
Common Bug-fix Patterns: A Large-Scale
Observational Study

Eduardo C. Campos
Faculty of Computing

Federal University of Uberlândia, Brazil

eccampos@ufu.br

Marcelo A. Maia
Faculty of Computing

Federal University of Uberlândia, Brazil

marcelo.maia@ufu.br

Abstract—[Background]: There are more bugs in real-world
programs than human programmers can realistically address.
Several approaches have been proposed to aid debugging. A
recent research direction that has been increasingly gaining
interest to address the reduction of costs associated with defect
repair is automatic program repair. Recent work has shown
that some kind of bugs are more suitable for automatic repair
techniques. [Aim]: The detection and characterization of common
bug-fix patterns in software repositories play an important role
in advancing the field of automatic program repair. In this
paper, we aim to characterize the occurrence of known bug-
fix patterns in Java repositories at an unprecedented large scale.
[Method]: The study was conducted for Java GitHub projects
organized in two distinct data sets: the first one (i.e., Boa data
set) contains more than 4 million bug-fix commits from 101,471
projects and the second one (i.e., Defects4J data set) contains
369 real bug fixes from five open-source projects. We used a
domain-specific programming language called Boa in the first
data set and conducted a manual analysis on the second data set
in order to confront the results. [Results]: We characterized the
prevalence of the five most common bug-fix patterns (identified
in the work of Pan et al.) in those bug fixes. The combined results
showed direct evidence that developers often forget to add IF
preconditions in the code. Moreover, 76% of bug-fix commits
associated with the IF-APC bug-fix pattern are isolated from the
other four bug-fix patterns analyzed. [Conclusion]: Targeting on
bugs that miss preconditions is a feasible alternative in automatic
repair techniques that would produce a relevant payback.

I. INTRODUCTION

There are more bugs1 in real-world programs than human

programmers can realistically address [17]. The battle against

software bugs exists since software existed. Substantial effort

is spent to fix bugs. For instance, Kim and Whitehead [15]

report that the median time for fixing a single bug is about

200 days. Program evolution and repair are major components

of software maintenance, which consumes a daunting fraction

of the total cost of software production. Research in automatic
program repair has focused on reducing defect repair costs.

A family of techniques has been developed around the idea

of “test-suite based repair” [17]. The goal of test-suite based

repair is to generate a patch that makes failing test cases pass

and keeps the other test cases satisfied [40]. Recent test-suite

based repair approaches include the work by Le Goues et al.
[17], Nguyen et al. [27], Kim et al. [14].

1In this paper, we use the terms “defect”, “error”, “fault”, and “bug” as
synonyms.

The cost of debugging and maintaining software has been

continuously increasing [7]. A 2013 study estimated the global

cost of debugging at $312 billion, with software developers

spending half their time debugging [2]. Several recent studies

have established the potential of automatic program repair to

reduce costs and improve software quality. The systematic

study of GenProg is a notable example, which measured cost

reduction in actual dollars [17]. Currently, this recent research

direction attracts much academic and industrial attention.

Nonetheless, many people question the positive results. For

instance, Qi et al. [34] have shown that the evaluation of

GenProg suffers from a number of important issues, and call

for more research on systematic evaluations of test-suite based

repair. Moreover, existing approaches (e.g., GenProg [17],

PAR [14]) seem to be able to fix only simple bugs, due to

several limitations [26].

Automatic program repair has shown promise for reducing

the significant manual effort debugging requires. However,

there is a deficit of earlier evaluations of automatic program

repair techniques caused by repairing programs and evaluating

generated patches’ correctness using the same set of tests (i.e.,

the patches overfit to the training test suite) [35].

While automatic program repair shows great promise, it

is far from being widely adopted, and still many potential

improvements remain to be made [7]. In a recent work,

Martinez et al. [23] assessed the effectiveness of different

automatic repair approaches on the real-world Java bugs of

Defects4J [10]. They conducted a study with three automatic

repair systems on 224 bugs present in this data set: jGenProg,

an implementation of GenProg [17] for Java; jKali, an imple-

mentation of Kali [34] for Java; and NOPOL [40]. Their results

showed that these repair systems together can synthesize a

patch for only 21% of these bugs.

Generally speaking on debugging, the research community

still does not have general consensus on which kinds of

software bugs are most common [29]. The reason is not a

deficit of research, but a lack of uniformity. Since 1975, efforts

have been made to create taxonomies of common types of

bug (e.g., [6], [1], [19], [20], [28], etc.). However, researchers

often create new taxonomies of bug types instead of using an

existing one. The end result (and current state of knowledge)

is predictable: the literature contains several bug classification
taxonomies [29].

2017 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement

978-1-5090-4039-1/17 $31.00 © 2017 IEEE

DOI 10.1109/ESEM.2017.55

404

The research community also has limited knowledge on the

nature of bug fixes [26]. To the best of our knowledge, only

two works analyzed the links between the nature of bug fixes

and automatic program repair [24][42]. Furthermore, a large

scale characterization of bug-fix patterns occurring in software

repositories is still lacking. Thus, an empirical study to better

understand the challenges for this research field is justified.

In this paper, we study a much larger data set [5] than

those two previous works with 101,471 Java projects and more

than 4 million bug-fix commits. Although the Boa data set

is representative and contains a multitude of real-world Java

bugs, the respective bug-fix commits may suffer from tangled
code changes [8][4] (i.e., unrelated or loosely related code

changes committed by developers in a single transaction). In

order to make our results more dependable, we also conducted

a qualitative analysis in the real-world Java bugs present in the

Defects4J data set [10]. One of the advantages of using this

data set is that it contains isolated bugs (i.e., the bug fixes do

not contain unrelated code changes).

This paper aims to confront the results of automatic detec-

tion of bug-fix patterns in the Boa data set with the results

of manual inspection of these same patterns in the Defects4J
data set. This confrontation is important for two reasons:

1) Find out if there is any bug-fix pattern that has high

prevalence in both analyzed data sets. In affirmative

case, such a pattern would be a strong candidate to

be investigated in future automatic program repair tech-

niques;

2) Decrease the bias that can be introduced in a fully auto-

mated analysis in the Boa data set, since the automatic

detection of these bug-fix patterns depends directly on

the correctness of the Boa programs.

We analyzed the bug-fix commits of Java programs, taken

from several million human-made bug fixes from GitHub.

This software repository contains an enormous collection

of software and information about software [5]. We used

a domain-specific programming language called Boa [5] to

analyze ultra-large-scale data efficiently.

The paper makes four contributions:

1) We have shown that developers often forget to add IF
preconditions in the code. One evidence is that the bug-

fix pattern that most appeared in the analyzed bug-fix

commits of both data sets (i.e., Boa and Defects4J) was

IF-APC (Addition of IF Precondition Check);

2) We make observations to directly guide future research

in automatic repair of Java programs. For instance, our

findings suggest that test-suite based program repair

may need to consider multi-language programming and

bugs in non-source files (e.g., configuration files). Our

results confirm the findings obtained by Zhong and

Su [42] (please see the Findings 1, 2, 13, and 14 for

more details). This is relevant because current automatic

repair approaches have been evaluated on only source

files belonging to a limited number of programming

languages (such as C and Java);

3) We identified that the statement kinds EXPRESSION,

BLOCK, IF and RETURN are frequently added to fix

bugs. Our findings suggest that test-suite based pro-

gram repair may need to consider addition of method

or logic/arithmetic expressions to achieve human-

comparability in patches. To the best of our knowledge,

few works have proposed inserting code at the block

level [13] or considering multi-location repairs [25];

4) We conducted a manual analysis involving 369 real

bug fixes from five open-source projects present in

the Defects4J data set. This analysis showed that the

majority of these bugs (i.e., 45%) are If-related (IF).

In a recent work, Martinez et al. [24] have shown that

IF conditions are among the most error-prone program

elements in Java programs.

The remainder of this paper is organized as follows. Section

II presents the data sets we use to perform the studies. Section

III presents the research questions and the bug-fix patterns

considered in the studies. Section IV details the studies and

provides the results that are discussed in Section V. Related

work is surveyed and shown in Section VI. Section VII

concludes this paper and proposes future work.

II. DATA SETS AND CHARACTERISTICS

A. Boa data set

In this paper, we use the September 2015/GitHub data

set offered by Boa [5], including 554,864 Java projects with

23,226,512 commits. Boa identifies 4,590,405 as bug-fix com-

mits distributed among 101,471 Java projects (18.2875%).

In other words, 81.7125% of Java projects present in this

data set do not have any bug-fix commit. In this paper, we

focus our analysis on these 101,471 Java projects because

our goal is to study bug fixes and patterns. Figure 1 shows

a query written in Boa language that returns the number

of bug-fix commits in Java GitHub projects. The built-in

function isfixingrevision (line 6) uses a list of regular

expressions to match against the revision’s log (i.e., commit’s

log message). If there is a match, then the function returns

true indicating the log was for a commit fixing a bug.

Figure 2 shows the distribution of bug-fix commits among

101,471 Java projects: 81% of these projects have 1 to 15

bug-fix commits, while only 9% of them have 51 or more

bug-fix commits. This bar chart shows that it is not common

to see open-source Java projects hosted on GitHub with a large

number of bug-fix commits (e.g., 51 or more bug-fix commits).

Programming Language: As returned by Boa, the major

language of a project is the one with the highest percentage

of source code, considering the files in the project. Figure 3

shows the distribution of the analyzed projects per number

of programming languages. As we can see, 56,414 out of

101,471 Java projects (i.e., 55.5961%) use only one program-

ming language (i.e., Java). However, 10,837 out of 101,471

Java projects (i.e., 10.6798%) use five or more programming

languages.

Kinds of changed files: Table I shows the kinds and des-

criptions of changed files present in the Boa data set and

405

Fig. 1. Querying number of bug-fix commits in Java GitHub projects using Boa language.

Fig. 2. Distribution of bug-fix commits among Java GitHub projects.

Fig. 3. Number of programming languages in each Java project using GIT.

the number of changed files per file kind. We consider a file

changed if it is new, modified, or deleted in a commit. In total,

52,052,571 files were changed.

B. Defects4J data set

In this paper, we also use Defects4J [10], a data set and ex-

tensible framework providing real bugs to enable reproducible

studies in software testing research. Currently, Defects4J con-

tains 395 real bugs from six open-source projects: JFreeChart
2, Closure Compiler 3, Commons Lang 4, Commons Math 5,

2JFreeChart, http://jfree.org/jfreechart/
3Closure Compiler, http://code.google.com/closure/compiler/
4Apache Commons Lang, http://commons.apache.org/lang
5Apache Commons Math, http://commons.apache.org/math

Mockito 6 and Joda-Time 7. We do not use the JFreeChart

project because the version control system for this project

is Apache Subversion (SVN) and we decided to study only

projects hosted on GitHub repository. For these projects, the

version control system is Git and they account for a total of

369 bug fixes. Table II presents the main descriptive statistics

of projects in Defects4J.

TABLE II
THE MAIN DESCRIPTIVE STATISTICS OF THE CONSIDERED BUGS IN

DEFECTS4J. THE NUMBER OF LINES OF CODE AND THE NUMBER OF TEST

CASES ARE EXTRACTED FROM THE MOST RECENT VERSION OF EACH

PROJECT.

Program #Bug Fixes Source Test #Test
KLOC KLOC Cases

Closure Compiler 133 306 179 16,998
Commons Lang 65 22 6 2,245
Commons Math 106 85 19 3,602
Joda-Time 27 28 53 4,130
Mockito 38 43 22 1,611
Total 369 484 279 28,586

Defects4J is a large, peer-reviewed and structured data set

of real-world Java bugs. Each bug in Defects4J comes with

a test suite and at least one failing test case that triggers the

bug. To our knowledge, Defects4J is the largest open database

of well-organized real-world Java bugs.
There are several advantages of using Defects4J for a study.

Among them, we can highlight:

• Realism: It contains real bugs (as opposed to seeded bugs

as in Nguyen et al. [27]; Kong et al. [16]);

• Scale: It contains bugs that reside in large software

projects (as opposed to bugs in student programs as in

Smith et al. [35]);

• Isolated Bugs: A fundamental challenge when collecting

bugs is deciding what constitutes a bug, and what does

not [10]. When interacting with version control systems,

developers frequently group separate changes into a
single commit. Herzig et al. [8] studied this problem and

named it as tangled code changes [4]. Fortunately, all

bug fixes present in the Defects4J data set do not include

unrelated changes such as features or refactorings. The

authors of this data set manually reviewed the source

code diffs of reproducible bugs to verify that they did not

include irrelevant changes (e.g., if necessary, they isolated

the bug fix from the source code diff).

6Mockito, http://site.mockito.org/
7Joda-Time, http://joda.org/joda-time/

406

TABLE I
KINDS OF CHANGED FILES PRESENT IN THE Boa DATA SET (JLS: JAVA LANGUAGE SPECIFICATION).

File Kind Total Description
SOURCE JAVA JLS4 83,798 The file represents a Java source file that parsed without error as JLS4
TEXT 541,023 The file represents a text file
BINARY 752,945 The file represents a binary file
SOURCE JAVA ERROR 2,073,558 The file represents a Java source file that had a parse error
SOURCE JAVA JLS2 2,607,413 The file represents a Java source file that parsed without error as JLS2
XML 6,818,299 The file represents an XML file
SOURCE JAVA JLS3 15,748,967 The file represents a Java source file that parsed without error as JLS3
UNKNOWN 23,426,568 The file’s type was unknown

III. METHODOLOGY

In this section, we present the research questions that we

aim to answer in this work and the bug-fix patterns investigated

in our studies (i.e., Study I and II).

A. Bug-fix patterns

Pan et al. [29] identified 27 bug-fix patterns through manual

inspection of the bug fix change history of seven open-source

Java projects. They found that the most common categories of

bug-fix patterns are Method Call and If-related. Moreover, the

most common individual patterns are: Change of IF Condition

Expression (IF-CC), Method Call with different actual param-

eter values (MC-DAP), Method Call with different number

of parameters or different types of parameters (MC-DNP),

Change of Assignment Expression (AS-CE), and Addition of

IF Precondition Check (IF-APC). Below we detail each one

of these five bug-fix patterns:

1) Change of IF Condition Expression (IF-CC): The bug

fix changes the condition expression of an IF condition

[29]. Example:

- if (listBox.getSelectedIndex() == 0)
+ if (listBox.getSelectedIndex() > 0)

2) Method Call with different actual parameter values
(MC-DAP): The bug fix changes the expression passed

into one or more parameters of a method call [29].

Example:

- String.getBytes("UTF-8");
+ String.getBytes("ISO-8859-1");

3) Method Call with different number of parameters
or different types of parameters (MC-DNP): The bug

fix changes a method call by using different number of

parameters, or different parameter types. This may be

caused by a change of method interface, or use of an

overloaded method [29]. Example:

- getSolrQuery(f.getFilter());
+ getSolrQuery(f.getFilter(), analyzer);

4) Change of Assignment Expression (AS-CE): The bug

fix changes the expression on the right-hand side of an

assignment statement. The expression on the left-hand

side is the same in both the buggy and fix versions [29].

Example:

- names[0] = person.getName();
+ names[0] = employees[0].getName();

5) Addition of IF Precondition Check (IF-APC): This

bug fix adds an IF predicate to ensure a precondition

is met before an object is accessed or an operation is

performed. Without the precondition check, there may

be a NullPointerException error caused by the

buggy code [29]. Example:

- repo.getFileContent(path);
+ if (repo != null && path != null)
+ repo.getFileContent(path);

B. Research Questions

This subsection presents the four research questions consid-

ered in the study about bug-fix patterns and general features

of bug-fix commits.

RQ1: Which file types are usually changed to fix a bug?

The first part of Study I will be conducted to answer this

research question. The results will provide insights on how

to improve existing automatic program repair approaches to

achieve their best performance.

RQ2: Which kinds of statements are often added or deleted
by developers to fix bugs?

The second part of Study I will be conducted to answer

this research question. The results will provide general features

of bug-fix commits and can be leveraged by automatic patch

generation algorithms to prioritize some types of statements

relative to others, since some statements are more likely to

appear than others in a given patch.

RQ3: What is the prevalence of the 5 most common bug-fix
patterns identified in the work of Pan et al. [29] in the bug
fixes present in the Boa data set?

The third part of Study I will be conducted to answer this

research question. The identification of these bug-fix patterns

407

is relevant to assist the researchers in the task of automatic

generation of patches [14].

RQ4: What is the prevalence of the 5 most common bug-fix
patterns identified in the work of Pan et al. [29] in the bug
fixes present in the Defects4J data set?

The research question RQ4 is similar to RQ3. The basic

difference between them is: the answer for RQ4 is based on

manual inspection of real bug fixes from projects present in

the Defects4J data set, while the answer for RQ3 is based on

automatic inspection of real bug fixes from projects present

in the Boa data set. Study II will be conducted to answer

this last research question. Moreover, the results obtained in

this second study will be compared with the results from the

previous study (i.e., third part of Study I).

IV. STUDIES AND RESULTS

In this section, we present the two studies we conducted

to answer the four research questions aforementioned. We

performed one study per data set (i.e., Boa and Defects4J).

Study I enabled us to answer the research questions RQ1,

RQ2, and RQ3, while Study II enabled us to answer the last

research question (i.e., RQ4).

A. Study I: Bug fixes present in the Boa data set

We study bug-fix commits in Java programs, taken from

several million human-made bug fixes from GitHub. We

analyzed the prevalence of the 5 most common bug-fix patterns

identified in the work of Pan et al. [29] in those bug-fix

commits. Moreover, we investigated the nature of bug fixes in

terms of what file types are often changed to fix bugs or what

types of statements are frequently added or deleted to fix bugs.

For this study, we considered the September 2015/GitHub data

set offered by Boa mentioned above in Subsection II-A.

We divide this first study into three parts (i.e., Part I, Part
II, and Part III), so that each part of the study addresses

a different research question (i.e., RQ1, RQ2, and RQ3,

respectively).

1) Part I: Figure 4 shows the number of bug-fix commits

per File Kind. As shown in Figure 4, the 2 kinds of changed

files that appear most frequently in those bug-fix commits

are: SOURCE JAVA JLS3 and UNKNOWN. The number of

bug-fix commits related to these 2 kinds of changed files are

respectively, 2,341,344 and 2,212,030. Text and binary files

are changed least frequently. This is unsurprising, since such

files are often documentation, and binaries should be changed

rarely. XML files in Java projects usually represent build files

or configuration files (the names of the most found config-

uration files end with “xml” or “properties” [42]); 17.55%

of analyzed bug-fix commits are related to changes in XML

files. As these bugs are not related to source files, they could

not be fixed by current automatic program repair techniques

[42]. Rather more surprising is how frequently UNKNOWN

files are changed. We deepen our analysis in these committed

UNKNOWN files and found that they are related to other

Fig. 4. Number of bug-fix commits per File Kind.

programming languages like: C++, C, JavaScript, Groovy,

Scala, Python, etc. Although the analyzed projects were mainly

written in Java, 45,057 out of 101,471 Java projects (i.e.,

44.40%) use 2 or more programming languages. This results

showed that 48.18% of bug-fix commits are related to changes

in non-Java source files.

Current automatic repair approaches have been evaluated

on only a limited number of programming languages, such

as C and Java. However, a project may be implemented

in multiple programming languages and automatic program

repair may require significant improvement to fix bugs in other

programming languages.

Summary of RQ1. We notice that many bugs reside

in non-Java source files (e.g., source files of different

programming languages like Scala, Groovy, PHP, etc.) or

non-source files (e.g., XML files). Our results confirm

the findings obtained by Zhong and Su [42] (please see

the Findings 1, 2, 13, and 14 for more details). Many

implementations of research techniques that automatically

repair software bugs target programs written in C language

(e.g., Prophet [22], GenProg [17]) or Java language (e.g.,

NOPOL [40], PAR [14]). Thus existing approach may be

insufficient in fixing certain bugs. However, it is desirable to

understand where such bugs reside, so we could investigate

their nature and explore corresponding repair approaches.

2) Part II: In order to find out which kinds of statements

appear more frequently in bug-fix commits, we use Boa to

compute the number of bug-fix commits that added/deleted a

particular statement kind in order to solve the corresponding

bug. We investigate the following 14 statement kinds present

in the Boa Programming Guide 8: ASSERT, BLOCK, BREAK,

CATCH, CONTINUE, EXPRESSION, FOR, IF, RETURN,

SYNCHRONIZED, THROW, TRY, SWITCH, and WHILE. The

statement kind BLOCK is somewhat different because it was

designed by Boa inventors to characterize a statement that

contains a list with two or more statements within it (e.g., the

statements in the method body). Concerning the statement kind

EXPRESSION, it encompasses arithmetic or logical expres-

8http://boa.cs.iastate.edu/docs/dsl-types.php (verified 03/08/2017)

408

sions, expressions with binary operators, etc. For a complete

list, please see the Section ExpressionKind present in the

Boa Programming Guide 9.

For example, concerning the IF statement, we investigate

how many bug-fix commits added or deleted null checks.

The IFNULLCHECK statement is an IF statement where the

boolean condition is of the form: null == expr OR expr
== null OR null != expr OR expr != null. Ba-

sically, we build a query written in Boa language that counts

how many null checks were previously in the file (previous

version of the file, if exists) and how many null checks

are currently in the file (actual version of the file). If there

are more null checks than previously, the bug-fix commit

corresponds to an addition. However, if there are less null

checks than previously, the bug-fix commit corresponds to a

removal. We performed this algorithm for all changed files

and bug-fix commits of our Boa data set (i.e., 52,052,571

and 4,590,405, respectively). Concerning the 14 kinds of

statements aforementioned, we performed a similar algorithm,

but considering the number of times each statement kind

appears in each version of a file (i.e., buggy and fix versions).

Summary of RQ2. This research question is important to

investigate the nature of bug fixes in terms of statement

kinds that are added or deleted to fix a particular bug.

For instance, we can identify the prevalence of some

statement kinds with respect to others. Figure 5 shows the

results we obtained. As shown in this figure, there is a

prevalence of EXPRESSION, BLOCK, IF, and RETURN
statements with respect to the others. The median number

of statements within the BLOCK statement kind is 6. This

result clearly shows the limitations of current automatic

repair techniques, since many bug fixes involve adding

code blocks. However, the majority of fixes produced by

GenProg [17] are “one-liners” (i.e., changes only one line

of code) [37]. As pointed out by Monperrus [26], many

existing automatic program repair approaches are effective

only in fixing bugs that require simple changes.

3) Part III: Pan et al. [29] also discovered that there is a

similarity of bug-fix patterns across projects. This indicates

that developers may have trouble with individual code situa-

tions, and that frequencies of bug introduction are independent

of application domain [29]. However, the main drawback

of the bug-fix patterns approach stems from its automation.

We therefore automatically detect these five bug-fix patterns,

estimating their prevalence in the Boa data set presented in

Section II.

We use Boa language to detect common bug-fix patterns

in the historical information of the projects. Boa provides

domain-specific language features for mining source code [5].

Boa’s capabilities are powerful, but limited in the precision

it enables in detection of the aforementioned bug-fix patterns.

For example, it cannot directly diff two files. Rather than

9http://boa.cs.iastate.edu/docs/dsl-types.php (verified 03/08/2017)

finding exact counts of bug-fix patterns, we approximate by

processing pre- and post-fix files separately. Fortunately, these

five patterns can be detected by Boa, as we describe below.

For each pattern, we create a query written in Boa language.

In the following paragraphs, we describe in natural language

each of the five algorithms designed to detect the five bug-fix

patterns described in Section III.

1) How many bug-fix commits change one or more
IF Condition Expressions (IF-CC)? To answer this

question and to detect this pattern, for both pre- and

post-fix versions of a buggy file, we count how many

IF conditions and expressions of these IF conditions

appear. Then, if the number of IF conditions is the same

between these two versions of the file (to ensure that it

is a modification and not an addition or deletion), we

check whether the number of expressions of these IF
conditions is different between these two versions of

the file. If it’s true, the pattern was detected and the

bug-fix commit is recorded. For more information of

what kind of expressions we consider, see the Section

ExpressionKind of this page 10. We found that
196,283 out of 4,590,405 (4.2759%) bug-fix commits
change one or more IF condition expressions (Execution
time: 27m 16s).

2) How many bug-fix commits change the parameter
values of the method calls (MC-DAP)? To answer

this question and to detect this pattern, for both pre- and

post-fix versions of a buggy file, we count how many

method calls appear and we also built 2 strings (i.e.,

one string for the pre-version and another string for the

post-fix version) containing the parameter values (i.e.,

string literals) of all method calls. Then, if the number of

method calls is the same between these two versions of

the file (to ensure that it is a modification), we compare

if the two strings are different. If it’s true, the pattern

was detected and the bug-fix commit is recorded. We
found that 290,818 out of 4,590,405 (6.3353%) bug-
fix commits change the parameter values of the method
calls (Execution time: 1h 15m 2s).

3) How many bug-fix commits change the number or
type of parameters of the method calls (MC-DNP)?
To answer this question and to detect this pattern, for

both pre- and post-fix versions of a buggy file, we count

how many method calls and method parameters appear.

Then, if the number of method calls is the same between

these two versions of the file (to ensure that it is a modi-

fication), we check if the number of method parameters

is different. If it’s true, the pattern was detected and

the bug-fix commit is recorded. For this pattern, due

Boa limitations, it was not possible to identify the types

of method parameters present in the method calls. We
found that 192,375 out of 4,590,405 (4.1908%) bug-fix
commits change the number of parameters of the method
calls (Execution time: 39m 33s).

10http://boa.cs.iastate.edu/docs/dsl-types.php (verified 03/08/2017)

409

Fig. 5. Number of Bug-Fix Commits that ADDED/DELETED each Statement Kind.

4) How many bug-fix commits change one or more
assignment expressions (AS-CE)? To answer this ques-

tion and to detect this pattern, for both pre- and post-fix

versions of a buggy file, we count how many assignment

statements and expressions of these assignments appear.

Then, if the number of assignment statements is the

same (to ensure that it is a modification), we check if

the number of expressions between these two versions

of the file is different. If it’s true, the pattern was

detected and the bug-fix commit is recorded. For more

information of what kind of expressions we consider,

see the Section ExpressionKind of this page 11. We
found that 511,299 out of 4,590,405 (11.1384%) bug-
fix commits change one or more assignment expressions
(Execution time: 30m 26s).

5) How many bug-fix commits added a null check
precondition (IF-APC)? To answer this question and

to detect this pattern, for both pre- and post-fix versions

of a buggy file, we count how many null checks appear.

Then, if the number of null checks in the current version

of the file is greater than in the previous version, the

pattern was detected and the bug-fix commit is recorded.

We found that 1,340,488 out of 4,590,405 (29.2019%)
bug-fix commits added an IF null check precondition
(Execution time: 22m 26s).

Summary of RQ3. Figure 6 shows a bar chart with

the number of bug-fix commits distributed among the

five studied bug-fix patterns. The bug-fix pattern that

appears more frequently is IF-APC (29.2019% of the

analyzed bug-fix commits). Observe that several bug-

fix commits match this bug-fix pattern in order to

avoid NullPointerException errors.

B. Study II: Bug fixes present in the Defects4J data set
In order to conduct the second study, we manually reviewed

the source code diffs of reproducible bugs present in the

11http://boa.cs.iastate.edu/docs/dsl-types.php (verified 03/08/2017)

Fig. 6. Number of bug-fix commits per bug-fix pattern.

Defects4J data set to study the prevalence of the 5 most

common bug-fix patterns identified in the work of Pan et al.
[29]. Moreover, we counted how many bugs are If-related or

Method call (the most common categories of bug-fix patterns

identified in the work of Pan et al. [29]). Table III shows the

results we obtained for each program.

We deepen our manual analysis in order to discover which

types of addition are most common to fix bugs. Table IV

shows the results of these analysis. As shown in this table,

the addition types that most appear to fix bugs are: Method
Addition and Addition of Logical or Arithmetic Expression.

For more details, please see the columns “Method” and

“Logic/Arithmetic Exp.” of Table IV.

Current automatic software repair approaches like GenProg

[18] and PAR [14] were designed to fix simple bugs. For

instance, the majority of fixes produced by GenProg modify

only one line of code. Westley Weimer, one of the inventors of

GenProg, said that the majority of fixes produced by humans
are quite simple [37]. To investigate better this affirmation, we

performed another qualitative analysis involving the human-

written patches (i.e., bug fixes) present in the Defects4J data

set. Our goal was to study the size of those patches in terms

of the number of lines of code (LoC) that are added to fix a

particular bug. Table V shows the main descriptive statistics

410

TABLE III
PROGRAMS AND NUMBER OF REAL BUGS PER CATEGORY (IF-RELATED AND METHOD CALL) AND PER BUG-FIX PATTERN.

Program #Bug Fixes If-related Method Call IF-CC MC-DAP MC-DNP AS-CE IF-APC
Closure Compiler 133 67 15 24 6 1 5 43
Commons Lang 65 39 12 12 4 3 3 27
Commons Math 106 31 11 9 4 1 16 22
Joda-Time 27 15 3 1 2 1 2 14
Mockito 38 14 6 1 1 3 1 13
Total 369 166/369 47/369 47 17 9 27 119

TABLE IV
MANUAL ANALYSIS RESULTS: ADDITION TYPES TO FIX EACH BUG PER PROGRAM.

Program Try/Catch Return Method Switch Case Logic/Arithmetic Exp. Class
Closure Compiler 1 1 8 7 6 0
Commons Lang 2 2 5 1 5 0
Commons Math 2 5 6 1 9 0
Joda-Time 2 0 0 0 0 0
Mockito 0 0 2 0 0 4
Total 7 8 21 9 20 4

of the considered patches. As shown in this table, although

all considered projects have at least one complex patch whose

size is 26 lines of code or more, the median and mode of the

patches considering all projects are, respectively, 3 and 1 LoC.

In general, the results of Table V are aligned with Weimer’s

affirmation. Furthermore, recent research into the nature of

software changes [31] supports the following observation:

Small changes to the repository such as one-line additions
often represent bug fixes. However, as previously discussed

in RQ2, many bug fixes involve adding code blocks (i.e., a

list of statements). For these bugs, current automatic repair

techniques are not effective. Thus, greater effort is required in

this direction.

Summary of RQ4. Table III shows the results we obtained

for each program and per bug-fix pattern. Our manual anal-

ysis showed that 45% of these bugs are If-related, 12.73%

are Method Call, and 7.31% are related to assignment

expressions. The remaining bugs (i.e., 34.96%) occur due

to different causes (e.g., missing a Try/Catch statement).

In our work, the bug-fix pattern that most appeared in both

data sets was IF-APC (Addition of IF Precondition Check).

V. DISCUSSION

Lessons learned. The findings of our study provide useful

insights for automatic program repair tools in Java. It suggests

that patterns proposed by the state-of-the-art approaches for

Java are insufficient to cover the extent of bug fixes in the

analyzed data sets mentioned above in Section II. Our findings

suggest that test-suite based program repair may need to

consider addition of method or logic/arithmetic expressions to

achieve human-comparability in patches. Our results showed

that developers often forget to add IF preconditions in the

code. Evidence of this is that the bug-fix pattern that most

appeared in the analyzed bug-fix commits of both data sets

(i.e., Boa and Defects4J) was IF-APC (Addition of IF Pre-

condition Check). To the best of our knowledge, few works

have addressed this “defect class” [26] (i.e., NOPOL [40],

SPR [21]). However, a recent work showed that NOPOL

can automatically fix only 35 out of 224 bugs present in

the Defects4J data set [23]. Moreover, patches by SPR only

contain primitive values and do not contain object-oriented

expressions (e.g., fields and method calls) [40].

Another interesting aspect concerns the importance of fixing

bugs in multiple programming languages or in non-source

files (the same results were obtained by Zhong and Su [42]).

As automatic program repair has been evaluated on only a

limited number of programming languages, such as C and

Java, it may require significant improvement to fix bugs in

other programming languages. Concerning bugs in non-source

files (e.g., configuration files like XML or properties), future

research in software fault localization needs to be performed.

Current fault localization approaches can deal with 30% of

source files at the most [42].

A. Threats to Internal Validity

Correctness of Boa programs. The correctness of our

analysis depends on both our Boa programs and its Domain-

Specific Types 12. For example, we rely on Boa to identify

bug-fix commits. However, precisely accomplishing this task

is an open problem. To mitigate the risk of implementation

errors, we released our Boa programs 13. Because Boa does not

provide an easy mechanism to identify precise, statement-level

diffs between commits, our template matching and analysis of

code changes (by counting each statement kind or expression

kind) only provide estimates of behavior. We consider our

results as informative approximations.

False positives in bug identification. The built-in function

isfixingrevision identifies bug-fix commits by using

a list of regular expressions to match against the revision’s

12http://boa.cs.iastate.edu/docs/dsl-types.php#Expression
13https://github.com/eduardocunha11/BoaPrograms (verified 03/08/2017)

411

TABLE V
THE MAIN DESCRIPTIVE STATISTICS OF THE PATCHES CONSIDERED IN DEFECTS4J PER PROGRAM.

Patch size (LoC) Closure Compiler Commons Lang Commons Math Joda-Time Mockito All
Minimum 0 0 0 1 1 0
Median 3 3 3 7 4 3
Maximum 37 43 49 26 29 49
Variance 30.89 65.28 42.81 40.48 54.43 43.99
Mode 1 1 1 5 1 1
Average 4.82 6.359 5.533 8.346 7.108 5.794
Standard Deviation 5.558 8.08 6.543 6.362 7.378 6.632
Total 133 65 106 27 38 369

log (i.e., commit’s log message). There is a limitation in this

approach: it only uses the change log information, and change

logs of some non-bug-fix changes may also match these list of

regular expressions. A more precise way for identifying bugs

is to use bug tracking information together with change logs.

Due Boa’s design, it was not possible to use the bug tracking

information. This paper only used change logs for identifying

bug-fix commits, which may cause some false positives in bug

identification.

B. Threats to External Validity

Bug-fix patterns have incomplete coverage of bug fixes.
Some bug-fix commits are associated with more than one

bug-fix pattern studied. Concerning the coverage of bug fixes

by bug-fix patterns, only 40.1423% and 42.3495% of bug

fixes (belonging to Boa and Defects4J data sets, respectively)

contain at least one identifiable bug-fix pattern, and hence there

are many bug fix changes that are not accounted for by one of

the five bug-fix patterns mentioned above in Subsection III-A.

Systems are all open-source. All systems examined in

this paper are developed as open-source. Furthermore, most

GitHub repositories are personal (i.e., 71.6% of the reposito-

ries have only one committer: its owner) and have very low

activity [11], [12]. Hence they might not be representative of

closed-source development since different development pro-

cesses could lead to different bug-fix patterns. Despite being

open-source, several of the analyzed projects have substantial

industrial participation.

VI. RELATED WORK

Automatic program repair. The subfield of automatic

program repair is concerned with automatically fixing bugs,

without human intervention. Since 2009, interest in this sub-

field has grown substantially, and currently there are at least

twenty projects involving some form of program repair (e.g.,

AE [39], AutoFix-E [38], ClearView [30], GenProg [18], Kali

[34], NOPOL [40], PACHIKA [3], PAR [14], Prophet [22],

SPR [21], RSRepair [33], Semfix [27], TrpAutoRepair [32],

etc.).

NOPOL [40] targets a specific fault class: IF conditional

bugs (i.e., if-then-else statements). It repairs programs

by either modifying an existing IF condition or adding a

precondition (aka. a guard) to any statement or block in the

code. The modified or inserted condition is synthesized via

input-output based code synthesis with SMT [9] and predicate

switching [41]. The evaluation was done on 22 real-world bugs

from two large open-source projects.

SPR [21] addresses repairing conditional bugs, as well as

other types of bugs, like missing non-IF statements. SPR

combines staged program repair and condition synthesis.

These techniques enable SPR to work productively with a set

of program transformation schemas to generate and efficiently

search a rich space of program repairs.

Empirical Knowledge on Automatic Program Repair.
Zhong and Su [42] designed and developed BugStat, a tool

that extracts and analyzes bug fixes. They conducted an

empirical study on more than 9,000 real-world bug fixes

from six popular Java projects. Their results provide useful

guidance and insights for improving the state-of-the-art of

automatic program repair. We study a much larger data set

[5] with 101,471 Java projects. Moreover, we designed Boa
programs that automatically detect the five most common bug-

fix patterns identified in the work of Pan et al. [29].

Martinez and Monperrus [24] analyzed the links between

the nature of bug fixes and automatic program repair. Fur-

thermore, the empirical study focuses on only one aspect

of automatic program repair, namely the search space of

fixing bugs. They mined repair models from manual fixes,

and the mined repair models improve random search. Our

study provides findings to better understand and improve these

approaches. For example, we confirm that many bugs reside

in source files of different programming languages or in non-

source files like configuration files ([42]).

Soto et al. [36] conducted a large-scale study of bug-fix

commits in Java projects. Their findings provide useful insights

for automatic program repair tools in Java. They created

Boa programs to detect the PAR’s bug-fix patterns [14] and

provided an informative approximation of their prevalence in

the Boa data set. We used the same data set in our study but we

created Boa programs to detect the five most common bug-fix

patterns identified in the work of Pan et al. [29]. Moreover, we

do not limit our study to bug-fix patterns. We also investigated

other aspects related to human-made bug fixes such as the

kinds of statements that appear more frequently in bug-fix

commits and the kinds of files that are usually changed to

fix a bug.

412

VII. CONCLUSION AND FUTURE WORK

This paper explored the underlying patterns in bug fixes

mined from software project change histories. We rely on Boa
to automatically identify bug-fix commits and to detect the five

most common bug-fix patterns identified by Pan et al. [29].

The findings of our study provide useful insights for automatic

repair tools in Java.

Our future work will concentrate on the following topics:

Automatic repair systems. An example of follow-up work

would be to propose an approach to automatic repair IF null

check preconditions (i.e., IF-APC bug-fix pattern). There are

a number of program repair techniques (e.g., [18]) but not one

of them is dedicated to fix null pointer exceptions.

Bug localization techniques. We can explore how to locate

bugs in non-source files (e.g., configuration files) or source

files of different programming languages present in a Java

project and how to fix them with advanced techniques.

ACKNOWLEDGMENT

We would like to thank the Brazilian agencies FAPEMIG,

CAPES and CNPq for partially funding this research.

REFERENCES

[1] V. R. Basili and B. T. Perricone. Software Errors and Complexity: An
Empirical Investigation. Commun. ACM, 27(1):42–52, Jan. 1984.

[2] T. Britton, L. Jeng, G. Carver, P. Cheak, and T. Katzenellenbogen. Re-
versible debugging software. Technical report, University of Cambridge,
2013.

[3] V. Dallmeier, A. Zeller, and B. Meyer. Generating Fixes from Object
Behavior Anomalies. In Proc. ASE ’09, pages 550–554, 2009.

[4] M. Dias, A. Bacchelli, G. Gousios, D. Cassou, and S. Ducasse. Untan-
gling fine-grained code changes. In Proc. SANER’ 2015, pages 341–350.

[5] R. Dyer, H. A. Nguyen, H. Rajan, and T. N. Nguyen. Boa: Ultra-Large-
Scale Software Repository and Source-Code Mining. ACM Trans. Softw.
Eng. Methodol., 25(1):7:1–7:34, Dec. 2015.

[6] A. Endres. An Analysis of Errors and Their Causes in System Programs.
In Proceedings of the International Conference on Reliable Software,
pages 327–336. ACM, 1975.

[7] C. L. Goues, N. Holtschulte, E. K. Smith, Y. Brun, P. Devanbu,
S. Forrest, and W. Weimer. The ManyBugs and IntroClass Benchmarks
for Automated Repair of C Programs. IEEE Transactions on Software
Engineering, 41(12):1236–1256, 2015.

[8] K. Herzig and A. Zeller. The Impact of Tangled Code Changes. In
Proc. 10th MSR ’13, pages 121–130. IEEE Press, 2013.

[9] S. Jha, S. Gulwani, S. A. Seshia, and A. Tiwari. Oracle-guided
Component-based Program Synthesis. In Proc. ICSE ’10, pages 215–
224. ACM, 2010.

[10] R. Just, D. Jalali, and M. D. Ernst. Defects4J: A Database of Existing
Faults to Enable Controlled Testing Studies for Java Programs. In Proc.
ISSTA’ 2014, pages 437–440. ACM, 2014.

[11] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German,
and D. Damian. The Promises and Perils of Mining GitHub. In Proc.
MSR’ 2014, pages 92–101. ACM, 2014.

[12] E. Kalliamvakou, G. Gousios, K. Blincoe, L. Singer, D. M. German, and
D. Damian. An In-depth Study of the Promises and Perils of Mining
GitHub. Empirical Softw. Engg., 21(5):2035–2071, Oct. 2016.

[13] Y. Ke, K. T. Stolee, C. L. Goues, and Y. Brun. Repairing Programs with
Semantic Code Search (T). In Proc. ASE’ 2015, pages 295–306. IEEE
Computer Society, 2015.

[14] D. Kim, J. Nam, J. Song, and S. Kim. Automatic Patch Generation
Learned from Human-written Patches. In Proc. of the ICSE ’13, pages
802–811, Piscataway, NJ, USA, 2013. IEEE Press.

[15] S. Kim and E. J. Whitehead, Jr. How Long Did It Take to Fix Bugs?
In Proc. MSR ’06, pages 173–174. ACM, 2006.

[16] X. Kong, L. Zhang, W. E. Wong, and B. Li. Experience report: How do
techniques, programs, and tests impact automated program repair? In
Proc. 26th ISSRE’ 2015, pages 194–204, 2015.

[17] C. Le Goues, M. Dewey-Vogt, S. Forrest, and W. Weimer. A Systematic
Study of Automated Program Repair: Fixing 55 out of 105 Bugs for $8
Each. In Proc. of ICSE ’12, pages 3–13. IEEE Press, 2012.

[18] C. Le Goues, T. Nguyen, S. Forrest, and W. Weimer. GenProg: A
Generic Method for Automatic Software Repair. IEEE Trans. Softw.
Eng., 38(1):54–72, 2012.

[19] M. Leszak, D. E. Perry, and D. Stoll. A Case Study in Root Cause
Defect Analysis. In Proc. ICSE ’00, pages 428–437. ACM, 2000.

[20] Z. Li, L. Tan, X. Wang, S. Lu, Y. Zhou, and C. Zhai. Have Things
Changed Now?: An Empirical Study of Bug Characteristics in Modern
Open Source Software. In Proc. ASID ’06, pages 25–33. ACM, 2006.

[21] F. Long and M. Rinard. Staged Program Repair with Condition
Synthesis. In Proc. ESEC/FSE, pages 166–178. ACM, 2015.

[22] F. Long and M. Rinard. Automatic Patch Generation by Learning
Correct Code. In POPL ’16, pages 298–312. ACM, 2016.

[23] M. Martinez, T. Durieux, R. Sommerard, J. Xuan, and M. Monperrus.
Automatic repair of real bugs in java: a large-scale experiment on the
defects4j dataset. Empirical Software Engineering, pages 1–29, 2016.

[24] M. Martinez and M. Monperrus. Mining Software Repair Models
for Reasoning on the Search Space of Automated Program Fixing.
Empirical Software Engineering, 20(1):176–205, Feb. 2015.

[25] S. Mechtaev, J. Yi, and A. Roychoudhury. Angelix: Scalable Multiline
Program Patch Synthesis via Symbolic Analysis. In Proc. ICSE ’16,
pages 691–701. ACM, 2016.

[26] M. Monperrus. A Critical Review of “Automatic Patch Generation
Learned from Human-written Patches”: Essay on the Problem Statement
and the Evaluation of Automatic Software Repair. In Proc. ICSE’ 2014,
pages 234–242. ACM, 2014.

[27] H. D. T. Nguyen, D. Qi, A. Roychoudhury, and S. Chandra. SemFix:
Program Repair via Semantic Analysis. In Proc. ICSE ’13, pages 772–
781. IEEE Press, 2013.

[28] T. J. Ostrand and E. J. Weyuker. Collecting and Categorizing Software
Error Data in an Industrial Environment. Journal of Systems and
Software, 4(4):289–300, Nov. 1984.

[29] K. Pan, S. Kim, and E. J. Whitehead, Jr. Toward an Understanding of
Bug Fix Patterns. Empirical Softw. Engg., 14(3):286–315, 2009.

[30] J. H. Perkins, S. Kim, S. Larsen, S. Amarasinghe, J. Bachrach,
M. Carbin, C. Pacheco, F. Sherwood, S. Sidiroglou, G. Sullivan, W.-
F. Wong, Y. Zibin, M. D. Ernst, and M. Rinard. Automatically Patching
Errors in Deployed Software. In Proc. SOSP ’09, pages 87–102, 2009.

[31] R. Purushothaman and D. E. Perry. Toward understanding the rhetoric of
small source code changes. IEEE Transactions on Software Engineering,
31(6):511–526, June 2005.

[32] Y. Qi, X. Mao, and Y. Lei. Efficient Automated Program Repair Through
Fault-Recorded Testing Prioritization. In Proc. ICSM ’13, pages 180–
189, 2013.

[33] Y. Qi, X. Mao, Y. Lei, Z. Dai, and C. Wang. The Strength of Random
Search on Automated Program Repair. In Proc. ICSE’ 14, pages 254–
265. ACM, 2014.

[34] Z. Qi, F. Long, S. Achour, and M. Rinard. An Analysis of Patch
Plausibility and Correctness for Generate-and-validate Patch Generation
Systems. In Proc. ISSTA’ 2015, pages 24–36. ACM, 2015.

[35] E. K. Smith, E. T. Barr, C. Le Goues, and Y. Brun. Is the Cure Worse
Than the Disease? Overfitting in Automated Program Repair. In Proc.
10th ESEC/FSE, pages 532–543. ACM, 2015.

[36] M. Soto, F. Thung, C.-P. Wong, C. Le Goues, and D. Lo. A Deeper
Look into Bug Fixes: Patterns, Replacements, Deletions, and Additions.
In Proc. 13th MSR’ 2016, pages 512–515. ACM, 2016.

[37] W. Tichy. Automated Bug Fixing: An Interview with Westley Weimer
and Martin Monperrus. Ubiquity, pages 1:1–1:11, 2015.

[38] Y. Wei, Y. Pei, C. A. Furia, L. S. Silva, S. Buchholz, B. Meyer, and
A. Zeller. Automated Fixing of Programs with Contracts. In Proc. 19th
ISSTA, pages 61–72. ACM, 2010.

[39] W. Weimer, Z. P. Fry, and S. Forrest. Leveraging program equivalence
for adaptive program repair: Models and first results. In Proc. 28th ASE,
pages 356–366, 2013.

[40] J. Xuan, M. Martinez, F. DeMarco, M. Clément, S. Lamelas, T. Durieux,
D. Le Berre, and M. Monperrus. Nopol: Automatic Repair of Condi-
tional Statement Bugs in Java Programs. IEEE Transactions on Software
Engineering, 2016.

[41] X. Zhang, N. Gupta, and R. Gupta. Locating Faults Through Automated
Predicate Switching. In Proc. ICSE ’06, pages 272–281. ACM, 2006.

[42] H. Zhong and Z. Su. An Empirical Study on Real Bug Fixes. In Proc.
37th ICSE’ 15, pages 913–923. IEEE Press, 2015.

413

