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Abstract—Stack Overflow has become a fundamental element
of developer toolset. Such influence increase has been accompa-
nied by an effort from Stack Overflow community to keep the
quality of its content. One of the problems which jeopardizes that
quality is the continuous growth of duplicated questions. To solve
this problem, prior works focused on automatically detecting
duplicated questions. Two important solutions are DupPredictor
and Dupe. Despite reporting significant results, both works do
not provide their implementations publicly available, hindering
subsequent works in scientific literature which rely on them. We
executed an empirical study as a reproduction of DupPredictor
and Dupe. Our results, not robust when attempted with different
set of tools and data sets, show that the barriers to reproduce
these approaches are high. Furthermore, when applied to more
recent data, we observe a performance decay of our both
reproductions in terms of recall-rate over time, as the number
of questions increases. Our findings suggest that the subsequent
works concerning detection of duplicated questions in Question
and Answer communities require more investigation to assert
their findings.

Index Terms—Stack Overflow; Question quality; Duplicate
questions; Classification;

I. INTRODUCTION

Stack Overflow is a fundamental element of the toolset of
programmers nowadays [1]–[4]. It offers a broad knowledge
base for software developers and is one of the dominant domain-
specific Question and Answer (Q&A) platforms on the Web [5],
[6]. Such success is fostered by “the wisdom of crowds” [7],
where millions of people ask and answer questions to produce
and share relevant programming related content [8]–[12].

However, prior research suggests a quality decay in the
platform [13], especially because of the rampant growth in
the number of duplicated questions [14]–[18]. One goal of
preventing duplicates is to help people find right answers
in one place. Duplicates pollute the platform with questions
already answered.

In practice, Stack Overflow uses numerous mechanisms to
prevent duplicates.1,2,3 Because users are energized by the
wish to learn or to burnish one’s reputation [19], much effort
focus on gamification incentives driving user participation
to eliminate duplicates [20]. Besides incentives, there exist
automated solutions to detect duplicates. But, we keep seeing

1http://stackoverflow.blog/2008/12/31/i-move-to-close-this-question/
2https://stackoverflow.blog/2009/04/29/handling-duplicate-questions/
3https://stackoverflow.blog/2010/06/10/improved-question-merging/

excessive duplicates cluttering up over time [15]. For instance,
Figure 1 shows two questions from Stack Overflow, where
question 1(a) was appointed by the community as the duplicate
of question 1(b). These questions are not copy and paste,
and even observing that their textual features are completely
different, we realize that they cover the exact same ground.

Looking at academic research, few works have sought to
propose duplicate question detection for Stack Overflow. In
particular, Zhang et al. [14] envisioned DupPredictor, an
approach to predict whether a question is a duplicate; Then,
Ahasanuzzaman et al. [15] propose Dupe, which also extracted
features from the question corpus to build a question pair binary
classifier (duplicated or not).

We designed this study as an independent reproduction
of DupPredictor and Dupe, here called DupPredictorRep
and DupeRep respectively, meaning that we developed the
study artifacts independently. Hence, there is a possible
implementation bias, as it reflects our interpretation of the
prior works. Whereas neither approaches are publicly available,
we provide our implementations4,5 to community along with
the data set we used6 to enable other researchers to repeat,
improve, or refute our results.

Our main goal is not only to confirm or reject previous
findings, but to extend the results by considering newer data
sets. This reproduction differs from the original works because
the artifacts are re-implemented and different data sets are used.
DupPredictor was evaluated using the MSR’13 Challenge track
data set [21], whereas Dupe used the MSR’15 one [22]. Instead
of reproducing each approach with their respective dataset, we
decided to use only one dataset to have the same data to
compare both reproductions, and also to extend the results to
more recent years. So, we rely on the newest dump (March,
2017), and filter questions by creation data for artificially
simulating data sets for different years.

Our findings suggest that the barriers for reproduction of
duplicate detection are still high. First, because implementations
are not available, a concern already raised by the Mining
Software Repository research community [23], [24]. Second,
because our results differ from the original works in multiple

4https://github.com/muldon/dupPredictorRep
5https://github.com/muldon/dupeRep
6https://goo.gl/ATJgYp
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(a) (b)

Fig. 1. Stack Overflow is facing a growing number of duplicated questions. Here, question (a) was appointed as duplicate of question (b). However, their
textual features are completely different, challenging automated solutions.

aspects. For the same scenario proposed by the original works,
DupPredictorRep and DupeRep show a decrease for recall-
rate, in absolute values, up to 20.5% and 28.5%, respec-
tively. Notwithstanding, our results show that DupPredictorRep
surpass DupeRep at recall-rate@20 (Table V), contradicting
Dupe’s original results. Over time, however, DupeRep obtains
more stable predictions, whereas DupPredictorRep shows a
severe decay.

Hence, our contributions include:
• Reproducible experiments of DupPredictor and Dupe

on duplicate question detection with available data and
artifacts, showing lower recall-rates compared to those
reported in the original works.

• A comparison of both approaches over the time, consid-
ering the growth of number of questions.

The rest of this paper is structured as follows. Section II
describes related work on duplicate question detection. Sec-
tion III presents the experimental common ground used on both
reproduced studies, including data sets and evaluation measure.
Section IV and V describes the empirical study focusing on
the reproduction process, experiment execution, data analysis,
and results. Section VI discusses our study validity. Finally, in
Section VII, we draw conclusions and outline future work.

II. RELATED WORK

We refer the reader to the comprehensive survey by Srba
and Bielikova on Q&A websites [25]. The most closely related
work includes techniques to retrieve similar questions and
question classification. We discuss both categories bellow.

Question retrieval. Finding similar content on Q&A web-
sites has a long history on academic research. Jeon et al.
conduct a comparative study of four retrieval techniques
(i.e., VSM, Okapi, language model, and translation-based
model) [26]. Whereas the study took none question’s struc-
ture into account, research in (semi) structured retrieval had
indicated some improvements [27], [28]. Later, Theobald et al.
combine stop-word antecedents with short chains of adjacent
content terms [29]. Wu et al. resort to the Jaccard coefficient
to measure similarities between two text segments in the pair
of questions [30].

Other works explore answer’s similarities to find equivalent
questions. Hao and Agichtein propose an automatic patterns
generation, which explores three methods of syntactic pattern:
chunk-based phrase level, chunk-based lexical level, and tree-
based incremental method [31]. Given a new question, it is
compared to the set of available equivalent patterns. In case of a
match, a prior answer is returned. Nie et al. present an algorithm
for ranking answer candidates from all of the available answers
for a new question. They rely on four types of features, named
deep, topic-level, statistical, and user-centric [32].

We conclude from the existing question retrieval studies
that textual features extracted from its structure can positively
impact the performance of such task.

Question classification. A central mission of question
classification research has been to understand the knowledge
available on Question and Answer websites. And, specifically
to Stack Overflow, how these knowledge can be used to
assist software development [33]. Examples include types
of question [34], askers main concerns [1], and questions
topics [35]. Here, we focus on duplicates problem [14]–[18].

Several studies attempt to detect duplicates on Stack Over-
flow. Xu et al. predicted whether two questions, and their set
of answers, posted on Stack Overflow are semantically related.
They used a convolution neural network and reported that their
analysis required 14 hours of CPU [16]. Fu and Menzies [36]
extended Xu et al.’s work [16] and present a 84 times faster
method based on SVM, advocating that the method to detect
duplicates need to be carefully assessed with respect to its
computational cost.

Language modeling also plays a role in duplicate detec-
tion. For instance, Mizobuchi and Takayama explored word-
embedding techniques to deal with word ambiguities, which
suggests accuracy improvements compared to Bag-of-Words
approach [17]. Further evidence for the impact of word
embedding stems from the recent study of Zhang et al. [18].
Their approach, PCQADup, rely on extracted features of
question pairs. Word embedding (i.e., word2vec) is used to
learn frequently co-occurred phrases pairs taken from duplicate
question pairs. They reported a significant improve in results
compared to DupPredictor and Dupe. We did not reproduce
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PCQADup here, because the study was published recently.
Future work should take it into consideration. Complementary,
Zhang et al. analyzed the developed features of the prior
work and suggest that combining vector similarity, relevance
and association features gives the best performance for Stack
Overflow duplicate detection [37].

This paper is based on two studies: one study published in
2015 by Zhang et al. [14] and another study published in 2016
by Ahasanuzzaman et al. [15]. The next sections present the
reproduction of those works, and describing the adopted study
process, study design, and study execution.

III. PRELIMINARIES

In this section, we describe the common ground to evaluate
and reproduce DupPredictor [14] and Dupe [15]. All the
experiments were conducted over a server equipped with Intel®
Xeon® at 2.4 GHz on 80 GB RAM, twelve cores, and 64-bit
Linux Mint Cinnamon operating system.
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Fig. 2. Amount of questions and duplicates (non-master) per year in log10.

A. Data Set

DupPredictor relied on the MSR’13 Challenge track data
set [21], whereas Dupe used the MSR’15 one [22]. Note that
both are officially released data dumps of Stack Overflow.

Our intent is to reproduce both works considering not only
the original data sets but more recent ones. We could, at first,
use the MSR’15 [22] data set in our replicates to reproduce
both works since it is suppose to contain the ground truth
of DupPredictor [14] and Dupe [15], this way not relying
on MSR’13 data set [21] where duplicates were manually
identified. However, in order to extend the results to more
recent years, we would need more data sets containing more
recent posts. Instead of working with multiple data sets, we
opted to work with only one data set containing the ground
truth of all considered years. This decision also avoided an extra
effort (further detailed in section IV-B) about preprocessing
multiple data sets. Hence, we adopted the last Stack Overflow
official dump7, which dates March 2017 and named this data

7https://archive.org/details/stackexchange

set as our master data set. We used this data set for both
reproductions and uniformly filtered posts by their creation
dates, artificially building data sets for different years. We are
aware that this master data set could not include posts deleted
by users after the release of MSR’13 [21] and MSR’15 [22]
data sets. Likewise, new duplicates discovered after the release
of those data sets could influence the results. However we
considered that this possible influence, if exists, would be
minor compared to the original works.

As in DupPredictor [14] and Dupe [15], we define a master
of a duplicate as a question asked first and the duplicate related
to the master as the non-master. Figure 2 shows the number of
questions per year, as well as the number of closed duplicated
non-master questions from 2011 to 2016.

B. Evaluation Metric

We evaluate our reproductions by using the same metric
adopted by DupPredictor [14] and Dupe [15], defined as:

recall_rate@k =
Ndetected

Ntotal
(1)

Ntotal is the total number of duplicate questions in the test set.
Ndetected is the number of duplications found whose masters
appear among the first k elements in the list of questions.
Recall-rate@k is a measure that denotes the percentage of
duplicated questions whose masters appear in the list among
the first k elements.

IV. DUPPREDICTORREP

In this section, we evaluate DupPredictorRep. The original
work [14] also evaluates a variant of the approach without the
use of Latent Dirichlet Allocation (LDA) – one topic modeling
technique. Likewise, we also provide such variant called
DupPredictorRep-T. We compare our results with DupPredictor.
We also show how DupPredictorRep-T performs over different
data sets.

A. Experimental Setup

The original data set used in DupPredictor is composed by
posts before January 10, 2011. DupPredictor considers the first
2 million questions posted between July 2008 and September
2011. We artificially build this data set filtering posts by their
creation date. Resulting in a number of 1,993,483 questions.
This difference in the number of questions may be explained
by the exclusion of questions after DupPredictor was built.

We assess DupPredictorRep over three more data sets. Each
one is composed by posts where their creation dates are before
January 10 of each year from 2012 to 2014.

In DupPredictor, 1,641 duplicated questions were found.
They were manually inspected and the wrongly labeled as du-
plicates were removed, resulting in 1,528 duplicated questions.
Instead of analyzing questions manually, we identify duplicated
questions using the same approach as Dupe [15], which extracts
the duplicated questions from the table postlinks and consider
only those closed as duplicates. We select questions whose
closedDate column value is not null in table posts and whose
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id is present in postlinks table. We consider this approach
to be safer for identifying the duplicates because closing a
question as duplicate in Stack Overflow requires an assessment
by users with a considered degree of reputation. Even filtering
by the creation date, the 2011 data set contains more than 1528
duplicated posts (actually more than 22 thousands) because
the number of duplications tend to grow as new duplicates are
constantly being discovered. We select the first 1,528 duplicated
questions to simulate DupPredictor.

The tool WVTool [38] was used by DupPredictor to create
word vector representations for the title, body and tag fields of
each question. This tool also stems and removes stop words.
Instead of using WVTool, we decided to re-implement the
vector space model (VSM) [39] representation for these fields to
avoid I/O overhead of WVTool. We tested our implementation
and compared the results with WVTool. We input a set of
questions into WVTool and to our implementation and carefully
checked that the outputs of each tool matched in all cases. For
titles and bodies, the weights of the terms are calculated using
their term frequencies. For tags, weights are calculated based
on the presence of the tag, or their binary frequencies.

For the stemming and stop word removal, Porter stemming
algorithm [40] was used as did the original work, and the stop
word list is the default provided by Lucene Framework.

B. Method

We divide the reproduction of DupPredictor in 4 steps. In
Step 1, we preprocess the questions and prepare the data set for
the duplicate detection. In Step 2, we generate the topics for
the questions. In Step 3, we estimate the best weights for the
composer component used to compare questions, and in Step
4 we perform the recall-rate calculation for DupPredictorRep
and for DupPredictorRep-T.

Step 1: In the preprocessing step, DupPredictor collects
the questions from Stack Overflow and perform stemming and
stop words removal. However, questions available through the
official dumps of Stack Overflow contain special characters in
their bodies. Some of them are HTML tags, like “<code>”,
which contains code snippets, and others are special entities like
ampersand, which is represented by “&amp;”. As it is not clear
how these kind of characters were handled in DupPredictor,
we performed a test to identify the best approach to handle
them. We considered two approaches:

1) We performed the stemming and removed the stop words
over the titles and bodies of the questions. We called
this approach Raw Approach.

2) We processed the title and body of each question. For
both, we separated the content in tokens containing
special characters and numbers (set 1) from the others
(set 2). Over set 1 we removed HTML tags, special
characters and punctuation symbols. Over the set 2, we
performed stemming and removed stop words. Then we
concatenated both sets and built the content of the title
or body. We called this approach Refined Approach.

We tested these two approaches by calculating recall-rates
over two data sets, each one generated from each approach.

TABLE I
RECALL-RATE VALUES FOR Raw Approach AND Refined Approach

Approach Tag R@100 R@50 R@20 R@10 R@5

Raw
html 17.60 15.18 11.93 9.98 8.10
ruby 34.84 29.69 23.71 18.60 14.84

Refined
html 18.53 15.98 12.52 10.35 8.58
ruby 36.64 32.31 25.82 20.87 17.06

DupPredictor uses a composer component to compares two
questions and calculates scores for each question according to
the Equation 2:

Composernq(oq) = α · TitleSimnq(oq)

+ β ·DesSimnq(oq)

+ γ · TopicSimnq(oq)

+ δ · TagSimnq(oq) (2)

In this component, the weights α, β, γ, and δ are associated
to each of the subcomponents: TitleSim, DesSim, TopicSim and
TagSim. Each subcomponent denotes the cosine similarity [39]
value for titles, bodies, topics and tags respectively, between two
questions. DupPredictor performed a series of experiments to
obtain resonable weights to each subcomponent and concludes
that in general when α > β > δ > γ recall-rate@5, recall-
rate@10 and recall-rate@20 are better. It estimated the best set
of weights when α = 0.8, β = 0.51, δ = 0.37 and γ = 0.01.

We used these weights to test our two approaches. For this
test, we used DupPredictorRep-T (γ = 0) because, besides
the TopicSim weight is significantly smaller than the others,
generating topics is computationally expensive. The data set
used in this test was the one used in MSR Challenge 2015 [22].
We built two identical copies of this data set, where each
approach ran over each data set. Then, for each data set we
performed two tests to assess the recall-rates: one for posts
whose tags contain ruby, and another one for posts whose tags
contain html. We tested 7,717 questions for tag html and 1,940
questions for tag ruby. We compute recall-rate at different
top-k: 100, 50, 20, 10 and 5. In all cases, the recall-rates for
the Refined Approach are better than the ones for the Raw
Approach as shown in Table I.

Thus, we discarded the two data sets used in this test and
applied the Refined Approach on our master data set. After
this process, we append the word "Duplicate" in the titles of
the duplicated questions. We use the master data set for the
next stages of DupPredictorRep.

Step 2: In this step, we use Mallet [41] toolkit to generate
topic distribution for each question. For this, we build a
folder containing text files representing all questions, each
file containing the content of a question: the concatenation of
title and body. Then we use this folder along with the number
of topics as parameters to train topics. Next, the trained model
generated by Mallet is used to generate the topics distribution
for the questions. The output of Mallet is a text file containing
these distributions where each line contains the identification
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of the question followed by the probabilities of the topics
distribution, separated by spaces. We use the same number
of topics as in DupPredictor (100). Finally, DupPredictorRep
reads this file and load these distributions to each question.

Step 3: In this step, we reproduce weight estimation for
α, β, γ and δ, used in the composer component. In the same way
as DupPredictor, we use the first 20% of the 1,528 duplicate
questions as training set to find weights for the composer
component, ensuring that each question have its master question
in the data set.

The purpose of this step is to find better weights for the
composer component than the original ones. We performed
a series of experiments, where we varied α, β, γ and δ and
compute recall-rate for each set of values. Considering that
calculating recall-rates is time consuming, specially for data
sets containing millions of questions, we used the heuristic
assumption of DupPredictor that α > β > δ > γ produce
better results to guide our generation. Our findings are described
in Section IV-C.

Step 4: Here, we evaluate DupPredictorRep over the master
data set. We build the test set composed by the first 1,528
duplicated questions. We excluded those ones used in the
training set in previous step, and the ones whose masters were
deleted by users. Resulting in a test set of 1,124 questions. We
compare each of these 1,124 questions with the other 1,993,483
ones simulating the original data set.

We also calculate the recall-rate over new data sets containing
more questions, artificially built by increasing the year of the
creation date parameter. The purpose of this test is to assess the
performance of DupPredictorRep as the number of questions
in the data set increases. For these tests, we disable the LDA
for the score calculations (we used DupPredictorRep-T). The
reasons are the same as described in Section IV-B: the low
influence on recall-rates and the high consumption of time to
execute, specially in data sets where the number of questions
grow considerably through the years as previously shown in
Figure 2.

Besides the number of questions, the number of duplicate
questions detected by users also had a significant growth. To
make these set of tests feasible, we also limit the number of
duplicate questions in the test set to 1,528. Out of these, we
remove the first 20% that would represent the training set. Also,
out of the remaining ones we remove those whose masters
were deleted by users. The resulting test sets of the years 2012,
2013 and 2014 are 1,147, 1,165, and 1,172 duplicate questions
respectively.

C. Results

We show the results achieved in Steps 3 and 4 .
Step 3 – Estimating Weights: 50 experiments were executed

to estimate weights for α, β, γ and δ. Table II shows the best
results for recall-rate@20, sorted in descending order. Weights
in bold are those reported as the best in DupPredictor.

Step 4 – Calculating Recall-Rate: Table III shows the
comparison of recall-rate values for DupPredictor, DupPredic-

torRep and DupPredictorRep-T. Table IV shows the recall-rate
values obtained for DupPredictorRep-T against different sets.

D. Discussion

Despite the low influence on recall-rates, the use of topics
was recommended in DupPredictor. Indeed, DupPredictorRep-
T version compared to DupPredictorRep shows a decrease in
terms of recall-rate of only 0.6%, 0.1% and 0.4% for recall-
rate@20, recall-rate@10 and recall-rate@5, respectively.

Differently, the decrease in recall-rates is evident when the
number of tested questions increases, as shown in Table IV.
Compared to the 2011 data set, tests against 2012 and 2013
data sets present decays of 4.0% and 6.7% for the recall-
rate@20 respectively while their number of questions increased
77.17% and 176.41%. However, the recall-rate@20 drops to
0.0% when the number of questions increased 286.95% in
2014. This weakness may be explained not only by the high
number of unnecessary comparisons between two questions,
as DupPredictor do not filter questions by tag, but also by the

TABLE II
RECALL-RATE@5, RECALL-RATE@10 AND RECALL-RATE@20 OF

DupPredictorRep WITH DIFFERENT WEIGHTS FOR α, β , γ AND δ AND A
TRAINING SET COMPOSED BY 285 DUPLICATED QUESTIONS (THE WEIGHTS

IN BOLD ARE THE ONES FOUND IN DupPredictor)

Num α β γ δ R@20 R@10 R@5

1 0.72 0.40 0.10 0.31 0.389 0.301 0.259
2 0.80 0.51 0.01 0.37 0.382 0.312 0.259
3 0.87 0.71 0.29 0.48 0.378 0.326 0.266
4 0.69 0.50 0.19 0.30 0.378 0.312 0.259
5 0.95 0.80 0.61 0.75 0.378 0.308 0.252
6 0.98 0.57 0.22 0.42 0.378 0.305 0.259
7 0.89 0.76 0.31 0.52 0.375 0.319 0.266
8 0.75 0.58 0.27 0.35 0.375 0.319 0.263
9 0.57 0.41 0.38 0.41 0.375 0.315 0.252

10 0.76 0.74 0.39 0.43 0.375 0.308 0.259
... ... ... ... ... ... ... ...
50 0.68 0.64 0.03 0.07 0.326 0.231 0.182

TABLE III
RECALL-RATE VALUES FOR DupPredictor (EXTRACTED FROM [14]) AND

FOR THE REPLICATES: DupPredictorRep AND DupPredictorRep-T WITH α =
0.80, β = 0.51, γ = 0.01 AND δ = 0.37 AND A TEST SET COMPOSED BY

1124 DUPLICATED QUESTIONS

Approach R@20 R@10 R@5

DupPredictor 0.638 0.533 0.423
DupPredictorRep 0.433 0.353 0.282
DupPredictorRep-T 0.427 0.352 0.278

TABLE IV
RECALL-RATE VALUES FOR DupPredictorRep-T IN DIFFERENT DATA SETS

Year Test Set Size R@100 R@50 R@20 R@10 R@5

2012 1,147 0.565 0.489 0.387 0.314 0.248
2013 1,165 0.533 0.453 0.360 0.287 0.236
2014 1,172 0.463 0.302 0.000 0.000 0.000
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1: procedure COMPUTERANKINGANDRECALLRATE(nonMasters, rateAt, tag)
2: questions← fetchQuestions(tag) . Fetch questions by tag
3: hits← 0
4: ranking
5: index . Search engine index
6: for each question in questions do
7: content← concat(title, body, tags) . Question’s structure concatenation
8: index.add(content)
9: end for

10: for each nonMaster in nonMasters do
11: hits← index.searchAt(rateAt,nonMaster) . Fetch first rateAt results from search engine
12: for i = 0 to hits do
13: questionPair ← (i, nonMaster)
14: features← extractFeatures(questionPair)
15: probability ← logisticRegression(features) . Compute the probability of duplication using the classifier
16: ranking ← tuple[questionPair, probability]
17: end for
18: sort(ranking) . Sort first 100 entries by descending probability
19: if checkDuplication(ranking) then . Verify whether a duplicate was found
20: order ← position(ranking)
21: else
22: return −1
23: end if
24: computeRecalRateAt(order, nonMasters.lenght)
25: end for
26: end procedure

Fig. 3. Pseudocode to rank questions and calculate recall-rates

used text retrieval model whose scoring function is based
on the frequency of terms [15]. In this model, two non-
duplicated questions may have a higher scoring function than
two duplicated ones only because they have more common
terms.

Concerning time efficiency, our findings show that the time
spent by our test set, considering our hardware settings and
using the best set of weights estimated by DupPredictor, is
125,223 seconds (~35 hours). Each question took an average of
111.40 seconds to be compared to the others. For the data sets
of 2012, 2013, and 2014, the time spent to calculate the recall-
rates was approximately 67, 111, and 205 hours respectively.

V. DUPEREP

In this section we evaluate DupeRep. We run DupeRep over
different data sets to compare the results against the ones
reported by the original work [15].

A. Experimental Setup

The data set used in Dupe comprises questions created until
September 2014 [22], where there are 130,888 non-master
duplicates and 90,245 master questions. We use the same
approach as in Dupe to extract duplicated questions and filter
questions by creation date. We identify 134,261 non-master
duplicates and 88,476 master questions. This difference may be
explained by new questions marked as duplicates and questions
that were deleted by users.

Besides posts created until September 2014, we also consider
posts created until September 2015 and 2016. The purpose
is to assess the performance of Dupe when the number of
questions increases.

In Dupe, questions are filtered by tag. Six tags were
considered: Java, C++, Python, Ruby, Html and Objective-
C. We consider this same list of tags to assess DupeRep over
the three data sets. Likewise, five features were used in a
discriminative classifier: Cosine Similarity Value, Term Overlap,
Entity Overlap, Entity Type Overlap, and WordNet [42]
Similarity. In Dupe, Term Overlap showed lower recall-rates
when combined with other features and was discarded in the
early stages of experiments. Entity overlap, entity type overlap
and WordNet similarity changed the recall-rates insignificantly
and their use were not recommended by the original work. As
the Cosine Similarity value show the best results alone, we
only use this feature in the computation of recall-rates. Like
in Dupe, we calculate the cosine similarity from each pair of
questions for the following informations: title-title, title-body,
body-title, body-body, tag-tag, title-tag, and code-code.

The classifier used in Dupe to rank questions is a Logistic
Regression classifier, but the paper does not specify which
implementation was used. We tried two well know implemen-
tations: Stanford CoreNLP [43] and Weka [44]. However, we
show only the recall-rates for Weka because its implementation
reported far superior results than Stanford’s one.
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B. Method

The reproduction of Dupe is done in five steps. In Step 1,
we preprocess the questions and prepare the data set for the
duplicate detection. In Step 2, we extract the features from
questions. In Step 3, we train the classifier. In Step 4, we
calculate the recall-rates for DupeRep and BM25Rep (as the
original work evaluates the BM25 – one Information Retrieval
technique). Finally, in Step 5, we calculate the recall-rates for
DupPredictorRep-T filtering questions by tag to compare the
results.

Step 1: In this step, we use the same data set used in
DupPredictorRep. The Refined Approach is applied over this
data set, besides stemming and stop words removal. Also, we
extract code blocks from the bodies of questions and identify
the synonyms of tags. We collected the set of synonyms through
the Stack Exchange Data Explorer8, because such information
is not present in the official dump. Code blocks and synonyms
of tags are stored during the preprocess of the questions of
our master data set and are ignored by DupPredictorRep but
considered in DupeRep.

Step 2: We extract features for the same number of
duplicated and non-duplicated questions. For the duplicated
questions, we fetch the closed duplicated non-master questions
filtering by creation date and tag. For each question in this
list, we identify its master questions. It may be the case that a
question is related to more than one master question. For each
master question we perform the following steps:

1) Check whether master question has not been deleted. If
the master was deleted by users, the non-master question
is discarded.

2) Check whether the master has answers. If the master
question has no answer, the non-master question is
discarded.

3) Build a pair of question containing the non-master and the
master question, as well as label this pair as duplicated.

4) Extract features for the question pair.
For non-duplicated questions, we fetch questions randomly,

limiting the number of questions to the number of pairs created
previously. For each question in this list, we build a pair of
questions in such a way that one is the question of the list
and the other is randomly selected from the list of the closed
duplicated non-master questions. Then we extract features for
each pair and label the pair as non-duplicated.

Step 3: We fetch the lists of duplicated and non-duplicated
pairs generated in the previous step. From the duplicated pairs
list, we use 20% of pairs to a test list. Out of the 80% remaining
pairs, we extract features and label them as "duplicated". From
the non-duplicated pairs list, we use 80% of the pairs to extract
features and label them as "non-duplicated". We then use all
features, "duplicated" and "non-duplicated", to train our logistic
regression classifier.

Step 4: The algorithm in Figure 3 represents a peseudocode
for the calculation of recall-rates. The algorithm receives 3
parameters as input: the test set composed by non-masters

8http://data.stackexchange.com/stackoverflow/query/new

questions, a parameter to filter the top k questions and the
tag filter (e.g., JAVA). The output are recall-rate@20, recall-
rate@10 and recall-rate@5. Firstly, the algorithm fetches
questions by tag (line 2) and initializes variables representing
the number of duplicates found (line 3), the ranking data
structure (line 4), and the search engine index (line 5). For
each question found by the tag filter, the algorithm concatenates
title, body, and tag to build an index of this concatenation in
Lucene’s indexing mechanism (lines 6~9). Next, in a external
loop (lines 10~25), the algorithm iterates the non-master list of
the questions in the test set. For each non-master question, it
performs a search by the content of the question (line 11). The
return, variable hits, holds the number of questions retrieved by
BM25 [45] search mechanism, which order results by relevance.
The variable i (line 12) represents the position of a question in
the search. In a internal loop (lines 12~17), the algorithm first
creates a pair of questions (line 13) containing the non-master
question and a question returned by the searching at the position
i. Next, it extracts features for the pair (line14), then a trained
classifier is used to calculate the probability of features’ values
for the duplicated questions (line 15). The obtained probability,
along with the pair, is stored in the ranking data structure
(line 16). The algorithm then proceeds in line 18 where the
first 100 entries of the ranking classifier map are cropped.
These entries are the highest probabilities values, ordered in
descending order. Next, the algorithm verify if among these
entries relies a duplicate and if so, get its order (lines 19~23).
The algorithms ends computing the recall-rates (line 24).

Step 5: In this step, we calculate recall-rates for
DupPredictorRep-T, but instead of comparing each question
with all the others, we compare only with those of the same
tag group. The purpose of this test is twofold: (i) to assess the
reproduction of DupPredictor performed in Dupe over the data
set of 2014; (ii) to assess the performance of DupPredictorRep-
T when questions are filtered by tag in more recent data sets.
Besides the data set of 2014, we test DupPredictorRep-T using
the same 6 tags as in Dupe in data sets of 2015 and 2016
extending the original comparisons.

C. Results

We run DupeRep and calculate the recall-rates under two
perspectives. First, we consider the data set from 2014 used by
Dupe. We list the findings of the original work [15] for BM25,
Dupe, and DupPredictor and our findings: BM25Rep, DupeRep,
and DupPredictorRep-T with tag filtering in Table V.

Second, we show results for recall-rates considering three
data sets: 2014, 2015, and 2016. The results for DupeRep as
well as for DupPredictorRep-T with tag filter over the three
data sets are shown in Figure 4.

D. Discussion

In DupeRep, the average time to detect duplicates in data
set of 2014 for tags Ruby, Python, C++, Objective-C, Html
and Java was 18, 22, 21, 17, 23 and 18 seconds respectively.
As opposed to DupPredictor, the idea of filtering questions
by tag significantly reduces the cost for computing features,
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Fig. 4. Recall-Rate Values for DupeRep and DupPredictorRep-T + tag Filter in the Data Sets of 2014, 2015 and 2016.

as well as the time to calculate the recall-rates, once that the
number of pairs being compared are much lower.

Our findings show that recall-rates for BM25 [45] search
mechanism are considerably lower than the results reported
in Dupe. For tags Ruby, Python, C++, Objective-C, Html and
Java the recall-rate@20 absolute values are 32.99%, 26.59%,
23.71%, 22.94%, 20.21% and 25.79% lower respectively.
Likewise, our findings for DupeRep show a decrease in recall-
rate@20 for these tags of 27.85%, 28.5%, 24.26%, 18.25%,
24.93% and 25.07% in absolute values in comparison with
Dupe.

When compared with DupPredictor implemented in the Dupe
study for the data set of 2014, the values of DupPredictorRep-T
with tag filter are higher for recall-rate@20 and recall-rate@10
for Objective-C, Html and Java. The highest difference was
9.56% for recall-rate@20. For the other tags, the most signifi-
cant difference occurs in recall-rate@5 for tag Python where

DupPredictorRep-T with tag filter was 0% while DupPredictor
implemented in Dupe was 28.15%. DupPredictorRep-T with
tag filtering also show a significant decrease in recall-rates
through the years for all tag groups, specially for recall-rate@5
where in 2015 two out of six values resulted in 0.0% and
in 2016 we found 0.0% for five out of the six analyzed
tags. Our results reinforces the weakness of DupPredictor:
its prediction power severely decreases when the number of
assessed questions increases, mostly with regard to the hits in
top positions. Moreover, we did not found the same results for
DupPredictor as reported in Dupe study.

Notwithstanding, over the years DupeRep loses prediction
power. But such performance decay is not as relevant as
for DupPredictorRep-T. Considering the recall-rate@20 (in
absolute values), the lowest decay occurred for Objective-c
between 2014 and 2015 (0.5%) while the highest occurred for
tag Java between 2014 and 2015 (4.15%). In DupPredictorRep-
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TABLE V
RECALL-RATE VALUES FOR THE DIFFERENT TECHNIQUES IN DATA SET OF

2014.

Tag Technique R@20 R@10 R@5

Ruby

BM25 47.53 40.84 35.56
BM25Rep 14.54 11.98 8.67

Dupe 66.11 59.56 51.16
DupeRep 38.26 35.45 29.84

DupPredictor 39.00 37.00 33.00
DupPredictorRep-T + tag 39.47 30.99 17.31

Python

BM25 36.09 30.18 26.10
BM25Rep 9.50 7.40 6.23

Dupe 53.22 45.41 37.20
DupeRep 24.72 20.00 16.38

DupPredictor 38.74 32.28 28.15
DupPredictorRep-T + tag 34.38 22.61 0.00

C++

BM25 31.09 26.36 23.32
BM25Rep 7.38 6.02 5.09

Dupe 49.93 40.12 37.14
DupeRep 25.67 20.63 16.26

DupPredictor 35.00 28.00 26.00
DupPredictorRep-T + tag 33.73 25.91 18.19

Objective-C

BM25 37.11 31.61 26.81
BM25Rep 14.17 10.51 8.84

Dupe 56.35 47.88 40.61
DupeRep 38.10 30.64 23.62

DupPredictor 31.00 28.00 26.00
DupPredictorRep-T + tag 39.37 33.85 29.52

Html

BM25 31.22 27.11 23.94
BM25Rep 11.01 9.20 8.47

Dupe 50.23 39.45 37.14
DupeRep 25.30 21.67 18.15

DupPredictor 34.00 28.00 25.00
DupPredictorRep-T + tag 43.56 35.89 28.21

Java

BM25 35.12 31.14 28.33
BM25Rep 9.33 7.77 6.78

Dupe 53.02 44.55 38.25
DupeRep 27.95 23.90 19.44

DupPredictor 41.00 35.00 30.00
DupPredictorRep-T + tag 44.02 36.70 28.04

T, the lowest decay was 4.6% between 2012 and 2013 but
36% for 2013 to 2014. We confirm that Dupe has a more
stable prediction power than DupPredictor, specially when the
number of questions in increases.

Dupe compares its approach with DupPredictor against the
data set of 2014. Our findings for this comparison are also
different. Our results for DupPredictorRep-T combined with
tag filtering surpass DupeRep results for recall-rate@20 under
all tag groups. Also for recall-rate@10 in five out of the six
analyzed tags. Despite DupeRep recall-rates tends to become
higher than DupPredictorRep-T recall-rates for the data sets
of 2015 and 2016, the presented results do not support the
findings of Dupe regarding its comparison with DupPredictor
for the proposed scenario.

VI. THREATS TO VALIDITY

In this section, we discuss the threats to construct and internal
validity. Also, what we adopted to mitigate them.

Construct validity is about the correct identification of
measures adopted in the measurement procedure. In terms
of evaluation bias, our results are not more biased than the
original ones. We used the very same metric (i.e., recall-rate)
to test and compare all reproduced approaches.

Internal validity refers to the factors that may have influenced
our study. Instrumentality bias threatens any reproduction study,
i.e., our design decisions may be interpreted in a different way
from the original works. We did ask the first authors to provide
some clarifications, but they did not answer back. We took care
to either clearly define our algorithms or use implementations
from the public domain (e.g., Apache Lucene, Weka). Also,
all data and code used in this study are available on-line.

Another threat arises from the data set we used. Although the
data came from Stack Overflow, we relied on the most recent
available dump. So, we could broaden the results. To simulate
the data used by DupPredictor and Dupe, we filtered Stack
Overflow questions by the creation date. Hence, the questions
taken to train and test our reproductions can differ from the
original studies due to three main reasons. First, new questions
were marked as duplicates after the original studies. Second,
questions present in original studies may have been deleted
by users ever since. And third, our samples are different from
original studies. We mitigated the first reason by limiting the
number of duplicates to the same used in the original studies.
For the second, we assured that questions in test sets had
their masters in our data set, removing the ones deleted by
users. Lastly, we generated our samples following the same
rules from the original studies. Despite our effort to reproduce
both approaches exactly the same way, the random nature of
samples generation may influence the results.

VII. CONCLUSION AND FUTURE WORK

In this work, we presented an empirical study aimed at
analyzing duplicate question detection in Stack Overflow. For
this purpose, we conducted an independent reproduction of
two previous approaches, DupPredictor [14] and Dupe [15].

Our reproduction produced lower recall-rates compared
to the original studies. Although it is still not clear why
our results differ from the original ones because we have
different implementions and different datasets, we make a
replication package public available to enable other researchers
to repeat, improve, or refute our results. Moreover, we observed
a performance decrease with the reproduction of those two
approaches over time, as the number of question increases.

Further reproduction studies, with different settings, could
extend the collected results. A more thorough investigation on
how to stabilize duplicate question detection as the number of
questions increase could also be conducted.
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