
JOURNAL OF SOFTWARE: EVOLUTION AND PROCESS
J. Softw. Evol. and Proc. 2014; 00:1–32
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/smr

Searching Crowd Knowledge to Recommend Solutions for API
Usage Tasks

Eduardo C. Campos, Lucas B. L. de Souza, Marcelo de A. Maia

Faculty of Computing, Federal University of Uberlândia, Uberlândia, MG, 38400-902, Brazil

SUMMARY

Stack Overflow (SO) is a question and answer service directed to issues related to software development.
In SO, developers post questions related to a programming topic and other members of the site can provide
answers to help them. The information available on this type of service is also known as “crowd knowledge”
and currently is one important trend in supporting activities related to software development.
We present an approach that makes use of “crowd knowledge” available in SO to recommend information
that can assist developers in their activities. This strategy recommends a ranked list of question-answer
pairs from SO based on a query. The criteria for ranking are based on three main aspects: the textual
similarity of the pairs with respect to the query related to the developer’s problem, the quality of the pairs,
and a filtering mechanism that considers only “how-to” posts. We conducted an experiment considering
programming problems on three different topics (Swing, Boost and LINQ) widely used by the software
development community to evaluate the proposed recommendation strategy. The results have shown that
for Lucene+Score+How-to approach, 77.14% of the assessed activities have at least one recommended pair
proved to be useful concerning the target programming problem. Copyright c© 2014 John Wiley & Sons,
Ltd.

Received . . .

KEY WORDS: Q&A services, crowd knowledge, recommendation systems

1. INTRODUCTION

In the last decade, concomitantly with the emerging of Web 2.0, a new software development
behavior emerged and it is changing the characteristics of software development. This change is the
result of an extensive accessible structure of social media (wikis, blogs, questions and answers sites,
forums) [1]. Similarly to the way that open source development has changed the traditional process
of software development [2], these new forms of collaboration and contribution have the potential
to redefine how developers learn, preserve and share knowledge about software development.

One important example of social media is SO, which is a notable example of technical question
and answer (Q&A) service that gained popularity among developers and is an important venue for
sharing knowledge on software development [3]. This service offers a web platform to programmers
for discussing technical issues, so that they can share their knowledge and solve problems with
undocumented public libraries, unclear programming tasks, or new technologies or frameworks to
explore [4]. Its design nurtures a community of developers, and enables crowdsourced software
engineering activities ranging from documentation to production of useful, high quality code
snippets [5]. The information available on this kind of social media service is also known as “crowd
knowledge” and has the potential to become a substitute for the official software documentation [6].
Mamykina et al. conducted a statistical study on the entire SO corpus to find out what is behind of

∗Correspondence to: {eduardocunha11, lucas.facom.ufu}@gmail.com, marcelo.maia@ufu.br

Copyright c© 2014 John Wiley & Sons, Ltd.
Prepared using smrauth.cls [Version: 2012/07/12 v2.10]

2 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

its immediate success [3]. Their findings showed that most of the questions will receive one or more
answers (above 90% very quickly - with a median answer time of 11 minutes). Treude et al. pointed
out that SO is particularly effective for code reviews, for conceptual questions and for novices [6].

SO has on its website, a search engine that allows users to query for textual content (for example:
“how to sort a vector using Boost”). The search result is a set of discussions (threads), each one
composed of a question and a series of answers. Users can sort threads according to a number of
criteria such as: the number of votes the question received, or the relevance to the search query.
However, considering only the textual similarity as the search criterion may be frustrating for the
user. For example: the search can return threads to the user that despite having relevance to the query
string, have a negative rating by the community, or may return threads that despite being well voted
by the community, are not very relevant to the developer’s intent. Thus, considering more than one
criterion seems to be more appropriate in a recommendation strategy.

In this paper, we present a recommendation strategy that makes use of the information available
on SO to suggest question/answer pairs that may be useful to programming tasks that developers are
faced with. In this approach, we recommend pairs considering three aspects. The first one considers
the textual similarity that the question/answer pair has with the task that the developer has at hand.
The reason behind this criterion is that other developers may have had similar questions in the past
and posted questions on SO, so the answers to those past questions may be reused. The second
criterion considers the score of questions and answers to recommend question-answer pairs (i.e.,
Q&A pairs) that were well evaluated by the crowd. A Q&A pair is composed by a question and
one answer for that question. For instance, if a SO’s post has n answers, there are n possible Q&A
pairs for that post, and each pair is composed by the question of SO’s post and an answer for this
question. The third aspect is related to question filtering: we aim at recommending only solutions to
development tasks, which can be modeled as “how-to” posts that will be filtered by a classification
algorithm. The result of the recommendation process is a ranked list of question-answer pairs.

In a previous conference paper [7], we conducted experiments to evaluate the recommendation
strategy. The programming problems used in the experiments were extracted randomly from
cookbooks for three topics widely used by the software development community: Swing, Boost and
LINQ. The results have shown that for 27 of the 35 (77.14%) activities, at least one recommended
pair proved to be useful to the target programming problem. Moreover, for all the 35 activities,
at least one recommended pair had a reproducible or almost reproducible source code snippet
(reproducible means that the snippet can be compiled and run inside the Integrated Development
Environment (IDE) after minor adjustments or no adjustments). We have extended that paper in the
following main points:

• We conducted a manual analysis of the top-10 recommendations produced by Google for
all 35 development tasks considering the criteria Relev and Reprod, accounting for 350 new
evaluation points for each criterion (700 in total);

• We have included a quantitative and qualitative comparison of our approach
(Lucene+Score+How-to) with Google. The extended results are much more significant,
because we improved the data analysis space and also because Google is currently the most
popular general purpose search engine;

• We have detailed the How-to classifier used in the study, including new tables containing the
information about the attributes of the classifier (see Tables II and III).

The rest of this paper is organized as follows. In Section 2, we present a Logistic Regression
classifier used in this study to classify Q&A pairs into different categories. In Section 3, we present
the description of our recommendation approach. In Section 4, we present the evaluation criteria
and detail the experimental design of our work. In Section 5, we report the results that are discussed
in Section 6. In Section 7 we present the Related Work, and finally in Section 8 we draw our
conclusions.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 3

2. CLASSIFICATION OF Q&A PAIRS

On SO, users ask different kind of questions. Accordingly to Nasehi et al. [8] “SO question types
can be described based on two different dimensions. The first dimension deals with the question
topic: it shows the main technology or construct that the question revolves around and usually can
be identified from the question tags that the questioner can add to the question to help others (e.g.,
potential responders) find out about what the question is about”. Thus, if our goal is to recommend
Q&A pairs for the topic Swing, we only consider in our approach Q&A pairs belonging to threads
of discussion in which the question has the tag “swing” among its tags (a question on SO can have
up to five tags). Yet accordingly to Nasehi et al. [8] “questions from SO can also be classified in a
second dimension that is about the main concerns of the questioners and what they wanted to solve
in SO”. In this second dimension, they identified four categories of questions: Debug-corrective,
Need-to-know, How-to-do-it and Seeking-Different-Solution. Similarly, we considered the following
five categories in this second dimension:

• How-to-do: The questioner provides a scenario and a question about how to implement it
(sometimes with a given technology or API) [8];

• Conceptual: Conceptual questions on a particular topic (e.g., definition of concepts, best
practices for a given technology). The questioner is waiting for an explanation of a particular
subject or justification on certain behavior;

• Seeking-something: The questioner is looking for something more objective (e.g., book,
tutorial, tool, framework, library) or more subjective (e.g., an advice, an opinion, a suggestion,
a recommendation);

• Debug-corrective: Questions that deal with problems in the development code, such as errors
at run time, notifications or unpredictable behavior. The questioner usually looks for revision
in his code;

• Miscellaneous: The questioner has many different interests. Thus, he asks several questions.
This usually leads to a mixture between the other categories (e.g., the questioner may be
looking for a book and want a recipe for a problem).

The categories Need-to-know and Seeking-Different-Solution presented by Nasehi et al.
[8] correspond respectively to our categories Conceptual and Seeking-something with some
adjustments. The How-to-do category is very close to a scenario in which a developer has a
programming task at hand and needs to solve it. For this reason, in our approach, we should filter
Q&A pairs that are classified as How-to-do. In order to automate the selection of this kind of pairs,
we developed a classifier to obtain only that type of Q&A pairs that is presented in the rest of this
section.

2.1. Classification Algorithm

In order to choose the classification algorithm that best classifies Q&A pairs from SO, we performed
a comparison between the following: Logistic Regression (LR) [9, 10], Naive Bayes (NB) [11],
Multilayer Perceptron (MLP) [12], Support Vector Machine (SVM) [11], J4.8 Decision Tree (J4.8)
[11, 13], Random Forest (RF) [14] and K-Nearest Neighbors (KNN) [11].

We decided to classify the Q&A pair instead of classifying only the question body because we
observed that the answer body may provide relevant information to help to make the decision
of the Q&A pair’s category (e.g., distinguish between pairs of How-to-do and Debug-corrective
categories).

2.2. SO Dataset

We downloaded a release of SO public data dump† (the version of March 2013) and imported the
data into a relational database in order to classify the Q&A pairs. The table “posts” of this database

†http://blog.stackoverflow.com/category/cc-wiki-dump/

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

4 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

stores all questions and all answers that were given to each question, if any, considering the date
that the dump was built.

We randomly selected from this relational database a batch of 400 Q&A pairs and
manually classified them. In the classification process of each pair, we considered the five
categories described above: How-to-do, Conceptual, Seeking-something, Debug-corrective, and
Miscellaneous. Sampling is better than considering only Q&A pairs on the topics that we investigate
later because these pairs were manually classified in order to build a dataset for training and testing
the classifier. So, we have to consider any Q&A pair belonging to any topic in order to avoid
overfitting [15] or bias. Table I shows the results of manual classification performed on 400 selected
Q&A pairs. The two first authors of the paper performed a manual classification. First, each of
the evaluators made an individual assessment of all selected pairs. Then, a consensual assessment
was carried out to resolve conflicts and decide for the best classification. Of these 400 selected
Q&A pairs, 74 (18.5%) had to be addressed in order to resolve the conflicts between evaluators. We
identified that the major difficult in this classification process is to differentiate between categories
How-to-do and Debug-corrective. The difference between these categories is subtle. Often both have
code snippets in the question. When posting a question with code snippets in SO, the questioner may
be wanting basically one of these two solutions: (i) a bug fix for the input code snippet (in the case
of Debug-corrective) or (ii) a code example to perform a desired programming task (in the case of
How-to-do).

Table I. Manual classification of 400 selected Q&A pairs.

Category #Classified Q&A pairs
How-to-do 109

Conceptual 106
Seeking-something 121

Debug-corrective 10
Miscellaneous 54

As the number of Q&A pairs of the Debug-corrective category was only 10, this category was
not considered in the construction of the training dataset. Moreover, no practical application was
found for Miscellaneous category. So, this category also was not considered in the construction of
the training dataset.

In the next step, we generated an ARFF file (Attribute-Relation File Format), containing the
labeled instances and the information of the classifier’s attributes that was loaded into Weka [16].
We conducted an experimental study with 336 SO Q&A pairs divided into three domain categories:
How-to-do, Conceptual and Seeking-something. The experiments were performed using a 10-fold-
cross validation technique. The dataset used in this study is available online.

2.3. Definition of Attributes

We defined 10 attributes to characterize SO Q&A pairs. Out of these 10 attributes, six are related to
the number of occurrences of keyword terms in the “title”, “question body” and “answer body” of a
pair. The remaining four attributes are boolean ones and they are related to the presence or absence
of source code or links in the “question body” and “answer body” for a given pair. The considered
keyword-based attributes are shown in Table II while the considered boolean attributes are shown
in Table III.

The keywords used for classifying How-to-do questions shown in Table II are the result of a
manual qualitative analysis of a sample of 100 SO posts. This sample was randomly selected and
the first author of this paper identified the frequent words or expressions that appear in those posts.
This analysis was performed in order to define the keyword-based attributes shown in Table II.

We decided not to use stemming in the keyword-based attributes of the classifier because the
meaning of words is very important to assist the classifier in the decision process of the Q&A pair’s
category. Despite stemming has its advantages since this technique transforms different inflections
and derivations of the same word to one common “stem”, a problem concerning stemming is the

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 5

Table II. Attributes and their respective keywords.

Attribute Keywords
howQty how to, how do, how does, how can, how i, how we, how you, way(s), method(s),

function(s), algorithm(s), anyway, manner, mode, solution(s), pseudocode, script(s),
workaround, solve, resolve, implement, step(s), approach, approaches

debugQty exception(s), error(s), debug, debugging, fail, failed, warning, notice, notification,
fault, problem, matter, trouble, wrong, incorrect, denied, breakpoint, unhandled, fix,
bug(s), issue(s), tracker(s), permission(s), bug/feature

optimalQty optimal, efficient, better, reliable, elegant, appropriate, suitable, adequate, proper,
safest, fast, fastest, quickly, security, secure, robust, performant, performance,
reasonably, smoother, viable, fast, lightweight, easy, easiest, cleanest, small, open-
source, user-friendly, good, portable, correct, standard

lookingForQty tool(s), tutorial(s), manual(s), book(s), looking for, looking forward, looking
at, looking around, searching for, searching forward, searching at, searching
around, client(s), find, app, application(s), lib(s), library, libraries, framework(s),
migrate, migration(s), migrating, upgrade, convert, converting, conversion, porting,
article(s), where, freeware, plugin(s), plug-in, research, search, seeking, google,
system(s), video(s), resource(s), technique(s), editor(s), cms, erp, vmware, vpn,
strategy, getting, started, when, ide(s), scanning, googling, blog(s), debugger(s),
interpreter(s), compiler(s), comment(s), suggestion(s), looked, look, software(s),
platform, profiler(s), generator(s), repository, repositories, should, advice(s),
experience(s), experienced, used, replacement, idea(s), caveats, tips, tricks,
recommend, recommendation, guideline(s), guide(s), guidance, orientation(s), help,
helpful, suggest, suggestion(s), opinion(s), hint(s), point, pointers, experience(s),
alternative(s), choice(s), thought(s), option(s), share, clue(s), insight, light, deal,
dealt, package(s), available, threshold(s), freeware, direction(s), free, learning,
material, beginner, possibilities, provider(s)

conceptualQty difference(s) between, is the, is this, are the, are this, best practice(s),
why, explain, clarify, explicate, explanation, explain, meaning, significance,
possible, what, what’s, which, elucidate, illuminate, expound, tell, how much, how
many, missing, level, metrics, statistics, reason, cause(s), justification(s), potential,
concept, distinction(s), consensus, motive(s), mean, signify, signification, lesson(s),
understand, explanatory, purpose(s), does, conceptual

questionQty Returns the number of questions asked in the Q&A pair, based on the number of
times that the operator mark (?) appears

Table III. Definition of boolean attributes.

Attribute Definition
questionHasCode Boolean value that indicates whether exists source code in the question.

answerHasCode Boolean value that indicates whether exists source code in the answer.
questionHasLink Boolean value that indicates whether exists link(s) in the question.

answerHasLink Boolean value that indicates whether exists link(s) in the answer.

issue of overstemming. This problem occurs when unrelated words are conjoined under the same
stem. For instance, the words “general” and “generous” are stemmed under the same stem “gener”
[17]. Thus, the classifier will treat as the same, losing the notion of the meaning of these words.
Although Porter stemmer [18] is known to be powerful, it still faces many problems. The major
ones are overstemming and understemming errors [17].

In order to identify the frequent words or expressions that appear in those SO posts, we have
built an inverted index (the first major concept in information retrieval). Each SO post has a unique
serial number, known as the post identifier (postID). We keep a dictionary of terms (sometimes also
referred to as vocabulary). We decided to consider the stop words in our vocabulary because they
help to identify the main concerns of the questioners and what they wanted to solve in SO. Then for
each term (word or expression), we have a list that records which SO posts the term occurs in (i.e.,
for each term, we have a list of postIDs). Since a term generally occurs in a number of SO posts,
this data organization already reduces the storage requirements of the index.

The dictionary also records some statistics, such as the number of SO posts which contain each
term (the post frequency pf , which is here also the length of each list). We defined that a term
is frequent in our dictionary when pf ≥ 30 (i.e., the term appears at least in 30 of 100 SO posts

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

6 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

considered). We tested with different values for pf , but the accuracy of the How-to classifier was
much lower. So, we decided to consider this threshold because we achieved better accuracy rate for
the How-to classifier with this choice.

For each attribute related to keywords, we note the words and expressions that appeared more
frequently in SO posts. We observed that the presence of source code in the question often occurs
with Q&A pairs belonging to the Debug-corrective and How-to-do categories because the questioner
posts the code snippet in the question in order to obtain a fix or solution for his/her problem. We also
observed that often some answers of Q&A pairs belonging to the How-to-do and Seeking-something
categories have links to external sources (e.g., tutorials, official API documentation). These links
often have additional information about the programming task at hand. Thus, we consider the
existence of the links in the experiment.

The bold keywords in Table II have weight five and the others have weight one. We adopted a
weighting criterion because there are keywords that seem to be more important than others (i.e.,
some keywords help better in the decision process of the Q&A pair’s category). We tried several
different weights and we chose those that performed better (i.e., the weight in which the classifiers
had the higher success rate). We conducted the experiments with the labeled Q&A pairs used to
build the SO Dataset (more specifically the 336 labeled Q&A pairs divided into three domain
categories: How-to-do, Conceptual and Seeking-something). We processed the question and answer
texts of those Q&A pairs considering different weighting mechanisms for the relevant keywords,
and for each mechanism, we generated a different ARFF file, containing the labeled instances and
the information of attributes that was loaded into Weka [16]. The experiments were performed using
a 10-fold-cross validation technique, considering the 5 most relevant attributes.

Table IV shows the classifier’s accuracy (i.e., success rate) for different classifiers and weighting
mechanisms experienced considering the 5 most relevant attributes. As shown in Table IV the higher
success rates were achieved with weight five (i.e., column Weight = 5) for the words considered
more relevant in the decision process of the Q&A pair’s category (i.e., bold keywords in Table
II). For all experienced weighting mechanisms, we considered that the weight for the less relevant
keywords is equal to 1 (i.e., keywords that do not appear in bold in Table II).

Table IV. Classifier’s Accuracy for different classifiers and weighting mechanisms considering the 5 most
relevant attributes (Weight: the weight for words considered more relevant; ACC: the classifier’s accuracy).

Classifier’s
Accuracy

Weight = 1 Weight = 2 Weight = 3 Weight = 4 Weight = 5 Weight = 6

ACC(LR) 65.4223% 66.6714% 71.1315% 74.2140% 76.1905% 75.2210%
ACC(NB) 61.2917% 62.3345% 68.9127% 69.8113% 72.9167% 70.2357%
ACC(MLP) 64.2140% 66.7132% 71.2840% 73.2546% 75.8929% 74.1018%
ACC(SVM) 59.1439% 59.7890% 66.2453% 68.4562% 70.2381% 69.4627%
ACC(J4.8) 58.4567% 58.9214% 63.2718% 67.3321% 69.6429% 68.3492%
ACC(RF) 60.2143% 62.7716% 65.9122% 68.1014% 71.7262% 70.2910%
ACC(KNN)
(k = 5)

58.8570% 60.4310% 63.2451% 65.3160% 69.9405% 67.2314%

Thus, each keyword has its own weight (one or five). Keywords with weight one are less important
and are counted only once, while the keywords with weight five are considered more important and
are counted five times when they appear in a Q&A pair. Moreover, we observed that keywords with
weight five often appear in different Q&A pairs and describe clearly the concern of the questioner.
In the next subsection, we detailed the feature selection process conducted in order to filter the most
relevant attributes and we showed the classification results we obtained.

2.4. Feature Selection and Classification Results

We carried out feature selection with information gain filter [19, 20] to reduce the feature space and
eliminate the least relevant attributes. The filtering process selected six attributes: conceptualQty,
lookingForQty, howQty, answerHasCode, questionHasCode, answerHasLink.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 7

We performed information gain filter in the attributes in combination with ranker search method
‡ (i.e., this method ranks attributes by their individual evaluations) considering a threshold =
-1.7976931348623157E308. Table V shows the attributes in decreasing order of information
gain value (the higher the value of information gain, the better the attribute contributes to the
classification process).

Table V. Ranked Attributes: Information Gain

Information Gain Value Attribute
0.3309 conceptualQty
0.2486 lookingForQty
0.2211 howQty
0.0757 answerHasCode
0.0389 questionHasCode
0.029 answerHasLink

0 debugQty
0 questionHasLink
0 optimalQty
0 questionQty

Table VI shows the classification results for 5 most relevant and 6 most relevant attributes selected
by Information Gain Filter. We have obtained better results with the 5 most relevant attributes.

Table VI. Results with selected attributes: 5 most relevant and 6 most relevant.

5 most relevant 6 most relevant
Classifier Success Rate Success Rate

LR 76.1905% 74.4048%
NB 72.9167% 70.8333%

MLP 75.8929% 72.3214%
SVM 70.2381% 70.5357%
J4.8 69.6429% 69.6429%
RF 71.7262% 74.7024%

KNN (k = 5) 69.9405% 69.3452%

The classification process can be performed at any current desktop computer running Weka
software. It does not require fancy memory resources and processing. The largest cost is in the
creation of the input file to the classifier (i.e., ARFF file) and not in the classification process itself.
This input file contains information about the features of Q&A pairs belonging to a particular API.
The whole classification process for a given API was executed in less than one hour.

The best results were obtained with a Logistic Regression (LR) classifier with an overall success
rate of 76.19% and 79.81% on How-to-do category. We also obtained an overall success rate of
75.89% with a Multilayer Perceptron (MLP) classifier. In order to know whether LR and MLP were
significantly different, we used a non-parametric test called Mc Nemar’s test [21][22]. According to
Mc Nemar’s test, two algorithms can have 4 possible outcomes arranged in a 2x2 contingency table
[23] as shown in Table VII.

Table VII. Mc Nemar’s test: Possible results of two algorithms.

Algorithm A failed Algorithm A succeeded
Algorithm B failed Nff Nsf

Algorithm B succeeded Nfs Nss

Nff denotes the number of instances when both algorithms failed and Nss denotes success for
both algorithms. These two cases do not give much information about the algorithm’s performances

‡http://weka.sourceforge.net/doc.dev/weka/attributeSelection/Ranker.html

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

8 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

as they do not indicate how their performances differ. However, the other two parameters (Nfs

and Nsf) show cases where one of the algorithms failed and the other succeeded indicating the
performance discrepancies. In order to quantify these differences Mc Nemar’s test employs v score
(Equation 1) [22].

v =
(|Nsf −Nfs| − 1)√

Nsf +Nfs

(1)

The v score is interpreted as follows: When v = 0, the two algorithms are said to show similar
performance. As this value diverges from 0 in positive direction, this indicates that their performance
differs significantly [22]. We used Mc Nemar’s test for LR and MLP algorithms considering the best
classification results we obtained (i.e., with 5 most relevant attributes, the overall success rates for
LR and MLP were respectively, 76.1905% and 75.8929% in a total of 336 instances). Table VIII
shows the 2x2 contingency table for LR and MLP classification algorithms. We obtained a v score
equal to 0. Thus, the classifiers LR and MLP were not significantly different. According to Mc
Nemar’s test, these classifiers have similar performance. Thus, in this case, we could choose anyone
because it would not be a big difference if we adopt a classifier with a slightly lower success rate.
In this study, we adopted the LR classifier to select Q&A pairs of the How-to-do category.

Table VIII. Mc Nemar’s test: contingency table for LR and MLP algorithms (v = 0).

Algorithm LR failed Algorithm LR succeeded
Algorithm MLP failed Nff = 80 Nsf = 1

Algorithm MLP succeeded Nfs = 0 Nss = 255

The final results of our recommendation strategy depend directly of a good classification. For
instance, if a classifier has low success rate, it would misidentify a great number of Q&A pairs. It is
essential to correctly classify How-to pairs because they have the characteristic of showing step by
step how to solve a programming task at hand. The classification step is also important to improve
the overall quality of the ranking. It would not be worth using another classifier in our study because
so far we have not obtained a classifier better than LR. Only the MLP classifier achieved a similar
performance (according to Mc Nemar’s test). Therefore, the overall quality of the ranking generated
by them would be very similar.

3. OUR APPROACH

In this section, we state our research goal, present the three topics used in the experiments and detail
our recommendation approach.

3.1. Research Goal

This paper aims at recommending Q&A pairs to assist developers in their development tasks,
considering that the recommended Q&A pairs should have high textual similarity with the
development task, they should be well evaluated by SO community, and they should be characterized
as “How-to-do”. A SO’s post is formed by a question and a series of answers to that question. We
decided to recommend Q&A pairs instead of entire posts because the answers for the same question
can have different scores, i.e., some answers can be much better than others. We are interested in
only recommend high quality content. We consider that a score of a pair (i.e., the number of upvotes
minus the number of downvotes) is an indicative of its quality, because it represents the assessment
of the crowd about the usefulness of the pair’s content. So, we expect that recommended pairs are
highly relevant in the context of the user task.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 9

3.2. Considered Topics

We conducted our experiments on three topics for different programming languages (Java, C++ and
.NET languages) widely used in the software development industry: Swing, Boost and Language
Integrated Query (LINQ), respectively.

Swing is a toolkit to enable creating graphical user interfaces in Java. Developers can use Swing
to create large-scale applications with a wide array of powerful components [24, 25].

Boost is a collection of C++ libraries. Each library has been reviewed by many professional
developers before being accepted to Boost. Libraries are tested on multiple platforms using many
compilers and the C++ standard library implementations [26].

LINQ (Language Integrated Query) is a Microsoft .NET framework programming model, which
adds query capabilities to the .NET programming languages. These extensions provide shorter and
expressive syntax to manipulate data [27].

3.3. Index Construction

We used the search engine Apache Lucene [28] to index the data. For a given topic (e.g., Swing) we
obtain all threads from SO database in which the question has a specific tag (e.g., “swing”). Then,
from that set of threads, we obtain all Q&A pairs, so, if a thread has a question and n answers, we
generate n Q&A pairs for that thread. Table IX shows the number of Q&A pairs obtained for each
topic considered in this paper.

The next step is to classify Q&A pairs in order to consider only How-to-do pairs. Table X shows
the result of the pairs’ classification. For each Q&A pair classified as How-to-do, we remove its
HTML tags, parse it, remove stop words and perform stemming on its content (text of title, question
and answer, excluding the code snippets) using the Porter Stemming algorithm [18]. As questions
and answers from SO can have source code snippets that are not appropriate to be parsed using the
Lucene’s query parser (because it is primarily a natural language parser) we treat those snippets
in a different way. For the Swing library we developed regular expressions to obtain the names of
classes/interfaces/methods that are being created or called. For Boost we also developed regular
expressions in order to identify the classes/methods/structs being declared or used. For LINQ, it is
somewhat different because it is not a classic API: we checked if the source code snippet is using one
of its operators (e.g., “OrderByDescending”, “SelectMany”, etc.). The corpus of documents created
is used to build a search index using Lucene. In the next subsection we present how we use this
index to search Q&A pairs. For each API considered in this paper, we created an index following
the previous approach. Table XI shows the number of documents used to build the index for each
topic. Observe that the number of documents is the same of Q&A pairs classified in the category
“How-to-do” because for each Q&A pair classified in that category a document is generated that
composes the corpus used to build the index. Table XI also shows the number of different terms in
the documents for each topic.

Table IX. Total of Q&A pairs by topic.

Topic Programming Language Total of Q&A pairs
Boost C++ 14,558
Swing Java 45,239
LINQ .NET Languages 60,035

Table X. Classification of Q&A pairs by topic.

Topic How-to-do Conceptual Seeking-something
Boost 7,125 4,112 3,321
Swing 26,374 10,629 8,236
LINQ 39,592 13,962 6,481

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

10 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

Table XI. Index information by topic.

Topic Number of documents Number of terms
Boost 7,125 55,383
Swing 26,374 187,914
LINQ 39,592 263,502

3.4. Searching in Lucene Indexes

The Lucene’s index built for a topic can be used to search Q&A pairs that are relevant to a given
query (list of terms) for that topic. We perform two types of search on this index, that we call
Scenario NKAE - Not Known API Element and Scenario KAE - Known API Element.

Scenario NKAE corresponds to the situation where a developer has a task at hand, which will be
solved using a particular API (e.g., “Boost”), but he does not know which API element (e.g., class
or method) could help him solve his problem. For example, a developer could need to “read a text
file using Boost”. The title of the task (in this example “read a text file using Boost”), after being
pre-processed (removal of stop words and stemming) is used as a search query to retrieve Q&A
pairs.

Scenario KAE corresponds to the situation where a developer needs to solve a programming task
using a particular element of the API. For example: someone could need to use the Swing library
to “change the color of a JButton”, where JButton is a widget class from Swing. In this case, the
developer already knows which API element has to be used.

We search Q&A pairs in Scenario KAE in a similar way of what we described for Scenario
NKAE. The difference is that we append to the task’s title a string corresponding to a class name (in
the case of Swing and Boost) or an operator name (in the case of LINQ) considered fundamental
in the solution presented in the cookbook for that problem. As we show later, the tasks considered
in the experiments were extracted from cookbooks related to the topics. For example, one of the
tasks selected for the experiment with Swing API has the title “Action Handling: Making Buttons
Work”. The class “ActionListener” is important in the solution of the task. Thus, we append the
string “ActionListener” to the title, and the resulting string “Action Handling: Making Buttons Work
ActionListener” is used as query string to search on Lucene’s index (after removal of stop words
and stemming).

The result of a search in Lucene index is a ranked list of documents (i.e., Q&A pairs), in which
the first one is the most similar to the search query and the last one is the least similar. Each pair
in this ranking has a numeric value that we call Lucene’s score that represents its similarity to the
query. Thus, the first pair of the ranking has the greatest Lucene’s score and the last one has the
smallest value.

3.5. Ranking Q&A Pairs by SO Score

Using the ranking returned for a search on Lucene’s index, we can obtain pairs that have textual
similarity with the input query but we cannot ensure anything about its quality, i.e., among the pairs
returned for a query, there may exist well evaluated and poorly evaluated pairs by SO community.
Here we consider that a post’s (question or answer) score is a proxy for its quality because the
voting mechanism of SO is the main feature that allows SO members evaluate its content. Because
each individual post on SO has its own score and our recommendation strategy will suggest Q&A
pairs, being each pair composed by a question and an answer to that question, we needed to define
a metric that indicates the quality of the pair as a whole. One possible approach to achieve this,
is to consider the mean value of the question’s score and answer’s score of a pair. However, we
decided to consider the score of pair as the weighted mean value between the individual scores of
its answer and question. We obtained better results with values 0.7 and 0.3 for the weights of the
answer and question from a pair (In Subsection 4.3, we present the formal justification for consider
these weights). Thus, we adopted these weights in our work. The reason to use this approach is that
the answer seems to be more important than its belonging question, because it usually carries more
information about the problem. We call this weighted mean as SO score of a pair.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 11

Given a topic (e.g., Swing), we can calculate the SO score of each How-to-do pair that belong to
that topic. In the next subsection, we will combine the SO score of a pair and its Lucene’s score to
build the ranking of pairs that will be used in our recommendation strategy.

3.6. Combining Scores to Rank Q&A Pairs

The Lucene’s score of a pair indicates how much it is textually similar to a given search query,
while its SO score indicates how much it was well voted by SO crowd. Both of these aspects are
considered in the proposed recommendation, since we aim at providing pairs that are at the same
time related to the problem and have good quality.

In order to combine both metrics into a single one, we performed a normalization step, because
they have different nature. We normalize the Lucene’s score of each pair returned for a query using
min-max normalization technique. After this process, all pairs returned by a search on Lucene index
have Lucene’s score value in the range [0,1]. For those pairs, we also normalize its SO score in
the range [0,1]. After this normalization step, we calculate the arithmetic mean of each pair. This
mean is called Final Score and is used to rank the pairs in descending order. The top 10 pairs of this
ranking are recommended as the search result.

4. EVALUATION PROCEDURES

In this section, we present our evaluation criteria and detail our experimental design.

4.1. Evaluation Criteria

In this section, we present two criteria to evaluate each pair recommended by our approach.
The first criterion is called Relevance (in short, Relev). This criterion is used to assess to what

extent the information contained in a pair can be used to help developers to solve the respective task.
The grade given to this criterion ranges from 0 to 4. The value 0 means that the recommended pair
is not related at all to the queried task. The value 4 means that information contained in the pair can
be used to completely solve the user’s problem. This metric is not boolean because sometimes the
information in a pair can be used to partially solve a problem.

The second criterion is called Reproducibility (in short, Reprod). This criterion is used to
evaluate to what extent the source code snippets available in the question and answer bodies of
a recommended pair can be easily compiled and executed. It is highly desirable that the code
snippets could be run in isolation because developers frequently use source code examples as the
basis for interacting with an API [29]. Thus, they need high quality examples of usage in order
to learn how to use a desired API. One study found that the greatest obstacle to learning an API in
practice is “insufficient or inadequate examples” [30]. Subramanian et al. [31] analyzed 39,000 code
snippets given in response to SO questions and found that only 6,766 (17%) were complete files with
class and method declarations, 6,302 (16%) code snippets were just method bodies devoid of class
declarations, and the remaining 66% contained standalone source code statements (i.e., the majority
are not compilable code fragments with complete class and method body declarations). Since the
code is usually not complete, information present in the code is often not sufficient to resolve API
method accesses. Moreover, they observed that most answers extend on details provided in the
question; because of this, certain aspects of the snippet, like variable declarations are often skipped
[31].

Concerning the Reprod criterion, we also evaluated code snippets that are present in external
sources because several sites contain detailed information on how to solve a particular programming
task. For example, if a page that the link represents has complete source code, the answer that
includes the link is evaluated as “reproducible”. While the criterion Relev has a semantic aspect,
i.e., its main goal is to verify if the task can be solved using the recommended information, Reprod
is a syntactic metric because it evaluates how easily the snippets can be compiled and executed,
regardless if it is related to the search query at all. The grade also ranges from 0 to 4. The value
0 means that the recommended pair does not have source code snippets or its snippets cannot

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

12 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

be compiled at all. The value 4 means that the snippets can be easily compiled and executed
mostly without adaptation. This metric is not boolean because sometimes the pairs have source
code snippets that although they cannot be directly executed, they could be compiled after some
adjustments (e.g., many snippets are incomplete because they are missing a variable declaration, but
if we declare the missing variable, the snippets become complete and could be compiled).

4.2. Experimental Design

We present experiments with the three considered topics to evaluate the question whether our
recommendation strategy can actually help developers in their development tasks. We consider a
total of 35 development tasks: 12 for Swing, 12 for Boost and 11 for LINQ.

The Swing tasks were extracted from chapter 13 of Java Cookbook [25], that contains only tasks
related to GUI (Graphical User Interfaces) technologies. There are 14 tasks in that chapter and we
randomly selected 12 of them.

The Boost tasks were extracted from a Boost Cookbook [26]. We randomly selected 12 of 91
tasks available in this cookbook.

The LINQ tasks were extracted from a blog§ developed by the Visual Basic Team from Microsoft.
There are 12 tasks on that blog, however we only selected 11 of them because one task just had
instructions on how to configure a database that is used in the other tasks described on the blog, and
thus it is not appropriate to be used in an experiment to recommend pairs for LINQ, since it is much
more related to a generic database field than to LINQ.

We conducted a manual analysis of the top-10 recommendations for all 35 tasks considering
the criteria Relev and Reprod, accounting for 700 evaluation points. Moreover, we replicated the
analysis using the Google search engine as baseline, accounting for more 700 evaluation points.
The design of the Google analysis is presented in Subsection 4.4. Table XII shows the design of our
experiment. For each topic (Swing, Boost and LINQ) we made experiments to test Scenario NKAE
and Scenario KAE. From the 12 tasks previously selected for Swing, we randomly selected 6 for
Scenario NKAE and 6 for Scenario KAE. The same was done for Boost. For LINQ, as we had only
11 tasks, we randomly selected 6 and 5 tasks for Scenario NKAE and Scenario KAE respectively.
The input query for Scenario NKAE was the title of the tasks (after stemming and removal of stop
words). The input for Scenario KAE was a string formed by the title of a task appended with a name
of a class (in the case of Swing or Boost) or operator (in the case of LINQ) that was important in
the solution presented in the original cookbooks from where the tasks were extracted.

Table XIII shows for Swing, the 12 tasks selected for the experiment. The first 6 were included
in Scenario NKAE and the remaining 6 in Scenario KAE. The task numbering in the first column
corresponds to the numbering in the original document. The tasks for Scenario KAE are already
shown with its title modified. For example, the title of the task 13.5 is originally “Action Handling:
Making Buttons Work”. In the table we present its title as “Action Handling: Making Buttons Work
ActionListener”, because “ActionListener” was the class name chosen to be append to the title, since
it is a key class used in the solution for that problem. After removing stop words (if it has some) and
stemming, the resulting string is used as a search query to retrieve Q&A pairs. Similar tables are
shown for Boost and LINQ (Tables XIV and XV respectively). In those tables, the name of classes
or operators used for Scenario KAE are shown in italic.

The first two authors of this paper (let them be Author A and Author B) individually evaluated,
for each of the 35 tasks, the top-10 recommended pairs. For each pair, they graded the two criteria
previously described. In the Table XVI, the column “Kappa Before” shows the Weighted Kappa [32]
calculated to measure the agreement among the two evaluators. In that table, each row represents
a triple “Topic / Scenario / Criterion”. Thus, in the first row the Weighted Kappa was calculated to
compare the Relev grades given by the two authors for the pairs returned for the 6 tasks selected
for Scenario NKAE for Swing (i.e., that row represents a comparison between 60 values, since the
authors analyzed the top-10 pairs recommended for each task).

§http://blogs.msdn.com/b/vbteam/archive/tags/linq+ cookbook/

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 13

Table XII. Experimental Design

Topic Scenarios Tasks Criteria Ranker

Swing

Scenario NKAE 6 tasks
Relev Google

Lucene+Score+How-to

Reprod Google
Lucene+Score+How-to

Scenario KAE 6 tasks
Relev Google

Lucene+Score+How-to

Reprod Google
Lucene+Score+How-to

Boost

Scenario NKAE 6 tasks
Relev Google

Lucene+Score+How-to

Reprod Google
Lucene+Score+How-to

Scenario KAE 6 tasks
Relev Google

Lucene+Score+How-to

Reprod Google
Lucene+Score+How-to

LINQ

Scenario NKAE 6 tasks
Relev Google

Lucene+Score+How-to

Reprod Google
Lucene+Score+How-to

Scenario KAE 5 tasks
Relev Google

Lucene+Score+How-to

Reprod Google
Lucene+Score+How-to

Table XIII. Swing Tasks

Task Scenario Task Title
13.14 NKAE Program: Custom Font Chooser
13.13 NKAE Changing a Swing Program’s Look and Feel
13.11 NKAE Choosing a Color from all the colors available on your computer
13.3 NKAE Designing a Window Layout
13.1 NKAE Choosing a File
13.8 NKAE Dialogs: When Later Just Won’t Do
13.12 KAE Centering a Main Window JFrame
13.2 KAE Adding and Displaying GUI Components to a window JFrame
13.9 KAE Getting Program Output into a Window PipedInputStream
13.4 KAE A Tabbed View of Life JTabbedPane
13.5 KAE Action Handling: Making Buttons Work ActionListener
13.6 KAE Action Handling Using Anonymous Inner Classes ActionListener

Table XIV. Boost Tasks

Task Scenario Task Title
2.8 NKAE Parsing date-time input
3.1 NKAE Doing something at scope exit
12.5 NKAE Using portable math functions
12.7 NKAE Combining multiple test cases in one test module
10.7 NKAE The portable way to export and import functions and classes
3.5 NKAE Reference counting pointers to arrays used across methods
7.7 KAE Using a reference to string type string ref
10.2 KAE Detecting RTTI support type index
1.11 KAE Making a noncopyable class noncopyable
9.2 KAE Using an unordered set and map unordered set
7.2 KAE Matching strings using regular expressions regex
8.8 KAE Splitting a single tuple into two tuples vector

In a next step, the evaluations of the two authors were compared. The pairs in which the difference
of the grades given by the authors was greater than or equal to 2 were marked for posterior discussion
(e.g., Author A graded Relev as 4 for a pair and Author B graded Relev as 1 for the same pair). The

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

14 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

Table XV. LINQ Tasks

Task Scenario Task Title
2 NKAE Find all capitalized words in a phrase and sort by length (then alphabetically)
10 NKAE Pre-compiling Queries for Performance
1 NKAE Change the font for all labels on a windows form
5 NKAE Concatenating the selected strings from a CheckedListBox
11 NKAE Desktop Search Statistics
12 NKAE Calculate the Standard Deviation
3 KAE Find all the prime numbers in a given range Count
7 KAE Selecting Pages of Data from Northwind Skip
4 KAE Find all complex types in a given assembly Distinct
9 KAE Dynamic Sort Order OrderByDescending
8 KAE Querying XML Using LINQ Contains

Table XVI. Lucene+Score+How-to Search: Weighted Kappa (Agreement Comparison).

Topic / Scenario / Criterion Kappa Before Kappa After
Swing / NKAE / Relev 0.6 0.89

Swing / NKAE / Reprod 0.84 0.95
Swing / KAE / Relev 0.58 0.92

Swing / KAE / Reprod 0.86 0.98
Boost / NKAE / Relev 0.54 0.95

Boost / NKAE / Reprod 0.94 0.95
Boost / KAE / Relev 0.81 0.94

Boost / KAE / Reprod 0.67 0.98
LINQ / NKAE / Relev 0.95 0.97

LINQ / NKAE / Reprod 0.81 0.93
LINQ / KAE / Relev 0.68 0.92

LINQ / KAE / Reprod 0.87 0.94

reason to consider only the differences greater than or equal to two is based on our interpretation
that a difference of one could be considered a partial agreement among the evaluators instead of a
disagreement.

After marking those pairs with major divergence, the evaluators discussed each one and came to
an agreement about them. After modifying the grades in this discussion step, the Weighted Kappa
was calculated again and is shown in column “Kappa After” of Table XVI. Comparing the values
before and after this step, we can see that the agreement has been improved (a Weighted Kappa
value “1” means a perfect agreement). Since we have obtained high overall agreement, we decided
to consider only the evaluations made by Author A.

4.3. Evaluating different Weighting Mechanisms for a Q&A Pair

In order to determine the question’s weight and answer’s weight for a pair, we experienced different
weighting mechanisms. We consider a total of 4 distinct weighting mechanisms. In our study, Wq

and Wa refer respectively to the weights for question and answer of a Q&A pair. We investigated
the following weighting mechanisms:

• Wq = 0.5 and Wa = 0.5;
• Wq = 0.3 and Wa = 0.7;
• Wq = 0.4 and Wa = 0.6;
• Wq = 0.2 and Wa = 0.8;

In order to find out what weighting mechanism produces the best overall ranking we used a
metric called Normalized Discounted Cumulative Gain (NDCG). This metric was used to have a
numerical assessment of the ranking of pairs recommended in the experiments. NDCG (Equation
2) is generally used to evaluate retrieval results from search engines and uses a multi-valued notion
of relevance [33]:

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 15

NDCG(Q, k) =
1

|Q|

|Q|∑
j=1

Zkj

k∑
m=1

2M(j,m) − 1

log2(1 +m)
(2)

where k is the size of the result set. In our experiments k = 10, because we recommend 10 pairs
to the user. M(j,d) is the metric value gave to document d for query j. Because we considered two
criteria in our experiments, M(j,d) can be Relev or Reprod. We calculated NDCG value for both
of those criteria. Zkj is the normalization factor calculated such that NDCG is equal to 1.0. We
followed the same approach used in a related work [34] to calculate this factor. In that approach,
this factor is calculated in a scenario where all documents retrieved have the maximum grade
(value 4 in our case). We also decided to have an evaluation with this metric, because we could
partially compare the results of both works (not totally because we use top-10 and they used top-
15). However, using NDCG for this evaluation should be interpreted with caution, because only
queries that had most of the 10 pairs with relevance close to four will have very high NDCG value,
and that seems to be extremely stringent. We are mostly interested on the existence of some relevant
pairs best ranked, i.e., not necessarily all 10 pairs need to be highly relevant because if the first
encountered highly relevant pair resolves your problem, then it suffices. The normalization factor
we calculated using this approach is Zkj ≈ 0.01. |Q| = 35 because we considered 35 tasks in the
experiments.

In order to know what is the best weighting mechanism for our recommendation strategy (i.e., the
one that produces the best overall ranking), we need to calculate the NDCG values for each criterion
(i.e., Relev and Reprod) and for each weighting mechanism (i.e, Wq = 0.5 and Wa = 0.5, Wq = 0.3
and Wa = 0.7, Wq = 0.4 and Wa = 0.6, Wq = 0.2 and Wa = 0.8). Moreover, we need to compare
these values with each other. Higher NDCG values imply better quality of the ranking.

It is not possible to know what the best weighting mechanism without first make a qualitative
manual analysis of the top-10 recommendations for all 35 tasks considering the criteria Relev and
Reprod. So, we started this assessment (shown above in Subsection 4.2) considering the following
weighting mechanism: Wq = 0.3 and Wa = 0.7.

After this step, we simulated the ranking (i.e., top-10 recommendations for each development
task queried in our system) generated by each weighting mechanism for the 35 development tasks
listed above in Tables XIII, XIV and XV in order to identify which weighting mechanism is more
suitable for our recommendation strategy (i.e., which weighting mechanism generates the best
overall ranking). Each of these weighting mechanisms generates a different ranking. But we found
that the difference between the rankings produced by different weighting mechanisms was very
small (i.e., the top-10 recommended Q&A pairs were repeated for different weighting mechanisms
considering the same development task).

We note the new recommended Q&A pairs that were not present in the ranking generated by the
weighting mechanism Wq = 0.3 and Wa = 0.7 but were present in the ranking generated by the
remaining weighting mechanisms (i.e., Wq = 0.5 and Wa = 0.5, Wq = 0.4 and Wa = 0.6 or Wq = 0.2
and Wa = 0.8). These new Q&A pairs were individually assessed by the first and third author of this
paper (let them be Author A and Author C). For each of the 13 new recommended Q&A pairs, they
graded the two criteria previously described. In the Table XVII, the column “Kappa Before” shows
the Weighted Kappa [32] calculated to measure the agreement among the two evaluators. In that
table, each row represents a criterion (Relev or Reprod). Thus, in the second row the Weighted Kappa
was calculated to compare the Reprod grades given by the two authors for the 13 new recommended
Q&A pairs.

Table XVII. New recommended Q&A pairs: Weighted Kappa (Agreement Comparison).

Criterion Kappa Before Kappa After
Relev 0.85 0.85

Reprod 0.56 0.89

In a next step, the evaluations of the two authors were compared. The pairs in which the difference
of the grades given by the authors was greater than or equal to 2 were marked for posterior discussion

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

16 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

(e.g., Author A graded Reprod as 0 for a pair and Author C graded Reprod as 2 for the same pair).
The reason to consider only the differences greater than or equal to two is based on our interpretation
that a difference of one could be considered a partial agreement among the evaluators instead of a
disagreement.

After marking those pairs with major divergence, the evaluators discussed each one of the 5
divergent cases for Reprod criterion and came to an agreement about them. After modifying the
grades in this discussion step, the Weighted Kappa was calculated again and is shown in column
“Kappa After” of Table XVII. Comparing the values before and after this step, we can see that the
agreement has been improved (a Weighted Kappa value “1” means a perfect agreement). In the first
row of Table XVII, the values for Relev criterion were the same because there was no difference
greater than or equal to 2 between the grades of the evaluators in the 13 new recommended Q&A
pairs. Since we have obtained high overall agreement, we decided to consider only the evaluations
made by Author A.

Table XVIII shows the 13 new recommended Q&A pairs assessed by the two evaluators. For each
Q&A pair, this table shows the Task Identifier, Topic, Scenario, Ranking Position in top-10 results
(i.e., values ranging from 1 to 10), Weighting Mechanism and the final grades for Relev and Reprod
criteria.

Table XVIII. New recommended Q&A pairs assessed by the two evaluators (Wq and Wa refer respectively
to the weights for question and answer of a Q&A pair).

Task Topic Scenario Ranking Position Weighting Mechanism Relev Reprod
3.1 Boost NKAE 10 Wq = 0.2 Wa = 0.8 0 4
1.11 Boost KAE 10 Wq = 0.2 Wa = 0.8 0 1
9.2 Boost KAE 8 Wq = 0.2 Wa = 0.8 0 3
4 LINQ KAE 10 Wq = 0.2 Wa = 0.8 0 1

3.1 Boost NKAE 8 Wq = 0.4 Wa = 0.6 0 1
12.7 Boost NKAE 9 Wq = 0.4 Wa = 0.6 0 1
7.7 Boost KAE 10 Wq = 0.4 Wa = 0.6 0 3
9.2 Boost KAE 10 Wq = 0.4 Wa = 0.6 0 2
7.2 Boost KAE 10 Wq = 0.4 Wa = 0.6 4 3
12.7 Boost NKAE 8 Wq = 0.5 Wa = 0.5 0 1
12.7 Boost NKAE 6 Wq = 0.5 Wa = 0.5 0 1
10.7 Boost NKAE 10 Wq = 0.5 Wa = 0.5 0 1
3.5 Boost NKAE 10 Wq = 0.5 Wa = 0.5 0 4

After this evaluation step, for each weighting mechanism experienced, we calculated the
NDCGRelev and NDCGReprod for our approach (i.e., Lucene+Score+How-to). Table XIX shows
the results we obtained.

Table XIX. NDCGRelev and NDCGReprod values for each weighting mechanism experienced (Wq and Wa

refer respectively to the weights for question and answer of a Q&A pair).

Wq = 0.2
Wa = 0.8

Wq = 0.4
Wa = 0.6

Wq = 0.5
Wa = 0.5

Wq = 0.3
Wa = 0.7

NDCGRelev 0.3579 0.3565 0.3567 0.3583
NDCGReprod 0.5249 0.5215 0.5228 0.5243

As we can see in Table XIX, there is no big difference in the NDCG values for the weighting
mechanisms considered. The NDCGRelev for the weighting mechanism Wq = 0.3 and Wa = 0.7 was
slightly better than the other ones. But the NDCGReprod for the weighting mechanism Wq = 0.2 Wa

= 0.8 was slightly better than the other ones. In this work, we present the results obtained with the
weighting mechanism Wq = 0.3 and Wa = 0.7 (better value for NDCGRelev). But the final results
would not be very different for the others weighting mechanisms investigated in this work.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 17

4.4. Comparison of results with Google

We compared our approach (Lucene+Score+How-to) to the Google web search. Google was chosen
because it is the most popular general purpose search engine and it is generally used to query SO.
We searched some tasks using SO’s search engine. However, for several tasks, SO queries returned
few posts. Thus, we observed that using the Google search engine to query SO was more effective
than using SO’s search engine itself. Again, Author A and Author B were the participants in this
evaluation. We define a protocol for searching Google, based on the following rules:

• The search query must contain the API name and should be restricted to SO site (e.g., the
search query “Program: Custom Font Chooser Swing site:stackoverflow.com” corresponds to
a programming task using Java Swing API and is limited to SO site). We decided to do this
to restrict our evaluation to only SO posts, because our criteria (Relev and Reprod) are more
suitable to assess this type of content (e.g., it is difficult to evaluate if a book is relevant for a
programming task at hand, given that the solution of the task is very specific);

• We set Google to search only posts that were posted on SO site until the date of our dump
was performed, i.e., March 5, 2013. We decided to do this to ensure that the two approaches
(Lucene+Score+How-to and Google) are dealing with the same data (i.e., the set of SO posts
until March, 5, 2013).

We considered the same 35 development tasks evaluated in the previous step. For each task, we
built the query string considering the above rule-based approach and searched in the Google site.
Author A and Author B individually evaluated for each of the 35 tasks, the 10 first recommended
SO posts considering the same criteria (Relev and Reprod). A SO post contains a question and one
or more answers. The number of the answers for a question is the number of the Q&A pairs for
that question. We decided to evaluate only the highest-scored Q&A pair that belongs to SO post, to
have a fair comparison with our approach (Lucene+Score+How-to), which recommends Q&A pairs
instead of whole SO posts. For each pair, Author A and Author B graded the two criteria previously
described. We repeated the same process that was done for Lucene+Score+How-to approach (i.e.,
the evaluations of the authors were compared and the pairs with major divergence were discussed
to get an agreement between the two evaluators). Table XX has the same column structure that XVI
and shows the Weighted Kappa calculated to measure the agreement among the two evaluators.
Again, since we have obtained high overall agreement, we decided to consider only the evaluations
made by Author A.

Table XX. Google Search: Weighted Kappa (Agreement Comparison).

Topic / Scenario / Criterion Kappa Before Kappa After
Swing / NKAE / Relev 0.71 0.95

Swing / NKAE / Reprod 0.53 0.96
Swing / KAE / Relev 0.82 0.94

Swing / KAE / Reprod 0.56 0.96
Boost / NKAE / Relev 0.87 0.97

Boost / NKAE / Reprod 0.8 0.95
Boost / KAE / Relev 0.80 0.97

Boost / KAE / Reprod 0.65 0.97
LINQ / NKAE / Relev 0.88 0.99

LINQ / NKAE / Reprod 0.66 0.95
LINQ / KAE / Relev 0.81 0.98

LINQ / KAE / Reprod 0.479 0.83

5. RESULTS

In this section, we present the results of the proposed experiment. Tables XXI, XXII, XXIII,
XXIV, XXV, XXVI, XXVII, XXVIII, XXIX, XXX, XXXI, XXXII have the same column

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

18 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

structure: the task identifier and the first 10 ranking positions (P1 to P10) for each approach (i.e.,
Lucene+Score+How-to and Google). Each ranking position corresponds to a recommended pair.
The tables show the ranking obtained for each task, considering the topic (Swing, Boost or LINQ),
the scenario (NKAE or KAE) and the criterion (Relev or Reprod).

For example in Table XXI, in the first line of data, we have the results of task 13.14 for both
approaches (Lucene+Score+How-to and Google). In Lucene+Score+How-to approach, we can
observe that the best ranked pair (column P1) had received grade 2 (neutral). Moreover, we can
see highly relevant pairs at P3 and P6. In the same line, we can also observe the ranking obtained
for Google approach in this development task. Furthermore, we can see highly relevant pairs at P1
and P7.

Table XXI. Swing - Scenario NKAE (0 = Not Relevant, 4 = Highly Relevant).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
13.14 2 2 4 2 2 4 2 2 2 2 4 2 2 0 0 0 4 0 0 0
13.13 0 4 4 4 3 3 1 3 3 4 4 4 4 4 3 2 0 3 4 4
13.11 1 2 2 0 2 2 3 0 1 2 1 0 0 4 0 0 0 0 0 0
13.3 3 0 0 2 0 0 2 3 0 0 0 1 1 1 0 1 4 4 1 0
13.1 4 4 0 3 3 4 4 4 2 3 4 2 4 2 4 2 4 4 4 2
13.8 3 1 2 3 4 2 2 2 1 4 1 1 2 1 0 1 4 3 0 4

Table XXII. Swing - Scenario NKAE (0 = Not Reproducible, 4 = Highly Reproducible).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
13.14 0 0 4 3 0 3 4 3 2 0 4 3 3 3 4 4 4 1 2 0
13.13 3 0 0 4 4 0 0 0 4 3 3 4 4 3 0 0 0 0 4 4
13.11 0 0 0 3 3 3 4 4 3 0 0 0 3 2 2 4 4 4 2 2
13.3 0 4 0 0 0 0 4 0 0 0 0 0 0 3 0 1 4 4 1 0
13.1 4 4 4 4 4 4 4 0 3 3 3 4 4 3 4 0 0 3 4 4
13.8 0 0 0 3 4 3 0 4 4 4 4 0 4 4 3 2 4 4 0 4

Table XXIII. Swing - Scenario KAE (0 = Not Relevant, 4 = Highly Relevant).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
13.12 4 2 3 3 4 0 2 0 2 2 4 4 4 4 4 0 3 4 1 4
13.2 3 1 2 1 4 4 1 0 0 2 3 4 4 4 4 2 4 1 2 0
13.9 4 4 4 1 1 0 0 4 0 0 4 4 0 4 4 0 0 1 3 0
13.4 4 2 2 2 3 2 1 3 3 3 4 0 3 0 1 4 2 0 4 4
13.5 4 2 4 2 2 2 2 2 2 3 4 4 0 4 3 4 3 3 4 1
13.6 2 4 4 3 3 3 3 3 4 4 4 4 0 4 4 3 2 4 4 4

Table XXIV. Swing - Scenario KAE (0 = Not Reproducible, 4 = Highly Reproducible).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
13.12 0 0 0 4 3 3 4 0 2 0 0 4 4 4 3 3 4 4 4 4
13.2 4 0 0 0 0 0 4 0 2 2 1 4 4 4 4 4 4 4 4 2
13.9 4 4 4 3 4 4 4 4 0 0 4 4 4 4 4 4 4 4 4 0
13.4 4 0 0 3 4 4 0 4 4 4 4 0 4 3 0 4 2 0 4 4
13.5 0 4 0 0 0 4 0 0 0 3 4 4 4 4 4 4 3 4 4 2
13.6 3 4 3 3 4 4 4 4 4 4 4 3 1 4 3 3 4 4 4 3

We calculated the NDCGRelev and NDCGReprod values for each approach. Table XXXIII
shows the obtained results. We can state that NDCGRelev for Google was 5.62% higher
than Lucene+Score+How-to approach and NDCGReprod for Google was 4.75% higher than
Lucene+Score+How-to approach. These results show that the overall quality of the recommended
pairs by Google was slightly better than the Lucene+Score+How-to approach.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 19

Table XXV. Boost - Scenario NKAE (0 = Not Relevant, 4 = Highly Relevant).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
2.8 3 2 3 3 3 2 2 2 3 3 4 4 4 4 4 4 2 3 4 4
3.1 1 2 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0
12.5 1 0 0 0 4 0 4 4 4 4 4 0 0 0 0 0 0 0 0 0
12.7 2 4 0 0 0 2 2 2 4 0 2 4 4 0 0 0 0 0 0 0
10.7 3 2 0 1 2 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
3.5 3 2 2 2 3 2 2 3 2 3 3 3 1 3 3 3 3 4 3 0

Table XXVI. Boost - Scenario NKAE (0 = Not Reproducible, 4 = Highly Reproducible).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
2.8 2 4 4 4 4 0 4 4 4 4 4 4 4 4 4 3 2 4 4 4
3.1 4 4 4 0 4 1 0 2 0 0 4 3 0 4 3 3 3 2 3 3
12.5 0 0 0 0 4 0 4 4 0 0 3 3 0 0 0 1 3 3 0 0
12.7 0 0 0 3 4 0 0 4 3 4 1 3 3 0 0 0 0 0 0 0
10.7 4 0 4 0 4 0 3 4 4 0 0 1 0 0 1 0 0 0 1 0
3.5 4 0 4 0 0 4 0 0 0 4 0 3 4 0 0 3 3 0 0 3

Table XXVII. Boost - Scenario KAE (0 = Not Relevant, 4 = Highly Relevant).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
7.7 2 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0
10.2 2 2 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
1.11 3 1 3 1 1 3 3 2 2 1 4 2 0 3 4 0 4 0 0 0
9.2 2 1 1 1 3 1 3 1 1 0 2 0 0 3 2 2 4 3 4 0
7.2 4 4 4 4 3 4 0 2 2 4 4 4 4 0 0 4 4 4 2 4
8.8 1 1 1 1 1 1 1 1 1 1 1 2 0 0 0 0 0 0 0 0

Table XXVIII. Boost - Scenario KAE (0 = Not Reproducible, 4 = Highly Reproducible).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10
7.7 4 0 4 1 4 2 4 4 4 4 4 0 4 3 0 4 4 4 3 1
10.2 4 0 0 2 4 4 0 0 0 0 4 2 0 0 0 0 0 0 0 0
1.11 0 3 0 4 2 0 4 4 4 2 4 4 0 2 4 4 3 0 2 1
9.2 0 4 0 3 4 4 3 4 2 2 0 2 4 3 4 0 1 4 4 2
7.2 0 4 4 4 4 4 4 4 0 4 4 4 4 0 4 4 4 4 4 4
8.8 4 4 4 4 2 4 3 3 3 4 1 0 3 2 2 4 3 4 3 0

Table XXIX. LINQ - Scenario NKAE (0 = Not Relevant, 4 = Highly Relevant).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

2 0 0 0 2 2 0 2 0 0 0 2 0 0 0 0 0 0 0 0 0
10 1 2 4 1 1 0 0 0 0 0 4 4 2 4 2 0 0 4 4 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 2 0 2 1 2 2 2 2 0 2 0 3 3 4 3 0 0 0 0 0
11 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0
12 4 4 4 4 1 4 3 1 3 0 4 4 0 4 0 0 0 0 0 0

Considering that it is desirable to have highly graded pairs in the top-10 pairs, we decided to
analyze the number of pairs recommended by Lucene+Score+How-to approach and by Google
search engine having Relev or Reprod greater than or equal to 3. For this analysis, we use the
graphics shown in Figures 1 and 2. These figures show the scatter plots for criteria Relev and Reprod
of each recommendation approach. The three graphics in the first column of the Figure 1 consider
the criterion Relev for Lucene+Score+How-to in the three topics assessed in this study (Boost,
LINQ and Swing), while the remaining three graphics in the second column of this figure consider

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

20 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

Table XXX. LINQ - Scenario NKAE (0 = Not Reproducible, 4 = Highly Reproducible).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

2 3 0 3 4 4 4 4 0 3 3 4 3 0 4 4 4 1 1 0 3
10 0 0 3 3 2 0 3 0 0 0 4 3 0 4 2 0 0 3 3 0
1 4 1 0 0 2 2 2 4 4 0 4 4 4 2 4 4 0 4 0 1
5 3 2 4 0 3 4 3 3 3 3 2 2 3 3 2 2 3 3 3 3
11 3 4 4 4 4 4 4 4 3 0 0 0 0 0 3 3 0 3 0 4
12 3 3 3 3 0 3 4 2 4 0 3 3 4 4 4 0 3 3 4 4

Table XXXI. LINQ - Scenario KAE (0 = Not Relevant, 4 = Highly Relevant).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

3 1 1 2 1 4 1 0 2 1 1 4 0 0 2 4 0 0 0 0 0
7 4 2 2 4 4 4 4 4 4 4 0 2 0 0 2 0 0 0 0 0
4 0 1 2 0 3 0 1 0 0 0 0 0 0 2 0 0 0 0 0 0
9 2 4 4 2 2 4 4 1 4 2 4 4 4 4 4 4 0 4 4 4
8 0 2 1 2 1 0 0 3 4 3 4 4 2 4 4 4 2 4 2 2

Table XXXII. LINQ - Scenario KAE (0 = Not Reproducible, 4 = Highly Reproducible).

Lucene+Score+How-to Google
Task P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

3 4 4 4 4 3 3 3 4 4 2 3 3 3 4 4 3 4 4 3 4
7 3 4 4 3 2 3 3 2 4 3 4 4 0 3 3 3 3 3 3 3
4 3 0 3 3 4 3 0 0 0 0 1 1 0 3 0 2 4 0 0 4
9 3 4 4 3 3 4 3 2 3 2 4 4 3 3 3 3 3 3 3 3
8 3 0 0 0 2 0 0 0 4 0 3 3 4 3 3 4 4 3 4 4

Table XXXIII. NDCGRelev and NDCGReprod values for each approach.

Lucene+Score+How-to Google
NDCGRelev 0.3583 0.4145

NDCGReprod 0.5243 0.5718

the same criterion for Google approach. Figure 2 is similar to Figure 1, but takes into account the
criterion Reprod instead of criterion Relev.

Each graphic considers the selected activities for Scenario NKAE (diamond symbol) and the ones
for Scenario KAE (square symbol). The activities appear in the graphics in the order shown in Tables
XIII, XIV and XV. Thus, in the first line of the Figure 1 (i.e., the graphics “Lucene+Score+How-to:
Boost - Relev” and “Google: Boost - Relev”), the activity 1 of each scenario corresponds to “2.8
- Parsing date-time input” (Scenario NKAE) and “7.7 Using a reference to string type string ref ”
(Scenario KAE), as can be observed in Table XIV. Besides considering the value 4 for criterion
Relev we also considered the value 3 because, although not being the best case, the pairs evaluated
with grade 3 for Relev could be used to solve almost the entire problem represented by the search
query. Similarly, pairs with Reprod equal to 3, had code snippets almost complete.

As we can see in the graphics of Figure 1 for Lucene+Score+How-to approach, all activities
for Swing had at least one pair with Relev ≥ 3. Only eight of the 35 tasks (22.85%) had no pairs
with Relev ≥ 3 among the 10 recommended pairs. Concerning the graphics of this same figure for
Google, we can see that all activities for Swing had at least one pair with Relev ≥ 3. Out of the 35
tasks, 10 (28.57%) had no pairs with Relev ≥ 3 among the 10 recommended pairs, which is a worse
performance compared to the Lucene+Score+How-to approach.

As we can see in the graphics of Figure 2 for Lucene+Score+How-to approach, all the 35
activities had at least one pair with Reprod ≥ 3. Concerning the graphics of this same figure for
Google, we can see that one out of the 35 tasks (2.85%) had no pairs with Reprod ≥ 3. This
activity corresponds to “10.7 - The portable way to export and import functions and classes” (Boost
- Scenario NKAE). For this activity, Google returned some SO posts related to the Python language.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 21

These SO posts contained nothing about library Boost of C++ language. This type of strange
behavior on the Google’s recommendation is not desirable and we observed that this behavior is
not an isolated case. To demonstrate this point, we conducted a qualitative analysis of all tasks in
which Google and Lucene+Score+How-to produced a bad recommendation.

Figure 1. Numbers of pairs having Relev ≥ 3 (Lucene+Score+How-to: Left, Google: Right).

In order to understand exactly what kind of queries Google can deal with better than
Lucene+Score+How-to approach, and vice versa, we deepen our qualitative analysis. For each case
(i.e., “Task / Topic / Scenario / Criterion”), we calculate the amount of grades 3 and 4 (i.e., good
values for Relev and Reprod criteria). If this amount is greater than or equal to 6, we assume it is
a case with good recommendation. Otherwise, we assume it is a case with bad recommendation.
Moreover, for each case, we analyzed the quality of the recommendations made by each approach.

Using this assumption, we selected the cases in which Lucene+Score+How-to outperformed
Google, and vice versa. Tables XXXIV and XXXV show these cases. We outperformed Google
in 8 cases and Google outperformed Lucene+Score+How-to in 14 cases.

Table XXXIV shows the cases in which Lucene+Score+How-to approach outperformed Google.
Of 8 cases that Lucene+Score+How-to can deal better than Google, 5 (62.5%) were belonging to the
scenario NKAE (Not Known API Element). These results suggest that our approach copes well with
generic queries that do not have the API element. However, Google produces a bad recommendation
with this kind of query. We observed that in these cases, Google recommends SO’s posts that were
not tagged with the desired API. Thus, our approach tends to be more effective than Google in the
Scenario NKAE. Furthermore, 4 out of 8 cases (50%) were belonging to the Boost topic. These
results show that Lucene+Score+How-to was better than Google on the Boost topic. Table XXXVI

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

22 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

Figure 2. Numbers of pairs having Reprod ≥ 3 (Lucene+Score+How-to: Left, Google: Right).

shows some topics that Google recommended that were not related with Boost and LINQ APIs. In
80% of these cases shown in Table XXXVI, the Scenario was NKAE.

Table XXXV shows the cases in which Google outperformed Lucene+Score+How-to approach.
Considering those 14 cases, 9 were related to the Scenario KAE (Known API Element), being 6 of
Swing API and 3 of LINQ API. These results show that Google tends to be more effective than our
approach (i.e., using regular expressions to obtain the names of API elements from code snippets)
in the Scenario KAE.

Our assumption is that if the API is quite popular (i.e., have a high number of tagged SO posts
like Swing) in SO and Scenario is KAE, Google tends to perform better than our approach. This
could explain why Google was better on Swing topic, since this API is quite popular in SO and 6
out of 8 Swing cases shown in Table XXXV were related to the Scenario KAE. We believe that
our approach tends to perform better in smaller indexes than larger indexes of documents. If this
assumption is true, our approach tends to be better for less popular APIs in SO (e.g., Boost, Log4j,
JFreeChart) than for most popular APIs in SO (e.g., Swing, Hibernate, Spring). This could explain
why our approach outperformed Google on Boost topic.

For LINQ topic (despite being a popular topic in SO), neither approach performed very well.
Maybe SO does not contain solutions for these tasks. Moreover, some LINQ tasks do not have titles
sufficiently specific (e.g., the task’s title “Desktop Search Statistics” is very generic).

In order to confirm this assumption, it would be necessary to perform another qualitative
assessment involving the new APIs and the new Q&A recommended pairs that would require a
significant effort and unfortunately is left as future work.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 23

Table XXXIV. Cases in which Lucene+Score+How-to outperformed Google.

Task Topic / Scenario / Criterion Task’s Title
13.11 Swing / NKAE / Reprod Choosing a Color from all the colors available on your computer
12.5 Boost / NKAE / Relev Using portable math functions
10.7 Boost / NKAE / Reprod The portable way to export and import functions and classes
9.2 Boost / KAE / Reprod Using an unordered set and map unordered set
8.8 Boost / KAE / Reprod Splitting a single tuple into two tuples
12 LINQ / NKAE / Relev Calculate the Standard Deviation
11 LINQ / NKAE / Reprod Desktop Search Statistics
7 LINQ / KAE / Relev Selecting Pages of Data from Northwind Skip

Total: 8

Table XXXV. Cases in which Google outperformed Lucene+Score+How-to.

Task Topic / Scenario / Criterion Task’s Title
13.14 Swing / NKAE / Reprod Program: Custom Font Chooser
13.13 Swing / NKAE / Reprod Changing a Swing Program’s Look and Feel
13.12 Swing / KAE / Relev Centering a Main Window JFrame
13.2 Swing / KAE / Relev Adding and Displaying GUI Components to a window JFrame
13.5 Swing / KAE / Relev Action Handling: Making Buttons Work ActionListener
13.12 Swing / KAE / Reprod Centering a Main Window JFrame
13.2 Swing / KAE / Reprod Adding and Displaying GUI Components to a window JFrame
13.5 Swing / KAE / Reprod Action Handling: Making Buttons Work ActionListener
3.5 Boost / NKAE / Relev Reference counting pointers to arrays used across methods
3.1 Boost / NKAE / Reprod Doing something at scope exit
1 LINQ / NKAE / Reprod Change the font for all labels on a windows form
9 LINQ / KAE / Relev Dynamic Sort Order OrderByDescending
8 LINQ / KAE / Relev Querying XML Using LINQ Contains
8 LINQ / KAE / Reprod Querying XML Using LINQ Contains

Total: 14

Table XXXVI. Noise cases in Google’s recommendation.

Task Topic / Scenario / Criterion Some topics that Google recommended
12.5 Boost / NKAE / Relev SIMD library, C language
10.7 Boost / NKAE / Relev Python language, XML
8.8 Boost / KAE / Reprod Scala language, Python language, SQLite
11 LINQ / NKAE / Reprod SqlServer, Postgresql, Twitter
12 LINQ / NKAE / Relev SQLite

6. DISCUSSION

We could partially compare our results with the results presented by Ponzanelli et al. [34] to evaluate
our work. In their work they developed a plugin for Eclipse IDE called SEAHAWK in order to
recommend content from SO to help developers solve programming problems. The main differences
of both works are:

• Our recommendation approach considers three aspects to suggest content: the textual
similarity that the pairs have with the search query, their score, and their “How-to” nature. In
their approach, only the textual relevance is considered. We consider this How-to classification
step important, since we can discard pairs that are more theoretical than practical (e.g., pairs
in the categories Conceptual or Seeking-something);

• In their experiments, only Java tasks were considered. Here, we tested our approach using
tasks from three different topics (Swing, Boost and LINQ) that are related to different
programming languages (Java, C++ and .NET languages respectively);

• The tasks used in both works are different: while in our approach we randomly selected
the tasks considered in the experiment from cookbooks, in their paper they selected the

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

24 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

activities from a Java programming course. When using tasks from cookbooks instead of a
programming course, we focus more on practical tasks that a developer can face daily than on
didactic items used to teach a topic;

• In their paper, they recommended entire SO threads. Here, we recommend individual Q&A
pairs, because a question can receive well voted answers and poor voted answers. The
reasoning behind this approach is to recommend only the portions of a Q&A threads that
are well evaluated by SO crowd;

• We defined two different criteria that were used in our experiments: Relevance and
Reproducibility. Ponzanelli et al. only used the Relevance criterion;

• In our experimental design, we presented an evaluation made by two different subjects.
Ponzanelli et al. did not present in their paper the manner in which their results were assessed
(e.g., by one or two authors).

Although those many differences, the NDCG obtained for criterion Relev here is far superior
than the one obtained by Ponzanelli et al. (0.3167 and 0.0907 respectively), which suggests that
our approach outperforms theirs. Some caution is necessary to interpret those numbers because
SEAHAWK recommends 15 Q&A threads, and in this work, we analyzed 10 Q&A pairs.

Analyzing Figure 1, we can see that for criterion Relev, Swing has shown better results over
Boost and LINQ since for all tasks it had at least one pair with Relev ≥ 3 for both recommendation
approaches (i.e., Lucene+Score+How-to and Google) and Scenarios (i.e., NKAE and KAE).

Considering Figure 2, we can state that for criterion Reprod, both recommendation
approaches have good results in the recommendation of reproducible Q&A pairs, since for
Lucene+Score+How-to approach, all the 35 tasks had at least one pair with Reprod ≥ 3 and for
Google, only one of the 35 tasks (2.85%) had no pairs with Reprod ≥ 3.

There could be one main reason to explain the low number of pairs with Relev ≥ 3 for some tasks
in our approach (Lucene+Score+How-to). First, this approach uses the title of a task as an input in
the search engine. Some tasks do not have a precise information on its title. For instance, the task #5
“11. Desktop Search Statistics” for LINQ has the goal to search the file system of a computer and
count the number of items that are documents, images or e-mails. Using only the title information,
we cannot know that. In other words, some tasks do not have titles sufficiently specific. In this case,
the result was equally poor using the Google search.

All 35 tasks had at least one recommended pair with Reprod ≥ 3 and 34 tasks had at least
one recommended pair with Reprod = 4, indicating that our strategy has good performance in
recommending snippets that are reproducible or can become reproducible with minor adjustments.
The two main reasons found that explain the difficulty to reproduce some source code snippets are:

• The use of a variable that was not declared. For instance, consider a recommended Q&A
pair related to Swing API, whose answer has a code snippet that uses a widget object (e.g., a
button), but does not show how to create the object. Although creating a button in Swing is
very simple for most people who have some experience in programming GUIs, it could be not
trivial for someone new to GUI programming;

• The omission of some lines of code (e.g., some answers use “...” to indicate that some lines
are omitted in a code snippet). Again, this lack of information makes it difficult to use the
code snippet in a programming environment like an IDE.

We can observe from Figures 1 and 2, that 26 out of the 35 tasks of our approach have at least
one recommended Q&A pair which has both criteria Relev, Reprod ≥ 3.

Despite NDCGRelev and NDCGReprod values were lower in the Lucene+Score+How-to than
Google (see Table XXXIII), we identified some weaknesses in Google’s recommendation:

• Firstly, the number of poor results (i.e., Q&A pairs with grade 0 in some of the criteria Relev
or Reprod) for Google was higher in Boost and LINQ topics than Lucene+Score+How-to
approach. The second and third line of data of Table XXXVII shows that Google obtained
46.66% and 40.90% of poor results for Boost and LINQ topics, respectively, whereas
Lucene+Score+How-to obtained 32.08% and 31.81% of poor results to the topics listed in

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 25

the same order. Furthermore, the number of best results (i.e., Q&A pairs with grade 4 in some
of the criteria Relev or Reprod) for Lucene+Score+How-to was higher in Boost topic than
Google approach. The second line of data of Table XXXVII shows that Lucene+Score+How-
to approach obtained 30% of best results for Boost topic, while Google obtained only 25% in
this topic;

• Secondly, some SO posts recommended by Google were not related to the respective API
(e.g., for the task 10.7 of Boost called “The portable way to export and import functions and
classes Boost”, Google returned some SO posts related to the Python language. These SO
posts contained nothing about library Boost of C++ language. There are other development
tasks in which Google returns SO posts that were not related to the respective API, like the
tasks 11 and 12 of LINQ - Scenario NKAE). This unexpected behavior called us attention
because we defined that the search query must contain the API name, and Google returned
results that were not related to the respective API. Our approach does not suffer from this
problem because we filtered only SO posts related with the API of interest using the tag field;

• Thirdly, some SO posts recommended by Google were more theoretical than practical (e.g.,
for the task 12.7 of Boost “Combining multiple test cases in one test module”, Google returned
some theoretical SO posts that explain what is an unit test, a regression test, etc. instead of
an usage example using the library Boost of C++ language). We suggest that the absence of a
How-to classifier had contributed to this undesired scenario for Google.

We also identified some weaknesses in our approach:

• Firstly, we could have produced a customized binary classifier because the only distinction
that matters for this work is “how-to-do” vs. “not how-to-do” question-answer pairs.
Arguably, a classifier trained on just these two categories could achieve better results;

• Secondly, the choice of tags to detect topics seems to be at least a bit potentially problematic.
The tags are provided manually by SO participants and are therefore known to be unreliable
(e.g., due to synonymy and polysemy problems, despite the best efforts of SO community).
This realisation has lead to repeated attempts to predict the tags based on the question text
(e.g., by Wang et al. [35]).

These results suggest that the construction of a hybrid approach using the Google search engine
to match textual similarity enhanced with a How-to classifier would provide the best possible results
considering the presented alternatives.

Table XXXVII. Quantity of Poor and Best Results per approach.

Qty. Poor Results (Grade = 0) Qty. Best Results (Grade = 4)
Topic Lucene+Score+How-to Google Lucene+Score+How-to Google
Swing 27.91% 21.66% 30.83% 48.75%
Boost 32.08% 46.66% 30% 25%
LINQ 31.81% 40.90% 24.09% 27.27%

6.1. Threats to Validity

Some threats should be considered in the analysis of the presented results.
The choice of tags to detect topics seems to be at least a bit potentially problematic. If the tag is

not correct (e.g., the tag was misspelled by the tool user), our approach will not be able to retrieve
the threads from SO database in which the question has this incorrect tag. Thus, no Q&A pair will
be recommended to the end user of the proposed approach. Tags assigned to SO questions tend to
be noisy and some SO questions are not well tagged [35]. Most software information sites allow
users to create tags freely. However, this freedom comes at a cost, as tags can be idiosyncratic due
to users’ personal terminology [35] [36]. Furthermore, some software information sites (e.g., SO)
require users to add at least 3 tags at the time of posting a question, even if they are unfamiliar
with the tags in circulation at that time. As tagging is inherently a distributed and uncoordinated

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

26 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

process, often similar questions are tagged differently [37]. For example, in SO the tags xmlparser,
xml-parser and xmlparsing are all used to describe a parser of an XML file. Idiosyncrasy reduces
the usefulness of tags, since related objects are not linked together by a common tag and relevant
information becomes more difficult to retrieve [35]. Another phenomenon in software information
sites is “Tag Synonyms”. This phenomenon refers to tags which are syntactically different (i.e., they
are different strings of symbols) but are semantically the same (i.e., they have the same meaning)
[37].

One way the website can facilitate accurate tagging is to recommend tags for users based on the
content they generate. The development of a tag recommendation system for user created content
is a relatively new field. Thus, tag recommendation is a field in which the state of the art is still
being actively developed, and the most accurate methods for recommending tags have yet to be
established. We discovered two recent papers that detail two algorithms, TagCombine [37] and
EnTagRec [35] for tag recommendation on sites like SO. These algorithms use machine learning
for tag recommendation.

Considering the construct validity, the rating process of SO Q&A pairs is human-dependent.
Therefore, the disagreement among people about the grade of a Q&A pair is possible. In order to
mitigate this threat, we conducted a two-round evaluation process to improve the weighted-Kappa
agreement of evaluators. Another threat in this category raises when selecting a class to compose
queries for tasks in Scenario KAE. There could be more than one class in a snippet and different
choices could lead to different results. This threat is minimized because even when there are more
than one class in the snippet, the chosen class is generally quite obvious because snippets tend to be
small, thus facilitating the identification of the dominant class.

We evaluated a Q&A pair knowing whether it came from Google or our own approach (i.e.,
Lucene+Score+How-to). This is a threat to validity because ideally the assessment should have
been blind, i.e., without knowing which approach recommended the Q&A pair.

Concerning conclusion validity, we can identify a threat on the definition of measures for what
means a useful pair in the context of a programming activity. Even, if the semantic adherence of the
post (Relev) and its reproducibility (Reprod) are meaningful representatives of the usefulness of the
posts, the adoption of other measures could refine the evaluation of posts.

At last, but not least, concerning the external validity, our results have been conducted with three
different APIs and we could observe a variability on the results depending on the API. There are
several factors that could affect the results for a specific API. For instance, if the coverage of an
API is not appropriate or even if the API does not attract the interest of the community, the results
are not expected to be promising as shown in this work. Moreover, for each API, the chosen tasks
may not represent the typical need of developers during software development. However, our option
to select those tasks from third-party documents was an important achievement because we could
eliminate the bias of arbitrary choices.

7. RELATED WORK

Treude et al. [6] analyzed data from SO to categorize the kinds of questions that are asked and to
explore which questions are answered well and which ones remain unanswered. Their preliminary
findings indicate that Q&A sites are particularly effective for code reviews and conceptual questions.
They analyzed the titles and body texts of 385 SO’s questions and found the following categories,
ordered by their frequency: how-to, discrepancy, environment, error, decision help, conceptual,
review, non-functional, novice, noise. They also posed questions regarding the impact of social
media on software development knowledge, and how it could influence the habits of developers.

Nasehi et al. [8] showed that SO question types can be described based on two different
dimensions. The first dimension deals with the question topic: it shows the main technology or
construct that the question revolves around and usually can be identified from the question tags.
The second dimension is about the main concerns of the questioners and what they wanted to solve.
They identified four types in this last dimension: Debug/Corrective, Need-to-Know, How-To-Do-It,

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 27

and Seeking-Different-Solution. Unlike Treude et al. [6] and Nasehi et al. [8], in our work we did a
categorization of SO’s Q&A pairs instead of SO’s questions.

Our work also lies in the field of search engines and code sample retrieval from the Web. Umarji et
al. [38] investigated developers’ habits in searching code on the Internet. Sim et al. [39] investigated
how sites for general purpose information retrieval (e.g., Google) outperform custom sites for code
search (e.g., Krugle) and component reuse (e.g., SourceForge) in retrieving code samples from the
Internet. In our approach we perform code retrieval on SO. When samples are retrieved from search
engines, the developer has to assess their validity. Since we rely on SO, the code samples are already
assessed by the community.

Holmes et al. discussed in their study that often developers become lost when trying to use an
API, unsure of how to make progress on a programming task. They presented STRATHCONA [40],
a plug-in for the Eclipse IDE that uses the structure of the source code under development to find
relevant examples in a repository. Similarly, our approach addresses the same problem but using
another strategy: harnessing the “crowd knowledge” available in SO to recommend information
that can assist developers to solve programming tasks using a given API.

Ponzanelli et al. [34] presented an integrated and largely automated approach to assist developers
who want to leverage the crowd knowledge of Q&A services. They implemented SEAHAWK, a
recommendation system in the form of a plugin for the Eclipse IDE to harness the crowd knowledge
of SO from within the IDE. This plugin automatically formulates queries from the current context
in the IDE, and presents a ranked and interactive list of results. SEAHAWK lets users identify
individual discussion pieces and import code samples through simple drag & drop.

Sawadsky et al. presented FISHTAIL [41], an Eclipse plugin which assists developers in
discovering code examples on the web related to their current task. FISHTAIL suggests code
examples according to the most changed program entity name. In some of the activities (Scenario
KAE) used to evaluate our approach, we also focused on entity names (e.g., class names) using
them as part of the search used to query our system. In the presented approach, we perform code
retrieval on SO, and because of that we could rely on the code samples being already assessed by
the community.

HIPIKAT [42] is a recommendation system developed to support newcomers in a project by
recommending items from problem reports, newsgroup, and articles. Our approach focus on
recommending content from SO instead of providing resources from in-project knowledge.

Cordeiro et al. [43] presented an Eclipse plugin to help developers in problem solving tasks. Based
on an exception’s stack trace gathered from the IDE’s console, they suggest related documents from
SO. Instead of focusing on stack traces, we focus on the task title to query the index previously
created from Q&A pairs.

Takuya et al. presented SELENE [44], a source code recommendation tool based on an associative
search engine. It spontaneously searches and displays example programs while the developer is
editing a program text. Our work also lies in the field of search engines, but we suggest Q&A pairs
taken from SO, which already contain developer explanation that enriches code snippet examples.

Brandt et al. presented BLUEPRINT [45], a plugin built on top of Adobe Flex Builder that allows
developers to search and import code examples in the IDE. Similarly, Zagalsky et al. presented
EXAMPLE OVERFLOW [46] a web-based tool to search and recommend JavaScript code samples.
In our work, we give the freedom of searching for code samples of any programming language.

8. CONCLUDING REMARKS AND FUTURE WORK

We presented a novel approach to leverage the Q&A crowd knowledge. This strategy recommends
a ranked list of question-answer pairs from SO. The ranking criteria takes into account the textual
similarity of the pairs with respect to the developer’s problem, the quality of the pairs, and their How-
to characterization. We developed experiments considering 35 programming problems distributed
on three different topics (Swing, Boost and LINQ) widely used by the software development
community.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

28 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

We made a qualitative manual analysis of the recommended Q&A pairs considering two criteria:
Relevance and Reproducibility. We obtained a NDCG value of 0.3583 for the first criterion
and 0.5243 for the second criterion. We can state that NDCGRelev for Google was 5.62%
higher than Lucene+Score+How-to approach and NDCGReprod for Google was 4.75% higher than
Lucene+Score+How-to approach. These results show that the overall quality of the recommended
pairs by Google was slightly better than the Lucene+Score+How-to approach. Concerning our
approach, the results have shown that for 27 of the 35 (77.14%) activities, at least one recommended
pair proved to be useful to the target programming problem. Moreover, for all the 35 activities, at
least one recommended pair had a reproducible or almost reproducible source code snippet. These
results suggest that our approach outperforms the results obtained in a related work [34].

We also performed a comparison with Google built in search engine. The Lucene+Score+How-
to approach achieved better performance than Google on Boost. Moreover, Lucene+Score+How-to
obtained a number of poor results on Boost and LINQ topics (32.08% and 31.81%, respectively)
lower than Google (46.66% and 40.90%, respectively). On the other hand, Google had performed
better than Lucene+Score+How-to approach on Swing.

The Google search engine has two important features that help it produce high precision results.
First, it makes use of the link structure of the Web to calculate a quality ranking for each web
page. This ranking is called PageRank [47]. Second, Google makes use of the anchor text to
improve search results [48]. This has several advantages. First, anchors often provide more accurate
descriptions of web pages than the pages themselves. Second, anchors may exist for documents
which cannot be indexed by a text-based search engine, such as images, programs, and databases.
These two features are not present in Lucene’s search engine. Moreover, Lucene is not efficient
in processing documents with larger text fields because of the cost involving with the number of
iterations through the input stream, which must be done to yield valid tokens [49].

Thus, we suggest that the ideal approach for recommendation is to use the Google built in search
engine jointly with the proposed How-to classifier. We observed that some SO posts recommended
by Google were more theoretical (i.e., conceptual posts) than practical (i.e., posts that show step by
step how to solve a desired programming task with a given API). We suggest that the absence of a
How-to classifier had contributed to this undesired scenario for Google.

Another problem with Google’s recommendation called us attention because we defined that the
search query must contain the API name. Despite this, Google returned results that were not related
to the respective search API. Our proposed approach does not suffer from this problem because we
filtered only SO posts related with the API of interest using the tag field. Thus, we suggest that this
“hybrid approach” could filter the recommended SO posts by tag (i.e., the tag’s name corresponds
to the name of the search API).

As future work, other classifiers and other attributes could be investigated in order to improve the
success rate and thus, the overall ranking of our recommendation approach. Moreover, new forms
of query generation and respective indexing could be designed. For instance, the query could be
extracted from the contextual source code where the developer is working. We could also investigate
new search mechanisms beyond Lucene to improve the ranking.

Another future work can be performed with less popular topics to investigate the impact of the
popularity of the topic in the result. For pretty popular topics, the chance of having good SO answers
is higher. Even subjects that are in cookbooks may present variability in their popularity. We also
tried in our experimental setup avoid bias as much as possible when choosing subjects. But we
believe that could be addressed in a specific study.

9. ACKNOWLEDGMENTS

This work was partially supported by FAPEMIG grant CEXAPQ-2086-11 and CNPQ grant
475519/2012-4.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 29

REFERENCES

[1] Parnin C, Treude C, Grammel L, Storey MA. Crowd Documentation: Exploring the Coverage
and the Dynamics of API Discussions on Stack Overflow. Georgia Tech, Tech. Rep. 2012;
(GIT-CS-12-05), doi:10.1.1.371.6263.

[2] Mockus A, Fielding RT, Herbsleb J. A case study of open source software development: the
Apache Server. Proceedings of the 22nd International Conference on Software Engineering,
ICSE ’00, ACM Press, 2000; 263–272, doi:10.1.1.178.4816.

[3] Mamykina L, Manoim B, Mittal M, Hripcsak G, Hartmann B. Design lessons from the fastest
Q&A site in the west. Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, ACM: New York, NY, USA, 2011; 2857–2866, doi:10.1145/1978942.1979366.
ISBN: 978-1-4503-0228-9.

[4] Ponzanelli L, Bacchelli A, Lanza M. Seahawk: Stack overflow in the ide. Proceedings of the
2013 International Conference on Software Engineering, ICSE ’13, IEEE Press: Piscataway,
NJ, USA, 2013; 1295–1298.

[5] Barzilay O, Treude C, Zagalsky A. Facilitating Crowd Sourced Software Engineering via Stack
Overflow. Springer: New York, 2013; 297–316, doi:10.1007/978-1-4614-6596-6 15.

[6] Treude C, Barzilay O, Storey MA. How Do Programmers Ask and Answer Questions on
the Web? (NIER track). Proceedings of the 33rd International Conference on Software
Engineering, ACM, 2011; 804–807, doi:10.1145/1985793.1985907. ISBN: 978-1-4503-0445-
0.

[7] de Souza LBL, Campos EC, Maia MdA. Ranking Crowd Knowledge to Assist Software
Development. Proceedings of the 22nd International Conference on Program Comprehension,
ICPC 2014, ACM: New York, NY, USA, 2014; 72–82, doi:10.1145/2597008.2597146.

[8] Nasehi S, Sillito J, Maurer F, Burns C. What makes a good code example? A study of
programming Q&A in Stack Overflow. Proceedings of the 28th IEEE International Conference
on Software Maintenance (ICSM), IEEE, 2012; 25–34, doi:10.1109/ICSM.2012.6405249.

[9] Pohar M, Blas M, Turk S. Comparison of logistic regression and linear discriminant analysis :
A simulation study. Metodoloki Zvezki 2004; 1(1):143–161.

[10] le Cessie S, van Houwelingen J. Ridge Estimators in Logistic Regression. Applied Statistics
1992; 41(1):191–201, doi:10.2307/2347628.

[11] Linares-Vásquez M, Mcmillan C, Poshyvanyk D, Grechanik M. On Using Machine Learning
to Automatically Classify Software Applications into Domain Categories. Empirical Software
Engineering Jun 2014; 19(3):582–618, doi:10.1007/s10664-012-9230-z.

[12] Haykin S. Neural Networks: A Comprehensive Foundation. 2nd edn., Prentice Hall PTR:
Upper Saddle River, NJ, USA, 1998. ISBN: 0132733501.

[13] Sehgal L, Mohan N, Sandhu PS. Quality Prediction of Function Based Software Using
Decision Tree Approach. International Conference on Computer Engineering and Multimedia
Technologies (ICCEMT), 2012; 43–47.

[14] Lempitsky V, Verhoek M, Noble A, Blake A. Random Forest Classification for Automatic
Delineation of Myocardium in Real-Time 3D. Functional Imaging and Modeling of the Heart,
Springer Berlin Heidelberg, 2009; 447–456, doi:10.1.1.150.1029.

[15] Dietterich T. Overfitting and undercomputing in machine learning. ACM Comput. Surv. Sep
1995; 27(3):326–327.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

30 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

[16] Hall M, Frank E, Holmes G, Pfahringer B, Reutemann P, Witten IH. The WEKA Data Mining
Software: An Update. SIGKDD Explorations 2009; :10–18doi:10.1145/1656274.1656278.
ACM.

[17] Karaa W, Griba N. Information retrieval with porter stemmer: A new version for english.
Advances in Computational Science, Engineering and Information Technology, Advances in
Intelligent Systems and Computing, vol. 225. Springer International Publishing, 2013; 243–
254.

[18] Porter MF. Readings in Information Retrieval. chap. An algorithm for suffix stripping, Morgan
Kaufmann Publishers Inc.: San Francisco, CA, USA, 1997; 313–316.

[19] Yang Y, Pedersen JO. A Comparative Study on Feature Selection in Text Categorization.
Proceedings of the Fourteenth International Conference on Machine Learning, ICML ’97,
Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA, 1997; 412–420. ISBN: 1-55860-
486-3.

[20] Forman G, Guyon I, Elisseeff A. An extensive empirical study of feature selection metrics for
text classification. Journal of Machine Learning Research 2003; 3:1289–1305. Published by
JMLR.org.

[21] Mcnemar Q. Note on the sampling error of the difference between correlated proportions or
percentages. Psychometrika 1947; 12:153–157.

[22] Bostanci B, Bostanci E. An Evaluation of Classification Algorithms Using Mc Nemar’s
Test. Proceedings of Seventh International Conference on Bio-Inspired Computing: Theories
and Applications (BIC-TA 2012), vol. 201. Springer India, 2013; 15–26, doi:10.1007/
978-81-322-1038-2 2.

[23] Liddell D. Practical tests of 2x2 contingency tables. Journal of the Royal Statistical Society
1976; 25:295–304.

[24] Eckstein R, Loy M, Wood D. Java Swing. O’Reilly Media: Sebastopol, CA, USA, 1998. ISBN:
1-56592-455-X.

[25] Darwin IF. Java Cookbook. O’Reilly Media: Sebastopol, CA, USA, 2004. ISBN: 978-0-596-
00701-0.

[26] Polukhin A. Boost C++ Application Development Cookbook. Packt Publ.: Birmingham, 2013.
ISBN: 1849514887 9781849514880.

[27] Hilyard J, Teilhet S. C# 3.0 Cookbook, 3rd Edition. Third edn., O’Reilly, 2007. ISBN:
9780596516109.

[28] Bialecki A, Muir R, Ingersoll G. Apache lucene 4. SIGIR 2012 Workshop on Open Source
Information Retrieval, 2012; 1–8.

[29] Holmes R, Cottrell R, Walker RJ, Denzinger J. The end-to-end use of source code examples:
An exploratory study. Proceedings of the IEEE International Conference on Software
Maintenance, 2009.

[30] Robillard MP. What Makes APIs Hard to Learn? Answers from Developers. IEEE Software
2009; 26(6):27–34.

[31] Subramanian S, Holmes R. Making Sense of Online Code Snippets. Proceedings of the 10th
Working Conference on Mining Software Repositories, MSR ’13, IEEE Press: Piscataway, NJ,
USA, 2013; 85–88.

[32] Cohen J. Weighted kappa: nominal scale agreement with provision for scaled disagreement or
partial credit. 1968, doi:10.1037/h0026256.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

SEARCHING CROWD KNOWLEDGE TO RECOMMEND SOLUTIONS FOR API USAGE TASKS 31

[33] Manning CD, Raghavan P, Schütze H. Introduction to Information Retrieval. Cambridge
University Press: New York, NY, USA, 2008. ISBN: 0521865719 9780521865715.

[34] Ponzanelli L, Bacchelli A, Lanza M. Leveraging Crowd Knowledge for Software
Comprehension and Development. CSMR, Cleve A, Ricca F, Cerioli M (eds.), IEEE Computer
Society, 2013; 57–66, doi:10.1109/CSMR.2013.16. ISBN: 978-1-4673-5833-0.

[35] Wang S, Lo D, Vasilescu B, Serebrenik A. EnTagRec: An enhanced tag recommendation
system for software information sites. Proceedings of the International Conference on
Software Maintenance and Evolution (ICSME), IEEE, 2014.

[36] Golder SA, Huberman BA. Usage patterns of collaborative tagging systems. J. Inf. Sci. Apr
2006; 32(2):198–208.

[37] Xia X, Lo D, Wang X, Zhou B. Tag recommendation in software information sites.
Proceedings of the 10th Working Conference on Mining Software Repositories, MSR ’13, IEEE
Press: Piscataway, NJ, USA, 2013; 287–296.

[38] Umarji M, Sim SE, Lopes CV. Archetypal internet-scale source code searching. Milan, Italy,
2008; 7.

[39] Sim SE, Umarji M, Ratanotayanon S, Lopes CV. How well do search engines support code
retrieval on the web? ACM Trans. Softw. Eng. Methodol. Dec 2011; 21(1):4:1–4:25, doi:
10.1145/2063239.2063243.

[40] Holmes R, Walker RJ, Murphy GC. Approximate Structural Context Matching: An Approach
to Recommend Relevant Examples. IEEE Trans. Softw. Eng. Dec 2006; 32(12):952–970, doi:
10.1109/TSE.2006.117.

[41] Sawadsky N, Murphy GC. Fishtail: From Task Context to Source Code Examples.
Proceedings of the 1st Workshop on Developing Tools As Plug-ins, ACM: New York, NY,
USA, 2011; 48–51, doi:10.1145/1984708.1984722. ISBN: 978-1-4503-0599-0.

[42] ČubraniĆ D, Murphy GC, Singer J, Booth KS. Learning from Project History: A Case
Study for Software Development. Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work, CSCW ’04, ACM: New York, NY, USA, 2004; 82–91, doi:
10.1145/1031607.1031622. ISBN: 1-58113-810-5.

[43] Cordeiro J, Antunes B, Gomes P. Context-based Recommendation to Support Problem Solving
in Software Development. Proceedings of 3rd Int. Workshop on RSSE), IEEE, 2012; 85–89,
doi:10.1109/RSSE.2012.6233418.

[44] Takuya W, Masuhara H. A Spontaneous Code Recommendation Tool Based on Associative
Search. Proceedings of the 3rd International Workshop on Search-Driven Development, ACM,
2011; 17–20, doi:10.1145/1985429.1985434. ISBN: 978-1-4503-0597-6.

[45] Brandt J, Dontcheva M, Weskamp M, Klemmer SR. Example-centric programming:
Integrating web search into the development environment. Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, ACM: New York, NY, USA,
2010; 513–522, doi:10.1145/1753326.1753402.

[46] Zagalsky A, Barzilay O, Yehudai A. Example Overflow: Using social media for code
recommendation. Recommendation Systems for Software Engineering (RSSE), 2012 Third
International Workshop on, IEEE, 2012; 38–42, doi:10.1109/RSSE.2012.6233407.

[47] Page L, Brin S, Motwani R, Winograd T. The PageRank Citation Ranking: Bringing Order
to the Web. Technical Report 1999-66, Stanford InfoLab November 1999. Previous number =
SIDL-WP-1999-0120.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

32 EDUARDO C. CAMPOS, LUCAS B. L. DE SOUZA, MARCELO DE A. MAIA

[48] Brin S, Page L. The Anatomy of a Large-scale Hypertextual Web Search Engine. Proceedings
of the Seventh International Conference on World Wide Web 7, WWW7, Elsevier Science
Publishers B. V.: Amsterdam, The Netherlands, The Netherlands, 1998; 107–117.

[49] Su DCC. Performance Analysis and Optimization on Lucene. Technical report, Stanford
InfoLab 2002.

Copyright c© 2014 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2014)
Prepared using smrauth.cls DOI: 10.1002/smr

	1 Introduction
	2 Classification of Q&A Pairs
	2.1 Classification Algorithm
	2.2 SO Dataset
	2.3 Definition of Attributes
	2.4 Feature Selection and Classification Results

	3 Our Approach
	3.1 Research Goal
	3.2 Considered Topics
	3.3 Index Construction
	3.4 Searching in Lucene Indexes
	3.5 Ranking Q&A Pairs by SO Score
	3.6 Combining Scores to Rank Q&A Pairs

	4 Evaluation Procedures
	4.1 Evaluation Criteria
	4.2 Experimental Design
	4.3 Evaluating different Weighting Mechanisms for a Q&A Pair
	4.4 Comparison of results with Google

	5 Results
	6 Discussion
	6.1 Threats to Validity

	7 Related Work
	8 Concluding Remarks and Future Work
	9 Acknowledgments

