to-do-it questions over almost the whole period. This is
consistent with the fact that the overall coverage of API
elements by threads containing debug-corrective questions
is higher.

RQ #4. How does Stack Overflow cover API elements over
time?
Stack Overflow covers a high number of API elements
with low number of threads in the first years. Then, Stack
Overflow starts to reach saturation for covering API ele-
ments. This happens when the number of API-related
threads still continues to increase, overtaking the growth
of API coverage, which continues to stabilize. This indi-
cates that API elements not covered have a high chance of
never being covered, or take years to be. Consequently, the
overall coverage of the APIs will not increase considerably



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 27 of 34

at the point of changing the fact that there are still many
API elements not covered, so the content available on
Stack Overflow may not be a complete substitute for
official documentation of the APIs.

Coverage and actual use of APIs
To answer RQ #5, we calculate the Spearman’s rank cor-
relation coefficient between the number of threads which
cover each API element (API coverage) and the number of
projects which use each API element (API usage) obtained
from Boa infrastructure [42]. We found usage for 635 (out
of 923) Swing elements and usage for 1412 (out of 1678)
Android elements.
Table 26 presents the correlation between API coverage

and API usage for the two coverage analyses. We note that
the correlations for Swing (both 0.805) are higher than
the ones for Android (0.607 and 0.641), but for both APIs
and for both coverage analyses, they are strong positive
correlations (very strong for Swing). It means that API ele-
ments covered by a high number of threads are used in a
high number of projects, and API elements covered by a
low number of threads, or not covered, are used in a low
number of projects, or not used.
Regarding those four packages completely uncovered in

threads for how-to-do-it tasks, javax.swing.plaf.
multi, android.drm, android.mtp and
android.service. textservice, we observed that
at least one element of each package is used in projects.

RQ #5. Is there an association between coverage of API
elements on how-to-do-it and debug-corrective discussions
by the crowd and actual usage of these elements in
software systems?
There is a high association between coverage on Stack
Overflow and actual use of API elements in software
projects. This association seems to be largely influenced
by the API, and less or not influenced by the type of
question. It may suggest that widely used parts of an API
require many documentation details that the crowd can
address much more easily than the official documenta-
tion.

Comparing how-to-do-it and debug-corrective coverages
with Parnin et al.’s coverage (all-inclusive)
Parnin et al. [8] reported in their study that 87.2, 77.3, and
54.3% of the Android, Java, andGWT classes, respectively,
are covered by the crowd in the Stack Overflow.

Table 26 Spearman’s rank correlation coefficient on API
coverage and API usage

API Coverage on how-to-do-it Coverage on debug-corrective

Swing 0.805 0.805

Android 0.607 0.641

To quantify the difference of coverage consider-
ing threads with specific question types (how-to-do-it
and debug-corrective) regarding coverage considering all
threads, we replicated the Parnin et al.’s study. Replication
was necessary because our experimental setup is differ-
ent, e.g., we used the release of January 2014 of the Stack
Overflow public data dump, and they used the release of
December 2011.
Table 27 presents the coverage results obtained with our

methodology (a summary of those presented in RQ #1
and RQ #2) and the coverage results obtained by repli-
cating Parnin et al.’s work. We observe here that the
coverage is higher for both API and for all API elements
by analyzing all threads. This result may impose further
warnings on the use of crowd knowledge depending on
the documentation intent.
Moreover, we observed that more packages are com-

pletely covered when no thread filtering was applied. Also,
the boxplots in Figs. 6c and 7c show that the numbers of
threads per API element is also consistently higher in the
percentiles, including the outliers.

Threats to validity
Our work has three main threats. First, we analyzed only
two APIs (Swing and Android), and both are based on the
same language (Java). Thus, our results cannot be general-
ized to other APIs. However, we have shown that coverage
analysis was API-dependent suggesting that each API
requires its own analysis, even within the same language.
Second, the classifier of question is not completely accu-

rate. To mitigate that, we have chosen different classifica-
tion algorithms for each API to take advantage of the best
accuracy. Whenever classifying questions related to other
APIs, either a training set must be created for it, or the
generic classifier can be used under the penalty of a still
slightly lower accuracy.

Table 27 Coverage results on Swing- and Android-related
threads containing how-to-do-it and debug-corrective question
types, and on all threads

API
# Threads Coverage (%)

analyzed Classes Interfaces Enums Total

For how-to-do-it

Swing 17,583 40.83 83.33 70 45.29

Android 151,955 71.17 64.27 58.62 69.25

For debug-corrective

Swing 17,547 51.52 85.56 80 55.15

Android 180,695 86.18 75.62 75.86 83.55

For all threads

Swing 38,345 56.87 88.89 90 60.35

Android 424,614 90.55 82.83 79.31 88.5



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 28 of 34

Third, the identification of the API element name
mentions in the content of threads is made by exact
word matching. Thus, a given API element is counted
as covered if its name is spelt correctly. On the one
hand, we can miss potential mentions, but on the other
hand, we do not count false mentions. Also, another
potential threat refers to name resolution when more
than one element in the API has the same short
name, and none of their packages is mentioned in the
thread. The Swing “Element” element, for example,
was encountered within code samples of 44 threads.
However, these mentions were neither counted for
javax.swing.text.html.parser.Element class
nor for javax.swing.text.Element interface, since
our approach cannot handle with name ambiguity. Never-
theless, this interface was covered by 16 threads, where its
package name was mentioned, but the class remained not
covered.

Limitations
Themain limitation of our work is that we do not take into
account which API elements the Stack Overflow discus-
sions are actually about (semantic analysis). Our coverage
results are based on an analysis of mentions of API ele-
ments in the content of threads, which does not mean
that the central point of the discussions in the threads are
about these API elements.
Despite this, we conducted a study in order to quan-

tify a potential decrease in our coverage results when
the semantics of Stack Overflow posts is taken into
account (study reported in the “Analysis of actual seman-
tic links” subsection). Moreover, we have analyzed the
co-occurrence of API elements in the threads, which gave
us some insights as, for example, that some API elements
are potentially required for other API elements, as they
are frequently mentioned together. Consequently, this can
indicate that they are contextual elements in the threads,
and can be eliminate in a process of discovering the cen-
tral element of the thread. On the other hand, this does
not mean that there is no information for documenting
these elements only because they are not the central point
of threads.
Another limitation is that we do not analyze the qual-

ity and confidence of the content of threads that cover
API elements. These factors need to be considered when
using the content of threads for documenting API ele-
ments. We intend to propose a method for, given an
API element, ranking the threads linked with it based
on the quality and confidence of the content of the
threads, aiming to select the best threads for docu-
menting that API element. Information concerning the
quality and confidence of the content of the threads
can be extracted, for example, through existing mech-
anisms on Stack Overflow, as the up/down voting on

questions and answers, which indicates whether they are
useful.

Practical implications
The results of our study have practical implications,
which may be of interest to central authorities and
researchers who intend to (re)document APIs, and to soft-
ware library/framework developers and API designers.
Regarding overall coverage of an API, poor coverage

may suggest that it is not feasible to use the crowd knowl-
edge for generating an API documentation as a substitute
for official documentation. However, it is reasonable to
claim that hardly an API will be well covered by the crowd
(coverage > 90%), since a part of the API elements are not
being used in practice, and the API may have elements
too simple for use. It may suggest that a part of the API
does not need additional information besides that which
already exists in the official documentation of the API.
The fact that there are API elements that are not dis-

cussed by the crowd and are not being used in soft-
ware systems also may suggest that these elements are
not useful for developers. Moreover, the strong asso-
ciation between API coverage and its usage may sug-
gest that widely used elements have more chances of
different nuances, and therefore they need to be care-
fully documented to support their different nuances.
Elements not widely used, on the other hand, demand
less different nuances, so they are discussed less by the
crowd.
Furthermore, there are API elements that are always

or frequently mentioned together in threads. In the most
cases, it may mean that the combined use of some API
elements are potentially required for the use of other API
elements with which they are commonly mentioned. Con-
sequently, this indicates that these elements should be
documented together. In other cases, there are API ele-
ments involved in association rules that are not semantic
related to the other API elements in the same rule. It
means that the content concerning these API elements
needs to be preprocessed for their documentation. This
may impose warnings concerning the use of the thread
content for documenting these API elements, as the need
of documenting API elements together or preprocessing
the thread content to filter relevant content for specific
API elements.

Related work
(Re)documenting APIs
Due to the lack of sufficient examples and explanations
in API documentation, when that documentation exists,
a new research field has emerged, in which methods have
been proposed to automatically (re)document APIs [5, 8,
44–51]. We refer to documenting APIs as the process of
creating documentation for an API, and redocumenting



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 29 of 34

APIs as the process of creating improved documentation
based on that which already exists.
For both processes, we can generally identify that docu-

mentation generation involves the definition of three: (1)
scope and (2) structure of the documentation, and (3) data
source for documentation generation.
Scope consists of the type(s) of content that should be

included in documentation, which is defined by the inten-
tions from the point of view of the API users, i.e., what
they want to do with or to know about a given API. Some
common intention types are, for example, how to use indi-
vidual API elements (as in Javadoc-like documents), how
to implement specific tasks using an API [5], and how to
fix domain-independent bugs in an existing code where
there wasmisunderstanding regarding the usage of an API
(crowd-bugs) [52].
Thus, API documentation can be intention-oriented: it

may include content for different intention types (general
documentation) or different documentations may include
content for specific intention types (specific documenta-
tions), where they are complementary to each other. As
advantages, specific documentation can assist API users
in their search for what they want based on their intention
type, and can have different structures depending on their
scope.
Structure consists of the organization and presentation

of documentation. Some examples are Javadoc, cookbook
and frequently asked questions (FAQs).
Javadoc is a well-known way for documenting Java code.

A Javadoc document is created for API intermediate ele-
ments (class, interface and enumeration), which basically
includes a general textual description of the element and
also a description of its members (such as fields andmeth-
ods). Javadoc usually does not include code examples [8].
Moreover, there is no organization of Javadoc to assist
developers to find what they want in regards to the
API and there is no explanation concerning the use of
classes/methods together in order to perform a specific
task.
Cookbooks, on the other hand, have semi-structured

content based on chapters and recipes [5, 44, 45]. A
cookbook is composed of chapters on a specific theme
and each chapter is composed of recipes. Each recipe
contains a programming task and instructions on how
to accomplish that task by using elements of the API.
Unlike Javadocs, which provide a textual description of
each API element individually, cookbooks provide solu-
tions, including, besides textual explanation, source code
examples possibly involving more than one API element
to accomplish tasks.
Differently, FAQ-like documentation consists of a struc-

ture which lists questions frequently asked by the target
audience and the corresponding expert answers [46]. This
type of structure is not used to document a specific API

element or functionality. Actually, the purpose of FAQs
is to provide independent pieces of knowledge target-
ing practical problems [46], therefore, they are usually
complementary to other documentation.
The generation of documentation is performed by using

some data source that contains relevant content for API
documentation. In addition to the API source code itself,
software repositories and social media, such as GitHub
and Q&A sites, have recently been adopted as a documen-
tation data source.
By using the API source code, some works automatically

generate natural language summaries for API elements
that can be used in the description of those elements in the
documentation. Moreno et al. [47] proposed a technique
to generate summaries for Java classes, in which their
intentions are described briefly. McBurney and McMillan
[48] proposed a technique to generate summaries for API
methods instead of API classes, and Sridhara et al. [49] to
generate comments for method parameters.
Other data sources used to (re)document APIs are those

that may provide code examples of API usage. APIMiner
tool [50] and the Kim et al.’s approach [51] automati-
cally extract such code examples from (private and web,
respectively) source code repository to enhance existing
Javadocs.
Souza et al. [5] used the crowd knowledge available on

StackOverflow to semi-automatically generate cookbooks
for API documentation. Generated cookbooks consist of
the description of programming tasks and their solu-
tions by using the API. Lafetá et al. [45] also generated
cookbooks, focusing on framework feature instantiation
instead of general programming tasks. They mined exam-
ples of instantiations from the source code of the frame-
work itself and from existing instantiations to generate
cookbooks.
Treude and Robillard [53] also used crowd knowledge

available on Stack Overflow, as Souza et al. [5] did, to
automatically augment API documentation with insight
sentences. They defined that insight sentences are sen-
tences related to a particular API type and that provide
insight not contained in the API documentation of that
type. Their idea is to summarize new documents assum-
ing that the reader is already familiar with certain old
documents.
Henβ et al. [46] proposed a semi-automated approach

to extract FAQs from two software development support
channels, forums and mailing lists, in order to docu-
ment APIs. The FAQs are extracted by identifying popular
topics, such as compiler errors, and are proposed to be
published as official software documentation [46].
Our study sheds light on some limitations concern-

ing coverage when using Stack Overflow to (re)document
APIs. Moreover, we have shown that coverage results are
different for different kinds of questions and thus can



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 30 of 34

create different influence depending on the intent of the
(re)documentation.

Stack Overflow
Stack Overflow has been studied in order to help
researchers to understand the knowledge/mechanisms
available on it and how these can be used to assist software
development.
Nasehi et al. [9] defined that the types of question made

on Stack Overflow can be described based on two dimen-
sions: (1) the question topic, such as the main technology
that the question involves and (2) themain concerns of the
asker. They defined four question categories for the sec-
ond dimension. Treude et al. [10] also defined categories
on the main concerns of askers, and they found out that
Stack Overflow is effective in code reviews (review ques-
tion type), for conceptual questions and for novice, and the
most frequent type of question is how-to and questions
about unexpected behavior (discrepancy), which is con-
sistent with our finding, reinforcing the decision to study
those two kinds of question.
The automatic identification of question topics is usu-

ally carried out using question tags. On the automatic
identification of question type involving the main con-
cerns of the asker, Souza et al. [7] conducted an exper-
imental study for the automated classification of Q&A
pairs into three categories: how-to-do-it, conceptual,
and seeking-something. They performed a comparison
between different classification algorithms, and selected
a logistic regression algorithm that had the best perfor-
mance with an overall success rate of 76.19 and 79.81% on
the how-to-do-it category.
In our most related work, Parnin et al. [8] conducted

a study on the feasibility of using the crowd knowledge
available on Stack Overflow for documenting three APIs:
Java, Android and GWT. They found that 87.2, 77.3, and
54.3% of the Android, Java, andGWT classes, respectively,
are covered by the crowd. The main difference between
our work and the Parnin et al.’s work is that they analyzed
coverage of API elements in a general way, with no cri-
terion or filter on the Stack Overflow threads regarding
the type of API documentation that they desired to tar-
get. Hence, an understanding of how the API elements
are covered by the crowd and how the crowd knowledge
can be used for generating API documentation was not
possible. In our work, we have conducted a coverage anal-
ysis according to types of questions related to the main
concerns of askers, and thus, subsidizing the choice of
threads for different types of API documentation intent.
We also presented in the “Comparing how-to-do-it and
debug-corrective coverage with Parnin et al.’s coverage (all-
inclusive)” section, the difference in coverage concerning
our approach and the Parnin et al. approach by replicating
their work.

Linking documents with code elements
There are two general approaches to link documents with
code elements: (1) from a list of code elements, code
elements are searched for in documents, and when an ele-
ment is found, it is linked with the document [8, 13], and
(2) from documents, code-like terms are identified and
mapped to their corresponding code elements and then,
the documents are linked with the code elements [37, 54].
A code-like term is a series of characters that matches a
pattern associated with a code element kind (e.g., camel
cases for types and parentheses for functions) [54].
Parnin et al. [8] and Linares-Vásquez et al. [13] identi-

fied links between Stack Overflow threads and API classes
previously known. Their approaches are based on exact
word matching of class names in different types of textual
content (link types) on StackOverflow posts: code sample,
codemarkup, href markup, word, and title links. Themain
difference between the two works is how they handled
collisions of class names with English words. To avoid
false positives regarding this, Parnin et al. excluded word
links for one-word API class names. Linares-Vásquez et
al. pipelined the link-type detectors, and when a detec-
tor identifies a link, the next detector is not executed. The
sequence of the detectors was thus organized in a way
that code and href link detectors are executed before word
and title link detectors, decreasing the possibility of false
positives.
Dagenais and Robillard [54] developed a tool called

RecoDoc that relies on a technique which identifies code-
like terms in developer documentation and support chan-
nels and links these terms to fine-grained code elements
in an API (e.g., class, method, field). They identify code-
like terms from free-form text by using lightweight regular
expressions and from code fragments by using partial
program analysis (PPA). Their technique is based on the
assumption that code elements mentioned in close vicin-
ity are more likely to be related than code elements
mentioned further apart, so they take into account the
context in which a code-like term is mentioned—context
refers to additional information in various scopes sur-
rounding the term [37]. They also identified sources of
ambiguity inherent to linking code-like terms in unstruc-
tured natural language documents. To resolve these ambi-
guities, they applied a set of filtering heuristics. For
example, for a given term identified as a member (e.g.,
method, field), the declaration ambiguity filter analyzes
the context of this term trying to find its declaring
type.
Rigby and Robillard’s tool, called ACE [37], is based

on the technique implemented on RecoDoc. ACE, how-
ever, has two main improvements concerning linking
code-like terms with code elements. First, they devel-
oped an island parser based on constructs in the Java
Language Specification in order to identify code-like



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 31 of 34

terms from free-form text and code fragments. Island
parsers are generated from island grammars—grammars
that consist of detailed productions that describe the
language constructs of interest (the islands), and lib-
eral productions that catch the remainder (the water)
[55, 56]. Therefore, ACE is able to identify code-like
terms from source code that did not compile, dif-
ferent to RecoDoc that uses PPA creating a depen-
dence on the Eclipse Java compiler. Second, ACE does
not rely on a list of code elements previously known
as RecoDoc does. Instead, ACE identifies code ele-
ments and creates an index of valid elements based
on the elements contained in the collection of doc-
uments. Then, ACE reparses each document extract-
ing unqualified, ambiguous terms and resolves these for
their corresponding code elements by using the con-
text of the terms. Therefore, ACE is also able to iden-
tify code elements in informal documents from multiple
APIs.
Subramanian et al. [57] proposed Baker, a tool for

automatically generating links between type references,
method calls, and field references identified in source
code examples to API documentation. To solve ambi-
guities, they proposed a process called deductive link-
ing. It generates an incomplete abstract syntax tree
(AST) for the source code being analyzed, and uses
information from an oracle (dictionary) for Java and
Javascript to deduce facts about the AST. Baker per-
forms this deduction iteratively, where in each iter-
ation, the tool performs a depth-first traversal of
the AST and examines all nodes of interest: nodes
involved in declarations, invocations, and assignments.
For each of these nodes, Baker builds a list con-
taining the potential matches for that element from
the oracle. The iteration continues until either all ele-
ments are associated with a single fully qualified name
or an iteration fails to improve the results for any
element.
Our linking implementation described in the “Linking

Stack Overflow threads with API elements” section relies
on the approaches of Parnin et al. [8] and Linares-Vásquez
et al. [13]. We presented, in the section, an evaluation
of our implementation and showed that precision was
99.20% and recall was 94.68%. We cannot compare the
reliability of our implementation with that of Parnin et al.
because they did not present an assessment for it. Linares-
Vásquez et al. evaluated their implementation, but differ-
ent to ours, they analyzed precision of links between Stack
Overflow content and API methods, and as such it was
impossible for us to make a fair comparison.

Conclusions
In this paper, we reported a study on the coverage of
the Swing and Android elements on Stack Overflow for

API documentation regarding how-to-do-it and debug-
corrective tasks.
We found that, for both tasks, the overall coverage

values for Android elements (around 69% for how-to-
do-it and 84% for debug-corrective) are higher than
the overall coverage values for Swing elements (45 and
55%). In addition, we observed that those coverage val-
ues increase if we do not consider inner elements: for
Swing, at least 20% increases and for Android at least 7%.
Therefore, we conclude that inner elements are poorly
covered.
Concerning the two tasks, debug-corrective has better

coverage than how-to-do-it, for each API, in four ways:
(1) the overall coverage values are higher, (2) the API ele-
ments are covered by more threads, (3) all API packages
have at least one element covered, and (4) the covering
speed is higher.
Furthermore, there are API elements that are always or

frequently mentioned together in threads. We observed
that, in the most cases, these API elements are potentially
required for the use of other elements. Then, these API
elements require a careful selection of the threads content
for their appropriate documentation.
Additionally, the analysis on the association between

the coverage of APIs and their usage in real soft-
ware systems revealed that these two variables are
strongly associated. This may suggest that widely used
elements have more chances of different nuances that
take advantage of more specific code samples and
explanations (documentation) tailored for that specific
use. Elements not widely used demand less different
nuances and consequently are less discussed by the
crowd.
Finally, through a manual and qualitative study, we

have raised an important issue on the nature of semantic
links for Stack Overflow posts, and we have shown that
the meaning of semantic relevance is not only different
for how-to-do-it and debug-corrective posts (something
that is even new in the related literature), but also that
irrelevant elements in debug-corrective posts are much
more frequent than in how-to-do-it posts. As further
work, we intend to propose an automatic solution to link
Stack Overflow posts with API elements at a semantic
level.
One point for further investigation is whether the inner

elements are important for API documentation. Since
they are public, they are part of the API, and as so, should
be documented. Also, it is worth investigating the reasons
why there are still non-inner elements that are not cov-
ered, whether they are simple to use and do not require
discussion by the crowd, or they are not widely used and
so the chances of discussion are reduced.
Also, mechanisms could be proposed to motivate the

crowd at covering the non-simple elements that are not



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 32 of 34

covered, in order to increase the API coverage, and
consequently to feasible the API documentation by the
crowd. Moreover, taking advantage of the high cover-
age for debug-corrective tasks, a new kind of debugging
assistant would be conceived to contextually match the
source code of developers with the code in questions,
and then to recommend the fix based on the code in the
answers.

Appendix
Attribute selection based on the information gain
method
Tables 28, 29, and 30 present information about the
attribute selection based on the information gain method
for the Android, Swing, and both training sets, respec-
tively. In each table, the top five attributes with the highest
information gain value for each one of the three settings
of the tests (1B, 2B, and 3B) are presented, where attribute
selection is performed. We note here that for each set-
ting, the top-5 attributes are basically the same, and the
QUESTION_CODE_SIZE attribute is the most discrim-
inative attribute in general. Additionally, we present in
the column “#Selected” the number of selected attributes
out of the number of total attributes entered for each test
setting.

Table 28 Top five attributes selected and their respective
information gain value for the Android training set on the three
settings for the tests

Setting #Selected Top five attributes Info gain value

1B 10/12 DEBUG_KEYWORDS 0.353418158

QUESTION_CODE_SIZE 0.350187704

QUESTION_HAS_CODE 0.284593264

QUESTION_BODY_SIZE 0.276840173

HOW_KEYWORDS 0.202119286

2B 25/153 QUESTION_CODE_SIZE 0.350187704

QUESTION_HAS_CODE 0.284593264

QUESTION_BODY_SIZE 0.276840173

howto_KEYWORD 0.265824527

error_KEYWORD 0.137824814

3B 10/12 QUESTION_CODE_SIZE 0.350187704

DEBUG_KEYWORDS 0.30618482

HOW_KEYWORDS 0.294084392

QUESTION_HAS_CODE 0.284593264

QUESTION_BODY_SIZE 0.276840173

Table 29 Top five attributes selected and their respective
information gain value for the Swing training set on the three
settings for the tests

Setting #Selected Top five attributes Info gain value

1B 9/12 QUESTION_CODE_SIZE 0.408890225

DEBUG_KEYWORDS 0.338259094

QUESTION_HAS_CODE 0.32382105

QUESTION_BODY_SIZE 0.271777671

HOW_KEYWORDS 0.170159934

2B 22/153 QUESTION_CODE_SIZE 0.408890225

QUESTION_HAS_CODE 0.32382105

QUESTION_BODY_SIZE 0.271777671

howto_KEYWORD 0.157489004

problem_KEYWORD 0.069082363

3B 9/12 QUESTION_CODE_SIZE 0.408890225

QUESTION_HAS_CODE 0.32382105

DEBUG_KEYWORDS 0.312655378

QUESTION_BODY_SIZE 0.271777671

HOW_KEYWORDS 0.174419188

Table 30 Top five attributes selected and their respective
information gain value for both Android and Swing training sets
on the three settings for the tests

Setting #Selected Top five attributes Info gain value

1B 10/12 QUESTION_CODE_SIZE 0.377347749

DEBUG_KEYWORDS 0.330994105

QUESTION_HAS_CODE 0.305653075

QUESTION_BODY_SIZE 0.27711226

HOW_KEYWORDS 0.178311939

2B 32/153 QUESTION_CODE_SIZE 0.377347749

QUESTION_HAS_CODE 0.305653075

QUESTION_BODY_SIZE 0.27711226

howto_KEYWORD 0.1949863

error_KEYWORD 0.09552362

3B 10/12 QUESTION_CODE_SIZE 0.377347749

DEBUG_KEYWORDS 0.321029275

QUESTION_HAS_CODE 0.305653075

QUESTION_BODY_SIZE 0.27711226

HOW_KEYWORDS 0.194580371



Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 33 of 34

Acknowledgements
FMD would like to thank Fabíola Souza Fernandes Pereira for reviewing some
parts of the paper and for the discussions concerning the classifier.

Funding
We would like to thank FAPEMIG, CAPES, and CNPq for partially funding this
work. We also gratefully acknowledge the financial support of CAPES, CSNR,
and CONICYT under the STIC-AmSud project “Mining software repositories to
instantiate software frameworks and react to API change”.

Availability of data andmaterials
The datasets supporting the conclusions of this article are available at http://
lascam.facom.ufu.br at Downloads.

Authors’ contributions
FMD collected data, manually classified the training sets, performed the
experiments, analyzed the results, prepared the figures and tables, and wrote
the manuscript. KVRP collected data, manually classified the training sets,
assisted the experimental executions, and worked on the manuscript. DC
participated in the discussions between the authors regarding the work and
worked on the manuscript. MAM conceived the main idea of the work,
coordinated the work, and worked on the manuscript. All authors read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Author details
1Faculty of Computing, LASCAM-FACOM, Federal University of Uberlândia,
Uberlândia, Brazil. 2RMoD Inria Lille-Nord Europe, University of Lille-CRIStAL,
Lille, France.

Received: 8 March 2016 Accepted: 2 November 2016

References
1. Robillard MP (2009) What Makes APIs Hard to learn? Answers from

developers. IEEE Software 26(6):27–34
2. Robillard MP, DeLine R (2011) A field study of API learning obstacles.

Empir Softw Eng 16(6):703–732
3. Parnin C, Treude C (2011) Measuring API documentation on the Web. In:

Proceedings of the 2nd International Workshop on Web 2.0 for Software
Engineering (Web2SE’11). ACM, New York, pp 25–30

4. Ponzanelli L, Bacchelli A, Lanza M (2013) Leveraging crowd knowledge for
software comprehension and development. In: Proceedings of the 17th
European Conference on Software Maintenance and Reengineering
(CSMR’ 13). IEEE Computer Society, Washington, DC, pp 57–66

5. Souza LBL, Campos EC, Maia MA (2014) On the extraction of cookbooks
for APIs from the crowd knowledge. In: Proceedings of the Brazilian
Symposium on Software Engineering (SBES’14). IEEE, Maceió,
pp 21–30

6. Stack Exchange Inc (2015) Stack Overflow. http://stackoverflow.com/.
Accessed 30 Nov 2016

7. Souza LBLd, Campos EC, Maia MDA (2014) Ranking crowd knowledge to
assist software development. In: Proceedings of the 22nd International
Conference on Program Comprehension (ICPC’14). ACM, New York,
pp 72–82

8. Parnin C, Treude C, Grammel L, Storey MA (2012) Crowd documentation:
exploring the coverage and the dynamics of API discussions on Stack
Overflow. Technical Report GIT-CS-12-05. Georgia Institute of Technology.
http://www.chrisparnin.me/pdf/crowddoc.pdf

9. Nasehi SM, Sillito J, Maurer F, Burns C (2012) What makes a good code
example? A study of programming Q&A in StackOverflow. In: Proceedings
of the 2012 IEEE International Conference on Software Maintenance
(ICSM’12). IEEE Computer Society, Washington, DC, pp 25–34

10. Treude C, Barzilay O, Storey MA (2011) How Do Programmers ask and
answer questions on the Web? (NIER Track). In: Proceedings of the 33rd
International Conference on Software Engineering (ICSE’11). ACM, New
York, pp 804–807

11. Delfim FM, da Paixão KVR, de A Maia M (2015) Redocumenting APIs with
crowd knowledge: a study on the coverage of the Swing API on Stack
Overflow (in Portuguese). In: III Workshop on Software Visualization,
Evolution, and Maintenance (VEM’15). Belo Horizonte, pp 1–8

12. Kavaler D, Posnett D, Gibler C, Chen H, Devanbu P, Filkov V (2013) Using
and asking: APIs used in the Android market and asked about in
StackOverflow. In: Proceedings of the 5th International Conference of
Social Informatics (SocInfo’ 13), Volume 8238 of the Series Lecture Notes in
Computer Science. Springer International Publishing, Cham, pp 405–418

13. Linares-Vásquez M, Bavota G, Di Penta M, Oliveto R, Poshyvanyk D (2014)
How do API changes trigger Stack Overflow discussions? A Study on the
Android SDK. In: Proceedings of the 22nd International Conference on
Program Comprehension (ICPC’ 14). ACM, New York, pp 83–94

14. Campos E, Souza L, Maia M (2016) Searching Crowd Knowledge to
Recommend Solutions for API Usage Tasks. Journal of Software: Evolution
and Process (JSEP). Wiley, p 31

15. Campos EC, de Almeida Maia M (2014) Automatic categorization of
questions from Q&A sites. In: Proceedings of the 29th Annual ACM
Symposium on Applied Computing (SAC’ 14). ACM, New York,
pp 641–643

16. Aha DW, Kibler D, Albert MK (1991) Instance-based learning algorithms.
Mach Learn 6(1):37–66

17. Quinlan JR (1993) C4.5: Programs for machine learning. Morgan
Kaufmann Publishers Inc., San Francisco

18. Quinlan JR (1996) Improved use of continuous attributes in C4.5. J Artif
Intell Res 4(1):77–90

19. John GH, Langley P (1995) Estimating continuous distributions in
Bayesian classifiers. In: Proceedings of the Eleventh Conference on
Uncertainty in Artificial Intelligence (UAI’95). Morgan Kaufmann
Publishers Inc., San Francisco, pp 338–345

20. Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers.
Mach Learn Spec Issue Learn Probabilistic 29(2–3):131–163

21. Kohavi R (1995) The power of decision tables. In: Proceedings of the 8th
European Conference on Machine Learning (ECML’ 95). Springer, London,
pp 174–189

22. Silva LM, Marques de Sá J, Alexandre LA (2008) Data classification with
multilayer perceptrons using a generalized error function. Neural Netw
21(9):1302–1310

23. Platt JC (2002) Advances in kernel methods. pp. 185–208. MIT Press,
Cambridge, MA, USA (1999) .Chap. Fast Training of Support Vector
Machines using Sequential Minimal Optimization

24. Breiman L (2001) Random forests. Mach Learn 45(1):5–32
25. Landwehr N, Hall M, Frank E (2005) Logistic model trees. Mach Learn

59(1–2):161–205
26. le Cessie S, van Houwelingen JC (1992) Ridge estimators in logistic

regression. Appl Stat 41(1):191–201
27. Nigam K, Lafferty J, McCallum A (1999) Using maximum entropy for text

classification. In: IJCAI-99 Workshop on Machine Learning for Information
Filtering. Stockholm, pp 61–67

28. Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH (2009)
The WEKA Data Mining Software: an update. ACM SIGKDD Explorations
Newsl 11(1):10–18

29. McCallum AK MALLET: A machine learning for language toolkit. http://
mallet.cs.umass.edu. Accessed 30 Nov 2016

30. Landis JR, Koch GG (1977) The measurement of observer agreement for
categorical data. Biometrics 33(1):159–174

31. Cunningham P (2000) Overfitting and diversity in classification ensembles
based on feature selection. Technical Report TCD-CS-2000-07,
Department of Computer Science, Trinity College Dublin, Dublin, Ireland

32. Yu L, Liu H (2004) Efficient feature selection via analysis of relevance and
redundancy. J Mach Learn Res 5:1205–1224

33. Refaeilzadeh P, Tang L, Liu H (2009) Cross-validation. In: Liu L., Özsu M. T.
(eds). Encyclopedia of database systems. Springer, New York,
pp 532–538

34. McNemar Q (1947) Note on the sampling error of the difference between
correlated proportions or percentages. Psychometrika 12(2):153–157

35. Bostanci B, Bostanci E (2013) An evaluation of classification algorithms
using McNemar’s Test (Bansal CJ, Singh KP, Deep K, Pant M, Nagar
KA, eds.). Springer, India

36. (2016) Jericho HTML Parser. http://jericho.htmlparser.net/docs/index.
html. Accessed 30 Nov 2016

37. Rigby PC, Robillard MP (2013) Discovering essential code elements in
informal documentation. In: Proceedings of the 2013 International
Conference on Software Engineering (ICSE’ 13). IEEE Press, Piscataway, NJ,
pp 832–841

http://lascam.facom.ufu.br
http://lascam.facom.ufu.br
http://stackoverflow.com/
http://www.chrisparnin.me/pdf/crowddoc.pdf
http://mallet.cs.umass.edu
http://mallet.cs.umass.edu
http://jericho.htmlparser.net/docs/index.html
http://jericho.htmlparser.net/docs/index.html


Delfim et al. Journal of the Brazilian Computer Society  (2016) 22:9 Page 34 of 34

38. Petrosyan G, Robillard MP, De Mori R (2015) Discovering information
explaining API types using text classification. In: Proceedings of the 37th
International Conference on Software Engineering – Volume 1 (ICSE’ 15).
IEEE Press, Piscataway, NJ, pp 869–879

39. Stack Exchange Inc (2015) Stack exchange data dump. https://archive.
org/details/stackexchange. Accessed 30 Nov 2016

40. Oracle (2015) Java SE Development Kit 8 documentation. http://www.
oracle.com/technetwork/java/javase/documentation/jdk8-doc-
downloads-2133158.html. Accessed 30 Nov 2016

41. Sonatype Inc (2015) The central repository. http://search.maven.org/#
search%7Cga%7C1%7Ccom.google.android. Accessed 30 Nov 2016

42. Dyer R, Nguyen HA, Rajan H, Nguyen TN (2013) Boa: A language and
infrastructure for analyzing ultra-large-scale software repositories. In: 35th
International Conference on Software Engineering (ICSE’ 13). IEEE Press,
Piscataway, pp 422–431

43. (2016) The R Project for statistical computing. https://www.r-project.org/.
Accessed 30 Nov 2016

44. Rocha AM, Maia MA (2016) Automated API documentation with tutorials
generated from Stack Overflow. In: Proceedings of the 30th Brazilian
Symposium on Software Engineering (SBES’ 16). ACM, New York, pp 33–42

45. Lafetá RFQ, Maia MA, Röthlisberger D (2015) Framework instantiation
using cookbooks constructed with static and dynamic analysis. In:
Proceedings of the 23rd International Conference on Program
Comprehension (ICPC’15). IEEE Press, Piscataway, NJ, pp 125–128

46. Henβ S, Monperrus M, Mezini M (2012) Semi-automatically extracting
FAQs to improve accessibility of software development knowledge. In:
Proceedings of the 34th International Conference on Software
Engineering (ICSE’12). IEEE Press, Piscataway, NJ, pp 793–803

47. Moreno L, Aponte J, Sridhara G, Marcus A, Pollock L, Vijay-Shanker K
(2013) Automatic generation of natural language summaries for Java
classes. In: Proceedings of the 21st International Conference on Program
Comprehension (ICPC’13). IEEE, Piscataway, NJ, pp 23–32

48. McBurney PW, McMillan C (2014) Automatic documentation generation
via source code summarization of method context. In: Proceedings of the
22nd International Conference on Program Comprehension (ICPC’14).
ACM, New York, pp 279–290

49. Sridhara G, Pollock L, Vijay-Shanker K (2011) Generating parameter
comments and integrating with method summaries. In: Proceedings of
the 19th International Conference on Program Comprehension (ICPC’11).
IEEE Computer Society, Washington, DC, pp 71–80

50. Montandon JE, Borges H, Felix D, Valente MT (2013) Documenting APIs
with examples: Lessons learned with the APIMiner Platform. In:
Proceedings of the 20th Working Conference on Reverse Engineering
(WCRE’13). IEEE, Piscataway, NJ, pp 401–408

51. Kim J, Lee S, Hwang S-W, Kim S (2009) Adding examples into Java
documents. In: Proceedings of the IEEE/ACM International Conference on
Automated Software Engineering (ASE’09). IEEE Computer Society,
Washington, DC, pp 540–544

52. Monperrus M, Maia A (2014) Debugging with the crowd: a debug
recommendation system based on Stackoverflow. Technical Report
hal-00987395. INRIA. https://hal.archives-ouvertes.fr/hal-00987395/PDF/
article.pdf

53. Treude C, Robillard MP (2016) Augmenting API documentation with
insights from Stack Overflow. In: Proceedings of the 38th International
Conference on Software Engineering (ICSE’ 16). ACM, New York,
pp 392–403

54. Dagenais B, Robillard MP (2012) Recovering traceability links between an
API and its learning resources. In: Proceedings of the 34th ACM/IEEE
International Conference on Software Engineering (ICSE’ 12). IEEE Press,
Piscataway, NJ, pp 47–57

55. van Deursen A, Kuipers T (1999) Building documentation generators. In:
Proceedings of the IEEE International Conference on Software
Maintenance (ICSM’ 99). IEEE Computer Society, Washington, DC, p 40

56. Moonen L (2001) Generating robust parsers using island grammars. In:
Proceedings of the Eighth Working Conference on Reverse Engineering
(WCRE’ 01). IEEE Computer Society, Washington, DC, p 13

57. Subramanian S, Inozemtseva L, Holmes R (2014) Live API Documentation.
In: Proceedings of the 36th International Conference on Software
Engineering (ICSE’ 14). ACM, New York, pp 643–652

Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com

https://archive.org/details/stackexchange
https://archive.org/details/stackexchange
http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
http://www.oracle.com/technetwork/java/javase/documentation/jdk8-doc-downloads-2133158.html
http://search.maven.org/#search%7Cga%7C1%7Ccom.google.android
http://search.maven.org/#search%7Cga%7C1%7Ccom.google.android
https://www.r-project.org/
https://hal.archives-ouvertes.fr/hal-00987395/PDF/article.pdf
https://hal.archives-ouvertes.fr/hal-00987395/PDF/article.pdf

	Abstract
	Background
	Methods
	Results
	Conclusions
	Keywords

	Introduction
	API coverage by Stack Overflow
	Automatic classification of questions
	Classification algorithms and tools
	Training set construction
	Input data for the tools
	Algorithms evaluation and selection

	Linking Stack Overflow threads with API elements
	Link types
	Threads preprocessing
	Identification of API elements in Stack Overflow posts
	Linking approach evaluation
	Analysis of actual semantic links

	Methods
	Data collection
	Thread selection based on question types
	API coverage analysis

	Results and discussion
	How-to-do-it coverage of API elements
	RQ #1. To what extent does Stack Overflow cover API elements of Swing and Android APIs with threads containing how-to-do-it question?
	Debug-corrective coverage of API elements
	RQ #2. To what extent does Stack Overflow cover API elements of Swing and Android APIs with threads containing debug-corrective question?
	Threads covering multiple API elements and their co-occurrence
	RQ #3. How often do threads cover multiple API elements?
	API coverage growth and API-related thread growth
	RQ #4. How does Stack Overflow cover API elements over time?
	Coverage and actual use of APIs
	RQ #5. Is there an association between coverage of API elements on how-to-do-it and debug-corrective discussions by the crowd and actual usage of these elements in software systems?
	Comparing how-to-do-it and debug-corrective coverages with Parnin et al.'s coverage (all-inclusive)
	Threats to validity
	Limitations
	Practical implications

	Related work
	(Re)documenting APIs
	Stack Overflow
	Linking documents with code elements

	Conclusions
	Appendix
	Attribute selection based on the information gain method
	Acknowledgements
	Funding
	Availability of data and materials
	Authors' contributions
	Competing interests
	Author details
	References

