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ABSTRACT
Background: Inheritance is one of the main features in the object-

oriented paradigm (OOP). Nonetheless, previous work recommend

carefully using it, suggesting alternatives such as the adoption of

composition with implementation of interfaces. Despite of being a

well-studied theme, there is still li�le knowledge if such recommen-

dations have been widely adopted by developers in general. Aims:
�is work aims at evaluating how the inheritance and composition

with interfaces have been used in Java, comparing new projects

with older ones (transversal), and also the di�erent releases of the

same projects (longitudinal). Method: A total of 1,656 open-source

projects built between 1997 and 2013, hosted in the repositories

GitHub and SourceForge, were analyzed. �e likelihood of more re-

cent projects using inheritance and interfaces di�erently from older

ones was analyzed considering indicators, such as, the prevalence

of corrective changes, instanceof operations, and code smells. Re-

gression analysis, chi-squared test of proportions and descriptive

statistics were used to analyze the data. In addition, a thematic

analysis based method was used to verify how o�en and why in-

heritance and interface are added or removed from classes. Results:
We observed that developers still use inheritance primarily for code

reuse, motivated by the need to avoid duplicity of source code. In

newer projects, classes in inheritance had fewer corrective changes

and subclasses had fewer use of the instanceof operator. However,

as they evolve, classes in inheritance tend to become complex as

changes occur. Classes implementing interfaces have shown li�le

relation to the interfaces, and there is indication that interfaces are

still underutilized. Conclusion: �ese results show there is still some

lack of knowledge about the use of recommended object-oriented

practices, suggesting the need of training developers on how to

design be�er classes.
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1 INTRODUCTION
Since the emergence of the object-oriented paradigm (OOP), the

inheritance feature has been highlighted, mainly because of the

bene�ts of source code reuse, and the possibility of designing �exi-

ble projects using polymorphism [16]. In addition, several design

pa�erns have been proposed using inheritance [10].

However, several studies have recommended caution regarding

its use, mainly because it is likely to break class encapsulation [20]

[15]. Previous works suggest the use of composition with interfaces

replacing inheritance [2] [10]. Encapsulation breakage directly

a�ects aspects such as maintainability and comprehensibility of

projects [1] [7]. Some practitioners suggest the inheritance should

be never used [13]. Other work suggests that at least complex

inheritance hierarchies with high depth should not be constructed

[7]. Since then, several new JavaAPIs and frameworks have emerged

using di�erent levels of interfaces abstractions. Some examples are

the JPA/JDBC APIs, and the java.util.Collections framework.

Just as the Java API itself has undergone modi�cations with re-

spect to the adoption of inheritance and interfaces, there may have

been an in�uence on developers in general towards this practice.

�e Java platform has existed for over 20 years, and before that,

several works have been published, alerting about possible class

encapsulation breaks with the use of inheritance [14] [20] [22]. At

the same time, other works have shown that inheritance has been

consistently employed internally in the Java environment [23], and

also in applications [24]. In addition, there is too much variation in

the use of techniques, such as, encapsulation [11]. �us, it makes

sense to investigate whether inheritance has been employed di�er-

ently in more recent projects. Moreover, the investigation should be

extended to classes implementing interfaces, because some works

suggest its use in replacement of inheritance [2] [13].

In this paper, we investigate 1,656 open-source projects devel-

oped in a time frame of 16 years, to compare new projects with

old ones (transversal study), and verify if inheritance and interface

implementation are being used di�erently with respect to the preva-

lence of their use, prevalence of encapsulation breaks, structural

metrics [4], prevalence of code bad smells [9] [21], prevalence of

corrective changes. We also conducted a study on how o�en and
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why a programmer adds or removes inheritance and interface dur-

ing the life cycle of a project (longitudinal study), in order to be�er

understand their motivations to use the inheritance or interfaces

implementation resources.

Paper organization. Section II presents the research questions,

and the study design proposed to collect data, modeling and data

analysis approach. �e results are reported and discussed in Section

III. Section IV discusses the threats that could a�ect the validity of

our study. Section V discusses the related literature. Finally, Section

VI summarizes our observations in lessons learned, and outlines

directions for future work.

2 STUDY DESIGN
�e goal of this research is to investigate the use of inheritance and

interfaces in Java projects, analyzing the change history of Java

projects and some speci�c releases. �is analysis is restricted to

classes extending internal superclasses or implementing internal

interfaces. In this way, we discarded inheritances and interface im-

plementations like extends javax.swing.JFrame or implements
java.lang.Runnable. More speci�cally, the study aims at address-

ing the following six research questions:

RQ #1: Does the time the project was built in�uence the prevalence
of use of inheritance or implementation of interfaces? We aim at

answering if the practice of avoiding inheritance and favoring com-
position with interfaces has been, at least partially, recently followed

by developers. If so, the trend would be to detect a growth in the

use of interfaces in more recent projects, and at the same time, a

decrease in the use of inheritance.

RQ #2: Does the time the project was built in�uence on the number
of encapsulation breaks by the instanceof operator? �e goal is to

verify whether newer projects have achieved fewer encapsulation

breaks caused by using the instanceof operator, in inheritance

and interface implementation classes. �e result would point out if

developers have been observing the practice of avoiding encapsula-

tion break.

RQ #3: Does the time the project was built in�uence on the number
of corrective changes? We aim at answering if the inheritance and

interface implementation classes are more stable in recent projects,

having less corrective changes.

RQ #4: Inheritance or interface implementation classes have ade-
quate levels of cohesion and coupling? �e aim is to investigate if

classes in inheritance or with interface implementation are more

likely to have adequate indicators of cohesion and coupling, com-

pared to non-inheritance or non-interface implementation. �e

result of this analysis would help to be�er characterize which OOP
indicators are related to classes in inheritance or implementing

interface.

RQ #5: Which code smells occur predominantly for classes in in-
heritance or classes implementing interface? �e aim is to verify

if classes with inheritance or interface implementation are more

likely to be infected with speci�c code smells, and also, if those

infections (in cases they exist) continue until the last project re-

lease. �e result of this analysis would help to understand which

design �aws are more likely to occur in classes with inheritance or

interface.

RQ #6: How o�en does adding or removing inheritance and imple-
mentation of interfaces occur? For what reasons are these operations
performed? �e aim is to understand how o�en inheritance and

interface features are inserted and removed from classes. �e mo-

tivations for those operations could explain how inheritance and

interface are actually employed in projects, from developers’ point

of view.

A. Context Selection
Figure 1 summarizes the steps used to �lter the projects. �e

�rst step (A) obtains information from as many projects as possible,

wri�en in Java. For this, the BOA infrastructure was used, which

has 282,693 projects from the GitHub repository and 26,688 from the

SourceForge repository [8]. Both repositories were used because

GitHub contains a larger number of recent projects, while Source-

Forge contains more older projects. �us, the proposed research

obtains a set of projects with a greater age range.

In the second step (B), projects without tags were discarded.

Also, duplicate projects, git forks and tags in parallel branches were

discarded. �us, 274,479 (97.09%) projects were discarded from

GitHub, and 14,150 (63.25%) from SourceForge.

In third step (C), tag names were analyzed because many tags

contain names of initial release development, and our intention was

to capture major releases. �us, 7,371 distinct names were analyzed,

and tag names like start, initial, test, before, beta, alpha, demo, old,
init, none, dev, example, �rst import, experimental, hello world, First
commit, RC [0..9] and CR [0..9] were discarded. �is �lter discarded

tags from 6,498 projects, and 2,625 projects were discarded because

they only had tags with these keywords.

In the fourth step (D), projects migrated from a di�erent version

control system (VCS) were discarded. �e discarded projects were

those whose initial commits (around 20) included more than 50%

of their �les. �is scenario suggests more than half of develop-

ment project life was implemented in another VCS. One example

is OPENJDK7
1
, which 15,476 distinct classes were found in all

commits, and 10,103 of these were added in their �rst 20 commits.

Next, the remaining projects were analysed considering four

measures: number of classes in initial release, number of commits,

lifetime (last commit date minus �rst commit date) in months, and

the debut interval in months (time between creation date and initial

release date). We choose the projects whose four measures are all

greater their respective �rst quartiles Q1, as shown in Figure 2. For

the number of classes, Q1 is 32 in both repositories. For commits,

Q1 is 122 for GitHub, and 150 for SourceForge. For lifetime, Q1 is 9

months for GitHub and 16 for SourceForge. For debut interval, Q1

is 0 for both repositories. However, for debut interval, we expect

to discard those that are greater than the third quartile Q3, which

is 15 months for GitHub and 8 for SourceForge. �ese �lters were

applied in order to select projects with the best balance between

number of classes, commits, lifetime and initial version with a

suitable interval a�er the creation of the project. A�er applying

these �lters, 880 GitHub projects and 776 SourceForge projects

were selected, totaling 1,656 projects. Figure 3 shows projects per

year. �ere are at least 50 projects in each year between 2001 and

2013. Table 1 shows the number of projects, commits, classes and

creation interval.

1
h�ps://github.com/ikeji/openjdk7-jdk
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Figure 1: Steps for extract and �ltering projects.

Figure 2: Boxplot to �lter projects.

In ��h and last step (E), BOA was used to get commits and classes

history, plugins VCS to download �rst and last release source code

for all projects, and use them to input in Code Smell Analyser tool

[25], to get structural metrics and code smells of each class.

Table 1: Characteristics of analyzed projects

Repository Projects Commits Classes & Interfaces Creation

GitHub 880 558,403 516,327 1997-2013

SourceForge 776 743,453 780,872 1997-2011

Total 1,656 1,301,856 1,297,199 -

B. Data Analysis
�is subsection describes the data analysis process conducted to

answer the research questions.

Figure 3: Number of projects per creation year.

1) �e in�uence of age on the use of inheritance and interfaces: to

answer RQ #1, the initial release of each Java project was evaluated,

to measure the use of inheritance and interface. �e initial release

is expected to represent how developers thought about the archi-

tecture and building their abstractions. �en, we evaluate whether

the initial release age (in months) in�uences the number of classes

in inheritance or implementing interfaces. To perform this evalua-

tion, we use a negative binomial regression (NBR) model, because

the response variable (for each project, the number of classes in

inheritance or implementing an interface) is a count. NBR can also

handle over-dispersion i.e., when response variance is greater than

the mean [5]. In this way, the proposed NBR model is:

ln(I NHER) = I NT ERCEPT +β1(CLASSES )+β2(MONTHS RELEASE) (1)

ln(I NT ER) = I NT ERCEPT +β1(CLASSES )+β2(MONTHS RELEASE) (2)

�e response variables are the lg of INHER (number of classes in

inheritance) and INTER (number of classes implementing interface).

�e model is controlled by the number of classes – CLASSES, and we

analyze the predictor MONTHS RELEASE – the number of months

between the initial project release date and the most recent project

initial release date (July/2015).

Firstly, we veri�ed if the predictive variable MONTHS RELEASE
is statistically signi�cant for the response. ANOVA is performed,
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with two NBR models, one with the MONTHS RELEASE predictor

variable and other without it. Next, we conducted the statistical

likelihood ratio test to verify if the NBR model is more appropriate

to be used with the data produced in this research question. �e

test will compare the NBR with the Poisson model, which has no

dispersion parameter to deal with over-dispersed samples.

2) �e in�uence of age on encapsulation breaks by instanceof:

to answer RQ #2, for each project, distinct classes extending su-

perclasses or implementing interfaces occurring as parameter of

the instanceof operator are counted, considering all commits, i.e.,

if a class occurred as parameter of an instanceof in any of the

revisions, it is counted once. �us, we aim at identifying if the

project age (in months) has any in�uence on the number of classes

extending superclasses or implementing interfaces referenced by

the instanceof operator. We propose the NBR model:

ln(I NHER) = I NT ERCEPT +β1(CLASSES )+β2(EXT )+β3(MONTHS ) (3)

ln(I NT ER) = I NT ERCEPT + β1(CLASSES )+ β2(IMP )+ β3(MONTHS ) (4)

�e response variables (INHER and INTER) represents the num-

ber of classes extending superclasses or implementing interface

occurring as parameter of the instanceof operator. �e predictor

variable EXT is the number of classes extending superclasses, and

IMP is the number of classes implementing interfaces. �e last pre-

dictor variable is MONTHS, which is the number of months between

the project creation date and the most recent project creation date

(October/2013).

3) �e in�uence of age on corrective changes: to answer RQ #3,

�xing commits are identi�ed using a BOA function called isFixin-

gRevision(). Next, for each project, we count the number of �xing

commits that have modi�ed classes with and without inheritance

or interface implementation. We analyse these groups because its

necessary to know if only classes in inheritance or implementing

interfaces are in�uenced or if all classes are in�uenced together.

For this, as in RQ #1 and RQ #2, the NBR model is proposed:

ln(I NHER) = I NT ERCEPT + β1(CLASSES )+ β2(F IX )+ β3(MONTHS ) (5)

ln(NT IH ) = I NT ERCEPT + β1(CLASSES )+ β2(F IX )+ β3(MONTHS ) (6)

ln(I NT ER) = I NT ERCEPT + β1(CLASSES )+ β2(F IX )+ β3(MONTHS ) (7)

ln(NT IT ) = I NT ERCEPT + β1(CLASSES ) + β2(F IX ) + β3(MONTHS ) (8)

�e response variables (INHER and INTER represents, for each

project, the number of changed classes in inheritance or implement-

ing interface in a �xing commit. �e response variables (NT IH and

NT IT) represents the number of changed classes not in inheritance

or not implementing interface in a �xing commit. �e predictor

variable FIX is the total of �xing revisions for each Java project.

4) �e in�uence of cohesion and coupling indicators: to answer RQ
#4, we get the initial and �nal release of each Java project, and apply

the Code Smell Analyzer tool to extract the following structural

metrics values:

• Coupling between Objects (CBO) - the number of classes

which a class is coupled;

• E�ective Lines of code (ELOC) - �e number of lines of

code in a class excluding comments and white spaces;

• Lack of Cohesion (LCOM) - Correlation between methods

and a�ributes in a class;

• Number of methods (NOM) - �e number of methods in a

class;

• Response for Class (RFC) - �e number of distinct methods

and constructors invoked by a class;

• Weighted Methods per Class (WMC) - the complexity of a

class.

�us, we aim at verifying if there is a signi�cant di�erence in

these metric values between classes in inheritance or implementing

interfaces and classes neither in inheritance nor implementing

interface. We apply the Mann Whitney U test. �is comparison

occurs twice, using two distinct releases of projects (initial and

�nal).

5) �e in�uence of code smells: to answer RQ #5, we get the initial

and �nal release of each Java project, and apply the Code Smell

Analyzer tool to its source code. We extract the classes infected by

the following code smells:

• Class Data Should be Private - Classes exposing its at-

tributes, allowing their behavior to be manipulated exter-

nally, breaking its encapsulation;

• Complex Class - Classes di�cult to test and maintain,

with several conditional structures and di�erent execution

paths;

• Functional Decomposition - Classes declaring many at-

tributes and implement few methods, poorly use of OOP

resources;

• God Class - Classes controlling many other objects. �ese

classes usually have low cohesion, accumulate many re-

sponsibilities with many lines of code;

• Lazy Class - Classes having few features, not justifying

their existence;

• Long Method - Methods unnecessarily long. �erefore,

they could be divided, generating other methods;

• Spaghe�i Code - Classes do not represent any type of be-

havior for the project. �ey usually own only a few long

methods without parameters.

To identify if some code smell is occurring more frequently for

classes in inheritance or implementing interfaces, a contingency

table was constructed for each code smell, applying X 2
test, to

verify if the hypothesis is con�rmed.

6) Frequency and motivation for addition and removal of inheri-
tance and interface: to answer RQ #6, we analyzed the classes change

history. Each class was classi�ed in one of four groups:

• Always - when classes in inheritance or implementing

interfaces were built that way, and as such remained until

their exclusion or last project commit.

• Lost - when classes in inheritance or implementing inter-

faces were built that way, but the inheritance or implemen-

tation was removed in some project commit.

• Later - when classes not in inheritance or not implementing

interfaces were changed to participate in an inheritance

(or to implement an interface) a�er some project commit.

• Never - when classes not in inheritance or not implement-

ing interfaces remained as such until their exclusion or last

project commit.

�e �rst and fourth groups had the same structure from its cre-

ation to the end. However, classes in the second and third groups

changed, adding or removing inheritance and interface implementa-

tion. To get be�er understanding, we perform a qualitative analysis
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(similar to the thematic analysis [6]), on a sampling of these classes

to discover the motivation for the changes. �ese steps were per-

formed with 40 changes in 40 distinct projects, to prevent the same

team performing more than one change. For each change, two UML

class diagrams were generated [19]. �e �rst class diagram consists

the previous state of the changed class with its dependencies. And

the second diagram contains the structural modi�cation a�er the

commit. Each change were codi�ed, generating a theme. And then,

a merge of these themes were performed, de�ning name and �nal

themes.

3 RESULTS
�is section reports on the achieved results, aiming at answering

our six research questions.

RQ #1: Does the time the project was built in�uence the frequency
of use of inheritance or implementation of interfaces?

Table 2 presents the NBR model for the in�uence of the initial

release age in number of classes in inheritance and implement-

ing interfaces. �e Estimate column contains the regression co-

e�cients for all predictor variables. For both cases, the variable

MONTHS RELEASE is positive. �us, the trend is as older is the

project release, the greater the number of classes with inheritance

and interface, but a small association is encountered. �e coe�-

cients are interpreted as follows: for classes in inheritance, the vari-

able CLASSES has a coe�cient of 0.0032. �is means for each class

added to the project, the ln of the response variable INHERITANCE is

summed as 0.0032, i.e., it will be summed in 1.003 classes (= e0.0032
).

�e same is true for the predictor variable MONTHS RELEASE, for

each month added in the project age, ln of the number of classes

in inheritance increases by 0.002, i.e., the number of classes in

inheritance increases in 1.002 (= e0.002
).

Table 2: NBR model for classes in inheritance and imple-
menting interfaces

Estimate Std. Error z value Pr(> |z |)
Inheritance

(Intercept) 3.0155966 0.0512405 58,852 < 2e-16 ***

CLASSES 0.0032857 0.0000574 57,241 < 2e-16 ***

MONTHS RELEASE 0.0020224 0.0005005 4,041 5.32e-05 ***

Interface

(Intercept) 2.704e+00 5,602e-02 48,266 < 2e-16 ***

CLASSES 2,880e-03 5.553e-05 51,857 < 2e-16 ***

MONTHS RELEASE 2.240e-03 5.472e-04 4,094 4.25e-05 ***

A�er obtaining the coe�cients, we veri�ed whether the variable

MONTHS RELEASE is statistically relevant to the model. When exe-

cuting theANOVA test, we obtained p-value Pr>X 2 = 6.462469e−05

for classes in inheritance and Pr > X 2 = 6.326497e−05 for classes

implementing interface. So, we accept the assumption that the

coe�cients of the MONTHS RELEASE variable are greater than 0.

Finally, the likelihood ratio test was performed to verify the NBR
model assumptions are met. For the class in inheritance model, the

likelihood log returned 195,195.1 (df = 4). For classes implementing

interface, the value obtained was 154,311.3 (df = 4). �e Pr > X 2

returned 0 for both cases. �ese suggest the NBR model is more

appropriate than the Poisson model.

Summary for RQ #1: It was hypothesized that classes in inheri-

tance are less commonly used in newer projects. However, there

was also a reduction in the use of interface, which was not expected,

since the literature recommends the use of interface composition.

RQ #2: Does the time the project was built in�uence on the number
of encapsulation breaks by instanceof operator?

Table 3 presents the NBR model for the in�uence of project age in

the use of instanceof operator in classes extending superclasses or

implementing interfaces. �e Estimate column shows MONTHS has

a positive coe�cient for both cases, however the association is small.

�us, older projects tend to be more discreetly associated with the

instanceof operator to refer to classes extending superclasses and

implementing interface. We discuss this result in the last section.

Table 3: NBR model for the in�uence of inheritance and in-
terface in the use of instanceof operator

Estimate Std. Error z value Pr(> |z |)
Inheritance

(Intercept) 9.977e-01 7.390e-02 13,501 < 2e-16 ***

EXT 1.808e-03 1.973e-04 9,162 < 2e-16 ***

CLASSES 3.662e-04 8.197e-05 4,468 7.9e-06 ***

MONTHS 7.305e-03 8.493e-04 8,602 < 2e-16 ***

Interface

(Intercept) 0.3996833 0.0722599 5,531 3.18e-08 ***

IMP 0.0026862 0.0002193 12,249 < 2e-16 ***

CLASSES 0.0004840 0.0000625 7,744 9.64e-15 ***

MONTHS 0.0088140 0.0008202 10,747 < 2e-16 ***

As in RQ # 1, statistical tests were run to verify if MONTHS is

statistically relevant to the model with Prob > X 2 = 1.110223e−16

for classes with inheritance and Prob > X 2 = 0 for classes with

interface, i.e., the assumption is accepted the coe�cients of the

MONTHS variable are greater than 0. Finally, the likelihood ratio

test was performed to verify if the assumptions of the NBR model

are met. For the class in inheritance model, the likelihood log

returned 54,502.1 (df = 5). For classes implementing interface, the

value obtained was 45,146,42 (df = 5). �e Prob > X 2
returned 0 for

both cases, indicating the NBR model is more appropriate than the

Poisson model.

Summary for RQ #2: A small decrease in the use of instanceof
was observed in classes extending superclasses and mainly imple-

menting interface, which obtained a less small decrease compared

to inheritance.

RQ #3: Does the time the project was built in�uence on the number
of �xing changes?

Table 4 presents the NBR model for the number of corrective

changes for classes in inheritance and implementing interfaces. �e

Estimate column shows MONTHS has a positive value for both cases.

To verify if older projects tend to have more corrective changes

only for classes in inheritance and implementing interface, the

same NBR model was applied, but for classes not in inheritance

or not implementing interface. �e result shows MONTHS has a

small in�uence and negative value for both cases. �is means older

projects tend to have a li�le more corrective changes for classes in

inheritance and implementing interface, and newer projects tend

to have more corrective changes for classes not in inheritance or

not implementing interface.

When executing the ANOVA, we obtained the Prob > X 2 =

0.008424232 for classes in inheritance and Prob>X 2 = 7.300391e−05

for classes implementing interface. And Prob > X 2 = 0.04612451

for classes without inheritance and Prob > X 2 = 0.04100823 for
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Table 4: NBR model for the in�uence of inheritance and in-
terface in corrective changes

Estimate Std. Error z value Pr(> |z |)
Inheritance

(Intercept) 2.717e+00 4.896e-02 55,489 < 2e-16 ***

FIX 4.474e-03 9.751e-05 45,877 < 2e-16 ***

CLASSES 1.141e-04 2.267e-05 5,033 4.83e-07 ***

MONTHS 1.474e-03 5.763e-04 2,557 0.0106 *

Without Inheritance

(Intercept) 3.168e+00 4.095e-02 77,360 <2e-16 ***

FIX 4.019e-03 7.947e-05 50,573 <2e-16 ***

CLASSES -4.542e-07 1.956e-05 -0.023 0.9815

MONTHS -9.740e-04 4.876e-04 -1,997 0.0458 *

Interface

(Intercept) 2.316e+00 5.357e-02 43,235 < 2e-16 ***

FIX 4.032e-03 1.063e-04 37,933 < 2e-16 ***

CLASSES 1.795e-04 2.471e-05 7,265 3.72e-13 ***

MONTHS 2.445e-03 6.296e-04 3,884 0.000103 ***

Without Interface

(Intercept) 3.352e+00 3.979e-02 84,231 <2e-16 ***

FIX 4.324e-03 7.738e-05 55,873 <2e-16 ***

CLASSES -2.109e-06 1.904e-05 -0.111 0.912

MONTHS -9.588e-04 4.738e-04 -2,023 0.043 *

classes without interface implementation. �is indicates the as-

sumption is accepted the coe�cients of the MONTHS variable are

greater than 0. Finally, the likelihood ratio test was performed to

verify the assumptions of the NBR model are met. For the classes

in inheritance model, the likelihood log returned 116,049.3 (df = 5).
For classes with interface, the value obtained was 85,980.21 (df = 5).
�ese very large chi-square values indicate the NBR model is more

appropriate than the Poisson model. For classes without inheritance

and interface, similar values were obtained.

Summary for RQ #3: In general terms, the amount of changes

have slightly decreased for both classes in inheritance and classes

implementing interface. �is indicates they are being easier to

maintain, taking into account less bugs are appearing in these

classes.

RQ #4: Classes with inheritance or interface have adequate levels
of cohesion and coupling?

�e Mann-Whitney U test was applied to verify if any signi�cant

di�erence α = 0, 05 were found between classes in inheritance

and not in inheritance and classes implementing interface and not

implementing interface. Only WMC metrics for classes in and not in

inheritance did not returned signi�cant di�erence, i.e., α = 0.1741.

Twelve violin graphics were generated as shown in Figure 4 to

understand the size of e�ect. Each graphic represents one metric,

in initial or �nal version, and the four violins are: classes in inher-

itance, classes not in inheritance, classes implementing interface,

and classes not implementing interface.

For classes in inheritance, the violin graphic shows high in�u-

ence on LCOM metric (E),(F), i.e., classes in inheritance tends to

have lower cohesion than the rest, but tends to be smaller ( ELOC
(C),(D)) and thus having lower coupling (RFC (I),(J)).

For classes implementing interface, violin graphics shows higher

cohesion for those classes compared to the rest (LCOM (E),(F)).

Lower RFC (I),(J) has been observed for these classes specially in

the �nal releases.

Summary for RQ #4: �ere is indication that the classes in inher-

itance tend to have more of a functionality because of the lower

cohesion, but in fewer lines of code. For classes implementing in-

terfaces, the metrics have be�er values in �nal releases, indicating

changes in these classes do not tend to a�ect their behavior.

RQ #5: Which code smells occur predominantly for classes in in-
heritance or classes implementing interface?

Table 5 shows the results found for classes with inheritance

and interface in the initial and �nal release of each project. For

X 2 < 0.05, there is evidence the code smell occurs more in one

scenario than in the other (in inheritance or not in inheritance,

interface or not in interface). For else, code smell occurs in the

same ratio in both scenarios. �us, for classes in inheritance, lazy

class and complex class has no e�ect in �rst release, but in last

there is an evidence these code smells occurs more in classes in

inheritance. �is result indicates classes in inheritance tend to

absorb more functionality during their life cycle, and some of these

classes does not have too much functions. �e results in classes

implementing interfaces show the same proportion in initial and

last release for all code smells.

Summary for RQ #5: For classes in inheritance there is an evi-

dence the code smells lazy class and complex class occur during the

changes of the classes. But for classes implementing interfaces, no

changes were found in the predominance of code smells found. �is

indicates there may be a weak relationship between the interface

and its classes implementations.

RQ #6: How o�en does adding or removing inheritance and im-
plementation of interfaces over classes occur? And for what reasons
these operations are performed?

Table 6 presents the number of classes in which there was ad-

dition or removal of inheritance and interface implementation,

separated into four groups. Each group has two columns, where

the column Last represents the number and percentage of classes

persisted up to the last project commit, and the column Delete rep-

resenting the classes that were deleted in some commit from the

project. �e result shows 11.33% of classes were excluded from

the project in some commit. �e Always group shows 37.11% of

classes were created in inheritance and thus remained until the

�nal project release. For interfaces, there are 17.91% of classes. And

about 12% of the total classes in Always group were excluded from

the projects, which is consistent with the overall average. �is

indicates classes built with inheritance or interface implementation

do not have a greater tendency to exclude. �e Never group shows

60.24% of the existing classes in the �nal projects release never had

inheritance, and 79.68% never implemented interface.

�e Lost group shows 0.5% of the classes had inheritance and lost

until the �nal release, and 1.09% for implementation. And less than

10% classes have lost inheritance or implementation are deleted.

�is indicates most of these classes still have functionality for the

projects. Another interesting factor is, by adding only the classes

that acquired inheritance, only 1.45% of these lost the inheritance

without immediate deletion (in the same commit). �e A�er group

shows 2.07% for inheritance and 1.31% for interface implementation,

which is higher than the percentage of classes have lost inheritance

or implementation of interfaces. When a behavior is removed,

dependencies can be a�ected, making it possible to increase the

number of changed classes or interfaces in a single commit. How-

ever, when adding a behavior, new dependencies are created along

their commits. �erefore, the tendency is to add inheritance or
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Figure 4: Metrics collected in initial and �nal release

Table 5: Contingency table for initial and �nal releases, with each code smell for classes in inheritance and implementing
interfaces

Initial Release Final Release

With C.D.S.Private Without C.D.S.Private X 2
p-value With C.D.S.Private Without C.D.S.Private X 2

p-value

In Inheritance 1,033 105,222 < 2.2e-16 1,556 163,391 < 2.2e-16

Not in inheritance 2,569 141,055 3,700 208,119

In Interface 403 45,227 < 2.2e-16 628 69,267 < 2.2e-16

Not in interface 3,199 201,250 4,628 302,243

With Complex Class Without Complex Class X 2
p-value With Complex Class Without Complex Class X 2

p-value

In Inheritance 760 105,495 0.5489 1,243 163,704 1.035e-06

Not in inheritance 997 142,627 1,316 210,503

In Interface 763 44,867 < 2.2e-16 990 68,905 < 2.2e-16

Not in interface 994 203,255 1,569 305,302

With Functional D. Without Functional D. X 2
p-value With Functional D. Without Functional D. X 2

p-value

In Inheritance 300 105,955 0.5247 460 164,487 0.5521

Not in inheritance 385 143,239 568 211,251

In Interface 85 45,545 8.842e-05 137 69,758 1.911e-05

Not in interface 600 203,649 891 305,980

With God Class Without God Class X 2
p-value With God Class Without God Class X 2

p-value

In Inheritance 2,874 103,381 < 2.2e-16 4,789 160,158 6.782e-06

Not in inheritance 4,783 138,841 6,689 205,130

In Interface 2,538 43,092 < 2.2e-16 3,567 66,328 < 2.2e-16

Not in interface 5,119 199,130 7,911 298,960

With Lazy Class Without Lazy Class X 2
p-value With Lazy Class Without Lazy Class X 2

p-value

In Inheritance 17,681 88,574 0.9795 27,516 137,431 0.05963

Not in inheritance 23,906 119,718 34,847 176,972

In Interface 4,782 40,858 < 2.2e-16 6,384 63,511 < 2.2e-16

Not in interface 36,815 167,434 55,979 250,892

With Long Method Without Long Method X 2
p-value With Long Method Without Long Method X 2

p-value

In Inheritance 944 105,311 2.887e-14 1,680 163,267 1.349e-14

Not in inheritance 1,732 141,892 2,735 209,084

In Interface 608 45,022 2.254e-09 1,096 68,799 < 2.2e-16

Not in interface 2,068 202,181 3,319 305,552

With Spaghe�i Code Without Spaghe�i Code X 2
p-value With Spaghe�i Code Without Spaghe�i Code X 2

p-value

In Inheritance 2,142 104,113 7.503e-15 3,536 161,411 8.662e-05

Not in inheritance 3,572 140,052 4,947 206,872

In Interface 1,943 43,687 < 2.2e-16 2,636 67,259 < 2.2e-16

Not in interface 3,771 200,478 5,847 301,024

implementation of interfaces to be an activity less complex than its

removal.

�ematic analysis was applied in 40 classes to be�er understand

the reasons why inheritance or interface implementation is added

or removed some commits a�er creation class. �us, each found

theme is presented.

A) Uncertain Abstractions
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Table 6: Number of inheritance and interface implementation additions and removals of analyzed projects

Resource Always Lost A�er Never Total
Last Delete Last Delete Last Delete Last Delete Last Delete

Inheritance 384,933

(37.11%)

46,950

(35.39%)

5,875 (0.5%) 480

(0.3%)

21,510

(2.07%)

1,827

(1.37%)

624,860

(60.24%)

83,371

(62.86%)

1,037,178

(88.66%)

132,628

(11.33%)

Interface 185,763

(17.91%)

23,226

(17.51%)

11,372

(1.09%)

814

(0.61%)

13,610

(1.31%)

1,043

(0.78%)

826,433

(79.68%)

107,545

(81.08%)

1,037,178

(88.66%)

132,628

(11.33%)

�is theme was detected in 15 classes (37.5%), and presents situ-

ations where the superclass or interface were initially built with

few functionalities being o�ered to the subclasses. However, a�er

some commits, these superclasses or interfaces implementations

did not obtain a justi�ed increment to maintain their existence, and

were excluded or remained without subclasses.

As an example, the JSourcePad
2

project has the subclass kkckkc.

syntaxpane.model.Scope that inherits from superclass kkckkc.

syntaxpane.model.Interval. However, the subclass only needed

two superclass a�ributes, and the other behaviors were not nec-

essary. �us, in a given commit, the subclass was decoupled by

creating the already existing a�ributes in superclass. �e commit

message mentions reduction of memory usage, showing in this case

that it was be�er to avoid creating more objects unnecessarily at

runtime, to the detriment of the reuse of code provided by the

inheritance.

For interfaces, this scenario occurred for example in gobandroid

project.
3

�e interface org.ligi.gobandroid.logic.GoDefinitions

.java had constants were used in classes GoGame, GoMove and

GoBoard, all from the same package. However, it was necessary to

add the getHandicapArray() de�ned method in the class GoGame.

Because the classes did not rely on interface functionality, the

method was moved to the interface, which was converted to class.

However, the new class GoDefinitions acquired the code smell

Lazy Class.

B) Standard Behavior for Interfaces
�is theme was detected in 9 classes (22.5%). Occurs when classes

implementing an interface require common behavior to them. �us,

to avoid duplication of source code, in all scenarios a superclass

with this functionality was built. �e new superclass implements

the interface, and the classes previously implemented the interface,

begin to extend the new superclass.

As an example, a change made occcurs in plugin gradle for

netbeans
4

project. Before the change, MemProjectProperties

and ProjectPropertiesProxy classes, both from the package org.

netbeans.gradle.project.properties implementing the interface

ProjectProperties. However, a common behavior was added

to both classes, so the subclasses no longer directly implement

the interface. �ese classes started to extend the new superclass

AbstractProjectProperties. And the superclass started to extend

the interface ProjectProperties. In this way, subclasses continue

to implement methods de�ned by the interface, but their common

behavior is placed in a superclass.

C) New Functions with Adoption of Good Practices
In 7 observed cases (17.5%), the change of a requirement was

accompanied by an increase in the classes design quality, adopting

2
h�p://tinyurl.com/jjxy5bx

3
h�p://tinyurl.com/znck7ep

4
h�p://tinyurl.com/hhk6dgu

good recommended practices. In all cases, the commit was not

performed for the purpose of implementing best practices, but

for implementing new project requirements, observing good OOP
practices.

An example, a change from inheritance to composition was de-

tected in jDTO-Binder project.
5

Before commit, com.juancava

llotti.jdto.spring.SpringDTOBinder was subclass from DTO-

BinderBean, which implemented the DTOBinder interface. A�er

the commit, SpringDTOBinder had an instance of DTOBinder-

Bean, and to avoid encapsulation break, implemented the interface

DTOBinder.

D) Other topics
�ere have been 3 cases of inheritance loss from internal super-

classes, to extend external libraries. In another 2 cases, a refactoring

move package operation was detected, which is not expected to be

detected in this work. And �nally, 4 cases where there was a very

large number of classes changed, with several operations being

performed. In these cases, no speci�c cause has been identi�ed.

Summary for RQ #6: In few classes, inheritance has been added

or removed a�er their initial commit. �e analysis in a sample of

40 classes shows that inheritance is largely removed because the

superclass was designed to address possible new features that never

appeared in the project, and thus generally are created as Lazy Class

code smell, and thus remain until the inheritance is removed. Inter-

face hierarchies are mostly removed to avoid duplication of source

code between classes implementing them. Inheritance addition also

prevailed to avoid duplicity, reusing source code. Finally, interface

addition occurs mainly due to polymorphism.

4 THREATS TO VALIDITY
A threat to external validity is that the analysis of this research can

not be generalized to other object-oriented languages, because all

the projects were wri�en in Java. In order to generalize this study, it

is necessary to evaluate projects of other object oriented languages.

Moreover, only open-source projects were considered. Nonetheless,

the large scale dataset provides a representative sample of open

source Java projects.

A threat to construct validity concerns tags. �ere is no guaran-

tee the selected tag actually represents a project release, or even it

is in fact the initial or �nal release. Some projects have their tags

names referring to a project release. For example, the initial tag in

nsuml
6

is release0 0 1, which induces a project release. However,

the �rst tag in gzigzag 7
has a name snapshot-2000-07-11T12 26 00Z,

which does not clearly state whether it is a release or a project land-

mark. To mitigate this threat, we carried out a process of hygiene

of tags, discarding names do not match project releases.

5
h�p://tinyurl.com/hfnlyph

6
h�p://sourceforge.net/projects/nsuml

7
h�p://sourceforge.net/projects/gzigzag
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�e detection of code smells is also a threat to validity. �is

is not a completely accurate process. To mitigate this threat, like

other works, we relied on the results of DECOR implementations,

which is considered a state-of-the-art tool.

Another threat to validity is that refactoring operations such as

move package or rename class were disregarded. �e reason for this

operation is because in VCS, these operations consists in delete and

added operations.

Finally, there is no accurate information about the reliability of

the isFixingRevision() function present in the BOA infrastructure.

Although it is mentioned in API as a message is considered indicat-
ing a bug �x if it matches a set of regular expressions, there is no

information about what are these regular expressions. Nonetheless,

Boa dataset is being continuously investigated by other research.

5 RELATEDWORK
Several methods have been used to evaluate the use of inheritance.

Many of these are prior to Java’s own creation. �us, only the

works that have more relation with the purpose of this work will

be highlighted.

A study proposed to evaluate how much the inheritance and

interface resources are used in Java projects [23]. For this, it con-

sidered the analysis of inheritance and interface separately, as well

as the inheritance occurred with external libraries and superclasses

de�ned internally in the project. For this, a set of metrics was cre-

ated, analyzing 93 projects totaling 100,000 user-de�ned types. In

the longitudinal analysis performed, the projects acquire many new

types of inheritance over time. In addition, it was found 3 out of 4

types use some form of inheritance or implementation of interfaces

in at least half of the evaluated applications. Such use refers to

both superclasses and interfaces (internal or external). Although

this research has a quantitative purpose in evaluating the use of

inheritance, it does not make measurements about the negative

e�ects of its use, unlike this work, which measures negative e�ects

inheritance use can give the developer.

Another study proposes to evaluate why a programmer chooses

to use inheritance, and to what extent such a choice is really nec-

essary [24]. �is would identify situations where inheritance was

used unnecessarily. In addition to the evaluation of class de�nitions,

the methods were also evaluated. It was found 34% of the subclasses

use superclass resources, however the subclasses are constantly

polymorphically used by their superclass (two thirds of cases). It

has also been found there are not many opportunities to perform

refactoring operations for composition. �e main di�erence of this

study for the proposed work is that this study evaluates if the re-

sources proposed by the inheritance were used, while the proposed

work evaluates the side e�ects the inheritance use can generate in

the source code.

Regarding the negative e�ects evaluation of its use, several stud-

ies have been based on the measurement of speci�c structural met-

rics inheritance, as DIT or NOC. For example, a study constructed

a set of activities to be executed in classes with inheritance at dif-

ferent levels of DIT, and replicated in classes without inheritance

[7]. He concluded the inheritance activity got a greater amount

of changed lines of code, and the larger the value of DIT, the less

project maintainability. Such a study was replicated by other re-

search which proved just the opposite, i.e., classes in inheritance

are easier to maintain [3]. Other study has con�rmed inheritance

a�ects the project maintainability [12]. However, he pointed out

large projects are o�en di�cult to understand with or without the

use of inheritance.

About code smells, several approaches have been proposed to

detect and recommend its removal. Approaches are based on the

code smells cataloged from books known in the literature [9]. Some

of these approaches are based on metrics [17], and others perform

analysis on the history of source code versions [18]. Within metric-

based approaches, one research was conducted to construct a tool

called DECOR, using a domain-speci�c language DSL to specify the

code smells [17]. For example, a long method can be parameterized

for the number of lines the user believes to be convenient, to classify

the class with the code smell mentioned. Code smell analyzer tool

employed in this work was constructed, using this approach of

extracting structural metrics, based on the conditions originally

proposed by DECOR [25].

6 CONCLUDING REMARKS
In this work, we studied the actual use of inheritance and interface

in Java projects. Lessons learned show a set of observations and

recommendations.

Lesson # 1 - Recent projects tend to have be�er designed the inher-
itance resource, but the growth of these classes occurs faster - some

improvements in the use of the inheritance were found. More

recent projects have been shown fewer corrective changes, the

decrease in inheritance use may indicate its use in more appropri-

ate situations. Also, the instanceof operator has been less used

to obtain subclass-speci�c functionalities. When compared with

classes without inheritance, this characteristic has been designed

without the trend of enlarging lack of cohesion and coupling met-

rics, and thus not becoming code smells. However, the last projects’

releases showed classes in inheritance accumulating features more

easily than classes without inheritance, and consequently some

code smells appearing, as God Class and Complex Class.

Lesson # 2 - Developers still tend to design inheritance primarily
for code reuse - although this work has shown improvements in the

use of inheritance, the primary motivation for its use has remained

the same since when this feature was conceived, which is the reuse

code. �ematic analysis showed this feature is the most used by

developers to avoid duplication in the source code, in detriment of

the use of composition. �e last projects’ releases has a tendency

to present the code smell Lazy Class, as well as Complex Class.

Lazy Classes can be added when superclasses are de�ned only to

avoid duplication of source code, as well as Complex Classes can

be added with several functionalities for subclasses that are likely

to be Lazy Classes, with few methods complementing the super-

class behavior. �us, the motivation on the part of developers to

primarily obtain reuse of code, can lead to inheritance hierarchies

becoming extremely complex over time. Only 1.45% classes re-

moved inheritance indicating di�culty to change respective design

decisions.

Lesson # 3 - �ere are some indications that interfaces are still un-
derutilized. �e thematic analysis results shown that the interfaces
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were constructed with a purpose to reduce the coupling between

classes, encapsulating the functionalities de�ned in its contract

for other classes. �is type of functionality may not be seen as

necessary by developers when designing projects with simpler ar-

chitectures. �is is reinforced because in small and medium-sized

projects there was a decrease in the use of interfaces. Another point

is the fact that interface is a much less used resource than inheri-

tance, with about 20% use over the project classes, against 40% of

inheritance. We should also notice that several classes still extend

from external superclasses, making it impossible to extend also

from internal superclasses. With interface, a class can implement

as many interfaces as desired, so there is no such restriction.

Lesson # 4 - Interfaces tend to have li�le relation with their im-
plementation classes - Unlike inheritance, interfaces and their im-

plementation classes do not tend to have strong relationship. Evi-

dence for this assertion comes from the thematic analysis, where

classes implementing interfaces showed greater amount of methods

than those implemented to respect interfaces contract. Refactoring
operations occur mostly o�en in classes implementing interfaces

compared to inheritance. �is indicates this relationship is easier

to break. In classes in inheritance, there is a high level of coupling

and shared functionality between superclasses and subclasses. In

classes implementing interfaces, this coupling is lower and can be

any project class that in some moment needs to be used polymor-

phically in the project. �us, an interface is created and respective

methods are implemented.

For future work, more detailed analysis could be conducted to

characterize situations where inheritance and interface implemen-

tations have been actually considered adequate and use that �nding

for design decision recommendation.
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