
IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 1

A systematic literature review on bad smells –
5 W’s: which, when, what, who, where

Elder Vicente de Paulo Sobrinho, Andrea De Lucia, Marcelo de Almeida Maia

Abstract—Bad smells are sub-optimal code structures that may represent problems needing attention. We conduct an extensive
literature review on bad smells relying on a large body of knowledge from 1990 to 2017. We show that some smells are much more
studied in the literature than others, and also that some of them are intrinsically inter-related (which). We give a perspective on how the
research has been driven across time (when). In particular, while the interest in duplicated code emerged before the reference
publications by Fowler and Beck and by Brown et al., other types of bad smells only started to be studied after these seminal
publications, with an increasing trend in the last decade. We analyzed aims, findings, and respective experimental settings, and
observed that the variability of these elements may be responsible for some apparently contradictory findings on bad smells (what).
Moreover, we could observe that, in general, papers tend to study different types of smells at once. However, only a small percentage
of those papers actually investigate possible relations between the respective smells (co-studies), i.e., each smell tends to be studied
in isolation. Despite of a few relations between some types of bad smells have been investigated, there are other possible relations for
further investigation. We also report that authors have different levels of interest in the subject, some of them publishing sporadically
and others continuously (who). We observed that scientific connections are ruled by a large “small world" connected graph among
researchers and several small disconnected graphs. We also found that the communities studying duplicated code and other types of
bad smells are largely separated. Finally, we observed that some venues are more likely to disseminate knowledge on Duplicate Code
(which often is listed as a conference topic on its own), while others have a more balanced distribution among other smells (where).
Finally, we provide a discussion on future directions for bad smell research.

Index Terms—Software maintenance, reengineering, bad smell

F

1 INTRODUCTION

Software systems need to evolve continuously to cope
with new requirements and environment changes. High

quality source code plays an important role in this context
because the code itself needs to be easy to understand,
analyze, change, maintain, and reuse [1]. However, software
developers eventually produce sub-optimal code, possi-
bly introducing design problems, i.e., they produce code
structures that violate fundamental principles in software
engineering, such as high cohesion and low coupling. This
situation is also known as “technical debt” [2], a debt that
developers have with the system organization. In the short-
term, technical debts may bring benefits, such as, higher
productivity or shorter release time, but in the long-term
debts can cause a significant amount of extra work.

Some studies have reported on the negative impact of
bad smells in software maintenance. Aiko and Leon [328]
report that 27% of maintenance problems are related to
bad smells. On the design side, relationships between archi-
tecture problems and bad smells have also been reported
[318, 320]. Gurp and Bosch [3] report that architectural
problems could cause software discontinuity or loss of hege-

• Elder Vicente is with Federal University of Triângulo Mineiro, Depart-
ment of Electrical Engineering, Uberaba, Brazil.
e-mail: elder.sobrinho@uftm.edu.br.

• Andrea De Lucia is with University of Salerno, Fisciano (SA), Italy,
e-mail: adelucia@unisa.it.

• Marcelo A. Maia is with Federal University of Uberlândia, Faculty of
Computing, Uberlândia, Brazil, e-mail: marcelo.maia@ufu.br.

mony. Bad smells could be used as indicators for low code
quality code, representing potential threats [4].

On the other hand, bad smells may not be as harmful
as generally claimed. Rahman et al. [192] report that bugs
are not significantly associated to duplicated code. Also,
in some situations, writing code with the presence of bad
smells may be even the best option for developers [387].

Although a huge body of knowledge has been produced
over almost 30 years, it still lacks more organization. So,
this paper aims at elaborating a systematic literature review
on bad smells between the years 1990 and 2017 taking
into consideration the diversity of different kinds of bad
smells (which); the evolution of the interest of researchers
in bad smells (when); the aims, findings, and material for
experimental setup (what); the different people and groups
interested in bad smells (who); the distribution of papers
among venues (where).

Although there are already some surveys on bad smells,
they do not cover the literature in a comprehensive way.
Differently from previous work [5, 6, 7, 235], we propose a
methodology aimed at minimizing the possibility of missing
relevant papers. As a result, unlike Zhang et al. [7] we show
that the research interest (measured by number of papers)
on bad smells has increased over the years and many papers
have recently studied the impact of bad smells.

Another distinguishing characteristic of our work is the
investigation of the co-occurrence of different bad smells
in the same paper. We will show that while DUPLICATE
CODE is widely studied, there are only a few studies that
consider the combination of DUPLICATE CODE with other
kinds of bad smells, confirming on a much larger scale

0000–0000/00$00.00~ c©~2017 IEEE

mailto:elder.sobrinho@uftm.edu.br
mailto:adelucia@unisa.it
mailto:marcelo.maia@ufu.br

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 2

the results obtained by Zhang et al. [7]. Moreover, if we
disregard those papers that study only DUPLICATE CODE,
we observe that the other kinds of bad smells are typically
studied with other smells (e.g., a paper investigating LARGE
CLASS and FEATURE ENVY). That kind of co-occurrence of
bad smells in papers has not been addressed in previous
reviews. Moreover, the co-occurrence of smells in the same
paper does not imply that any inter-relationship between
them is investigated. We further investigate this matter,
reporting on smells that are co-studied for investigation on
the inter-relationship raised by their co-occurrence in code.
Considering this difference between papers about DUPLI-
CATED CODE and papers about other types of bad smells
and considering that there are previous surveys considering
only papers about DUPLICATED CODE [6, 235], we observe
that DUPLICATED CODE can be considered as a topic on
its own deserving a different and more specific systematic
literature review, with respect to the one presented in this
paper. For this reason, in some RQs, we do not consider
papers discussing DUPLICATED CODE, and only focus on
the other types of smells, in particular the RQs concerning
the thematic area what. We consider papers concerning
DUPLICATED CODE in RQs where we want to emphasize
the difference with papers about other smell types. Also,
we will refer to papers studying only DUPLICATED CODE
as Duplicated Code Group (DCG), whereas we will refer to
papers studying other types of bad smells as Other Bad Smell
Group (OBSG).

The main contributions of this paper are:
• a large-scale review on bad smells, larger than previous

surveys;
• a systematic organization of the findings on bad smells

other than DUPLICATED CODE produced over more
than a decade in more than a hundred papers, to unveil
the convergent, divergent and main findings;

• a interpretation of the reported findings, with further
anecdotal evidence obtained from the consolidated re-
sults;

• several statistical descriptions of data to characterize
the area, including a clear characterization of collabora-
tions among researchers using Social Network Analy-
sis;

• avenues for further work which would help the com-
munity, either experts or newcomers to this field.

The remainder of this paper is structured as follows: in
Section 2 we present background information and discuss
related work. In Section 3 we present our research questions,
defined with respect to five thematic areas (TAs): which,
when, what, who and where. In Section 4, we present the
systematic literature review methodology and discuss its
limitations and threats. Sections 5, 6, 7, 8 and 9 present the
results of our research questions for the five thematic areas.
In Section 10 we discuss the main findings of the study
and outline some future challenges and research directions.
Conclusions are drawn in Section 11.

2 BACKGROUND AND RELATED WORK

This section provides the background for the bad smell
research topic. First, we introduce the concept of bad smell.

Finally, Subsection 2.2 focuses on previous systematic liter-
ature reviews on bad smells.

2.1 Background
Several terms have been used to refer to sub-optimal code:
code anomaly, bad smell, code smell, anti-pattern, design
smell [8, 317, 320, 366].

Bad smell or code smell are terms used by Fowler and
Beck [9] referring to sub-optimal code structures that may
cause undesired or even harmful effects. These structures
were not intended to be formally defined, because “no set
of metrics rivals human intuition” [9]. Nonetheless, they
defined 22 code structures that could be detected in code
and assessed if worthwhile to refactor. Smell detection tools
use thresholds on metrics or ad-hoc rules to identify such
structures in code, at the price of some inaccuracy.

One well-known example of a bad smell is LARGE
CLASS, sometimes also referred to as GOD CLASS or BLOB
[312, 371]. This smell is related to classes that are “trying to
do too much", whose symptoms may be represented by too
many instance variables.

DUPLICATE CODE or CLONE is another example of bad
smell, which consists of two or more similar code segments,
considering a similarity criterion [235].

Brown et al. [10] define the term anti-pattern as a com-
monly occurring solution to a problem that definitely gen-
erates negative consequences. They organize the taxonomy
of anti-patterns in three major classes that represent the
viewpoints of software developers, software architects, and
software managers:

1) Development anti-patterns describe situations encoun-
tered by the developers when solving programming
problems. These patterns are related to Fowler’s bad
smells because their symptoms are more likely to be re-
flected in the code, such as, BLOB, SPAGHETTI CODE or
LAVA FLOW (DEAD CODE). However, the anti-pattern
MUSHROOM MANAGEMENT is related to the situation
developers face when they are uncertain of require-
ments and there is no effective way to obtain clari-
fication. The anti-pattern MUSHROOM MANAGEMENT
has no direct relationship with a bad smell that can be
observed in code.

2) Architectural anti-patterns focus on common problems
in system structure. These anti-patterns focus on prob-
lems and mistakes in the creation, implementation and
management of the architecture, and most of them
are not directly reflected in the code such, as VEN-
DOR LOCK-IN, where systems are highly dependent on
proprietary architectures. Nonetheless, there are some
architectural anti-patterns that can be detected from
source code. An example is SWISS ARMY KNIFE that is
manifested by a class that has an excessively complex
interface.

3) Management anti-patterns are related to human com-
munication and people issues. They are related to the
software process and are not necessarily directly ob-
servable in source code.

Bad smells described by Fowler and Beck [9] emerge
from local problems in code, i.e., they are represented by
low-level programming structures, whereas only part of

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 3

the anti-patterns described by Brown et al. [10] can be
observed in code considering the developers’ or architects’
viewpoints.

Because there is some intersection between these two
concepts, the terms bad smell and anti-pattern are used as
synonyms [11]. Other studies distinguish these terms: a bad
smell represents something “probably wrong” in the code,
while an anti-pattern is a design problem in the source code,
because it results from the application of a wrong solution
to a recurring problem [333]. In other words, a bad smell is
a symptom of a bad design choice, so it might indicate the
application of an anti-pattern.

The context of our systematic literature review is con-
cerned with the analysis of source code to identify potential
design problems (i.e., bad code smells). For these reasons, in
our systematic literature review, we use the term bad smell
to refer to a symptom of a bad decision observed in a program’s
low-level structure.

2.2 Related Work

Given the large extension of the bad smells, evidenced by the
high number of studies conducted over decades, some sur-
veys/reviews have already been presented. We list below
an overview of relevant surveys related to bad smells.

Rattan et al. [235] presented a systematic literature re-
view on DUPLICATE CODE aimed at identifying detection
techniques and tools. In addition, papers were classified and
tools were compared. The article database was constructed
based on the query string “clone” on the following sites:
IEEExplore, ACM DL, ScienceDirect, Springer, and Wiley.

Bandi et al. [5] aimed at answering which techniques and
metrics have been empirically evaluated within a gradual
code decay process, which negatively affects software qual-
ity. They report that coupling metrics are widely used for
code decay detection. The article database was constructed
using textual search where the query was composed of
several terms and logical operators in the following sites:
IEEExplore, ACM DL, Scopus and Google Scholar. Their
work has a wider scope because it includes not only the bad
smell concept, but architectural and design rule violations
as well.

Pate et al. [6] conducted a systematic literature review
covering the used methods, the encountered patterns, and
the evolution of DUPLICATE CODE. They studied 30 papers
(obtained using a procedure similar to the one used by
Bandi et al. [5]), and observed that some papers derived
conclusions on developers’ behavior or intention based only
on data analysis from source code. The authors indicate
the necessity of empirical studies also involving developers.
The study also reports that “there are contradictions among
the reported findings, particularly regarding the lifetimes of clone
lineages" [6].

Rasool and Arshad [417] reports a review regarding
techniques used to handle bad smells. Their review includes
publications between the years 1999 and 2015. Their results
show that the interest of researchers on bad smell detection
remained high in the years 2005, 2010 and 2013. However,
their study is limited only to papers that study the detection
of smells proposed by Fowler and Beck [9]. Besides papers
focusing on bad smell detection, we also include papers

that have other aims (e.g., Prediction). These differences
can produce a more realistic result concerning the interest
on bad smells. Rasool and Arshad [417] also report on the
smells defined by Fowler that the tools are able to detect.
However, they did not analyze the possible association
between the classification of tools (e.g., research prototype,
commercial, public) and the smells that they handle, e.g., the
tools classified as research prototypes are oriented toward
handling less common smells (emerging smells). Fernandes
et al. [12] present a systematic literature review of bad smell
detection tools, but they also have similar limitations as
above.

Vale et al. [13] present a systematic literature review
about bad smells in the software product line (SPL). Their
selection strategy is limited to papers that study smells in
the context of software product line. Papers concerned with
bad smells out of this context were rejected. The authors
reviewed 18 papers and reported that research on bad smells
in the SPL context is a relatively new topic, starting in
2007. They also identified 70 bad smells classified as 49
code smells, 14 architectural smells, and 7 hybrid smells,
providing a catalogue of bad smells. Hybrid smells are
defined as one type of bad smells that can be identified
combining the idea of one or more architectural smells
with one or more code smells. Our systematic literature
review was more comprehensive, finding more than 100
smells. Differently from previous work, we also report the
main findings of papers and their divergences, pointing out
current limitations and challenges.

Zhang et al. [7] conducted a systematic literature review
from 2000 to 2009 aiming at answering four questions: (i)
Which bad smells have attracted most research attention?
(ii) What are the aims of studies on bad smells? (iii) What
methods have been used in studies on bad smells?, and (iv)
What are the evidence that bad smells indicate problems
in code? They selected papers from various journals (JSS,
EMSE, IST, JSME, TOSEM and SP&E), which have studied
one or more bad smells introduced by Fowler and Beck [9].
The final paper selection included 39 papers. They reported
that the bad smells that mostly attracted attention were:
DUPLICATE CODE (54%), FEATURE ENVY (31%), REFUSED
BEQUEST (28%), DATA CLASS (26%), LONG METHOD (21%)
and LARGE CLASS (21%). They also reported that DUPLI-
CATE CODE tends to be studied alone, and it is the most
studied because it is simple to understand. Concerning
the aims, they found that 49% of the papers aimed at
developing tools and methods to detect bad smells, 33%
aimed at improving understanding on bad smells, and 15%
aimed at developing tools and methods to refactor bad
smells. Concerning the methodology, they found that 52% of
these studies are empirical, 33% are experimental, 12% are
questionnaires/surveys, and 2% non-empirical. Concerning
the impact, only 5 out of 39 papers investigated the impact
of bad smells. The authors observed that the lack of studies
on the impact of bad smells may be explained from a
common-sense point of view that the negative impact is
obvious, and so, it does not deserve research to find such
evidence. However, interestingly, four out of the five studies
investigating the impact of code smells showed that not
all bad smells have negative impact on code, for instance
DUPLICATE CODE can increase reliability, whereas DATA

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 4

TABLE 1
Comparison between our literature review and previous studies.

Description Our
Paper [417] [13] [235] [5] [6] [7]

Year of publication. — 2015 2014 2013 2013 2011 2010

Paper dedicated to investigating bad smells. X X X X X X

Search engine to finding the papers. } ⊕ ⊕ ⊗ ⊕ ⊕ ⊕

Range of years considered in the papers of dataset. [1990,
2017]

[1999,
2015]

[2007,
2014]

[1997,
2011]

[−∞,
2013)

[−∞,
2010)

[2000,
2009]

Bad smell scope. Any Fowler Any DC Brown,
Fowler DC Fowler

Number of papers in the dataset. 351 46 18 213 30 30 39

Number of bad smells. 104 22 70 1 6 1 22

Reports the ranking of smells. X X

Reports the co-occurrence of smells in the papers. X

Reports the birth of smells according to the papers. X

Reports the interest in bad smells over the years. X X X X X

Reports the aims of the papers. X X

Reports the main findings of papers. X X

Reports which smells are co-studied on the papers. X

Reports the tools used in empirical studies. X X X X

Reports the projects used in empirical studies. X X X X

Reports the research community by types of smells. X

Reports researchers interested to bad smells. X

Reports a social network analysis for authors. X

Reports the propensity of venues to publish papers on
a particular set of bad smells.

X

X Item broached; DC: DUPLICATE CODE; Brown et al. [10]; Fowler and Beck [9].

} Manual inspection;⊗ Simple textual query;⊕ Complex textual query (uses multiple logical operators).

CLASS, REFUSED BEQUEST, and FEATURE ENVY are not
significantly associated with faults.

We observe some issues in those previous surveys that
justify our work. Table 1 summarizes the comparison with
previous work. None of the presented surveys have the
same scale as ours. Moreover, some of them have a scope
limited to one specific bad smell, more specifically DU-
PLICATE CODE [235, 268]. On the other hand, there are
comprehensive surveys [5] that investigate papers related
to factors that affect progressively and negatively software
quality (e.g., bad smells, violations of architecture and de-
sign rules). In this case, the high number of factors that
affect software quality makes a more comprehensive study
impracticable. There are also surveys that investigate only
the human perception (developers or researchers) of bad
smells [372]. In order to complement this approach, a more
detailed review on code smells would be beneficial. From
the presented surveys, Zhang et al. [7] study a set of papers
with the highest smell diversity. However, the survey is
limited only to papers from 2000 to 2009, while most of the
papers on bad smells have been published in the last decade.
In addition, this survey only considers smells by Fowler and
Beck [9], disregarding smells by Brown et al. [10]. Moreover,
none of previous literature reviews investigates the relations
between different types of bad smells.

3 RESEARCH QUESTIONS

In this section, research questions (RQs) are defined. To
ease understanding, we have organized the questions in five
Thematic Areas (TAs), the 5 W’s: (i) Bad smell types (which);
(ii) Interest on smells over time (when); (iii) Aims, findings
and settings (what); (iv) Researchers (who); (v) Distribution
of papers among venues (where).

We start with Which and When, because we want to
understand whether there is a difference in the way smells
are studied, in particular to understand whether some

smells are studied alone or together. We define two differ-
ent terms related to the fact that different smells occur in
the same paper. When different smells are investigated in
the same paper, we say they co-occur in that paper. Co-
occurrence does not necessarily mean that the smells are
studied together to investigate some relation between them.
In the case where bad smells co-occur in the same paper to
intentionally investigate some possible relationship between
them, we say that those smells are co-studied in that paper.
This terminology is used throughout the remainder of this
paper. Then, we analyze the When part, to see how the
interest in the bad smell research topic evolved over the
years. Next, we have the What part that maps the main
findings from the papers on bad smells. Finally, we analyze
the structure of collaboration of researchers interested in bad
smells (Who), along with the venues where the papers have
been published (Where).

3.1 TA1: Bad Smell Types (which)
This area contains questions intended to summarize infor-
mation on the types of bad smells that were studied over
the period 1990 to 2017.
RQ1.1 Are there bad smells more studied than others

(number of papers)? If so, is there any specific
reason? Are bad smells studied alone or together
with other bad smells (co-occurrences)?

Goal Identifying possible gaps in bad smell research in
terms of the coverage of different kinds of smells in
the papers. Another gap is the reason for analyzing
specific bad smells.

RQ1.2 Has research improved the original catalogs of bad
smells? If so, does this improvement occur by the
description of unpublished/new bad smells or by
the specialization of existing bad smells?

Goal Identifying factors that may have some influence in
the definition of new bad smells and if bad smell
definitions have changed over time.

3.2 TA2: Interest on Smells Over Time (when)
The purpose of this analysis is to understand whether there
is some trend in studies about bad smells. In particular, this
area contains questions that investigate the evolution of the
interest of researchers on bad smells over time.
RQ2.1 Has the interest in bad smells evolved over the

years?
Goal Identifying which bad smells have been studied

over the years to unveil possible trends.

RQ2.2 Has the research community interested in bad
smells evolved over the years?

Goal Identifying how much the bad smells are valued by
the community in the sense of distribution of num-
ber of authors over time would indicate relevance
and importance in the community.

3.3 TA3: Aims, Findings and Settings (what)
This area presents questions on the primary aims of the
paper, what are the main findings on bad smells, and how

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 5

experimental execution has been conducted in these studies.
As said before, we defined two different terms related to
the fact that different smells are considered in the same
paper. The co-occurrences are investigated in the which
thematic area (RQ1.1) to understand the phenomenon from
a statistical point of view, co-studies are considered in the
what thematic area to identify the main findings about the
studied relationships (RQ3.3).

RQ3.1 Which are the most commonly targeted aims?
Goal Identifying research opportunities by quantifying

the aims and experimental validation techniques.
Identifying why some papers are leading to con-
tradictory conclusions with respect to the impact of
bad smells, like those presented by Chatterji et al.
[268], because results from different objectives may
not be directly compared.

RQ3.2 What are the main reported findings?
Goal Identifying the convergent and divergent findings,

and highlighting the main contributions on bad
smells as well.

RQ3.3 Considering the co-occurrence of bad smells in the
papers of our dataset, how many of them actually
study some relations between bad smells and what
are the main findings of these co-studies?

Goal Understanding the limitations and challenges of
research conducted on bad smells, considering a
possible relationship derived from co-occurrence in
source code of different bad smells. In other words,
we investigate those papers that report results on
co-studies of smells.

RQ3.4 Which are the most used tools for handling bad
smells in the experimental setup?

Goal Helping researchers to choose appropriate tools
for dealing with bad smells. Consequently, it may
contribute to the development of reproducible work
[14] if widely available tools are used.

RQ3.5 Which are the most frequent subject projects used
in experimental evaluation?

Goal Helping researchers during the experimental set-
ting design. Furthermore, it may also contribute to
the development of reproducible and comparable
work.

3.4 TA4: Researchers (who)

This area contains questions linked to who are the promi-
nent researchers, how they relate, how their scientific groups
interact, and how the bad smells impacts on the community.

RQ4.1 How is the research community grouped around
the types of smells? Do researchers study a broad
and diverse set of bad smells, or concentrate on one
or a few bad smells?

Goal Understanding how the authors are organized, in
particular, considering their interest in different
types of bad smells.

RQ4.2 Who are the researchers mostly interested (by num-
ber of papers) to the area of bad smells? Which were
the countries and universities where bad smells
studies have been conducted?

Goal Monitoring and tracking the progress and/or sci-
entific trends through knowledge of who are the
main researchers on the bad smell topic. Pointing
out where specific kinds of investigation have been
carried out to unveil if there are any hubs that
concentrate investigation in specific topics.

RQ4.3 How are the authors and their research groups
interconnected? Does this interconnection impact
on publications?

Goal Understanding how scientific collaboration is es-
tablished and how that may affect the advance
of knowledge. In addition, this information would
help to identify the role of each researcher in the
scientific community, and thus, complement the
process of monitoring scientific progress and/or
trends.

3.5 TA5: Distribution of Papers Among Venues (where)
This area contains questions on how research on bad smells
has attracted interest among different venues.
RQ5.1 Are there venues more inclined to publish papers

on a particular set of bad smells?
Goal Helping researchers to understand which venues

have published more papers on bad smells.

4 METHODS

A systematic literature review should follow a formal and
reproducible method, which enables the identification, eval-
uation and interpretation of scientific studies that are related
to the desired subject [15]. Therefore, this section aims at
establishing the design details, as well as the mechanisms
and data that will be used to answer the research questions
presented in the previous section.

The execution of this study consists of three main steps:
a) definition of the protocol to select and analyze the rel-
evant papers; b) execution of the protocol, and c) result
reporting. The protocol consists of the following elements:
(i) data extraction from venues: this part shows how to
select relevant papers directly from predetermined venues;
(ii) data extraction from references: to minimize the pos-
sibility of some relevant paper not being included in this
review, references of the papers selected in the previous step
are examined, i.e., papers are selected indirectly from the
venues; (iii) analysis of the Final Database: this part shows
the data items that are extracted from the set of all relevant
papers. The following subsections describe the elements that
constitute the protocol.

4.1 Data Extraction from Venues
In a systematic literature review, the definition of an ade-
quate inclusion strategy can enable the protocol to obtain
as many relevant studies as possible [15]. Therefore, this
subsection will establish the guidelines used to construct
the Primary Database, presenting the reasons for the choice
of these guidelines.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 6

4.1.1 Limitations of Previous Strategies
Several previous reviews (e.g., [5, 6, 7, 235]) follow the
approach by Kitchenham et al. [15, 16]. With some variation,
this approach adopts a semi-automatic inclusion strategy
defined by the following steps:

1) exploratory enumeration of papers: conducted through
a preliminary research aimed at listing a reasonable
number of relevant papers;

2) extraction of terms (keywords): conducted through
the manual inspection of papers (e.g., Title, Abstract,
Keywords), obtained in the previous step. Researchers
benefit from their experience to compose a list of
terms/words that are strongly linked to the research
subject;

3) paper sources: from personal experience of the au-
thors and/or consulting professionals, a list of relevant
venues is elaborated (e.g., Conferences, Journals, Work-
shops);

4) enumeration of papers: generally, the venues obtained
from the previous step maintain their publications in
online databases, which provide search capabilities.
These filters often are logical expressions formed by the
terms and their derivations extracted in item 2. There-
fore, through these filters, a set of papers is selected to
compose the survey.

However, this approach has some drawbacks:
Filter Limitations. The sites ACM, IEEExplore, Sci-

encedirect, Wiley and Springer maintain in their databases
papers published in relevant venues, explaining their usage
in surveys [5, 6, 7, 235]. However, suppose that in our
design, at step 4, we wanted to retrieve all the papers
containing the word “Clone" using only the following fields:
Title and Keywords. This action would be successful across
all sites, except Springer, because it does not provide the op-
tion to filter only the desired fields. Therefore, we observed
that there is no standard set of filters provided by online
databases. This hinders the task of applying the same query
within similar fields across all databases, which can produce
an undesirable effect of filtering out some relevant papers if
the query is not sufficiently general.

Keyword Limitation. Pate et al. [6] use the strategy
based on the textual search to retrieve papers dealing with
the bad smell DUPLICATE CODE. Then, in the extraction of
terms (step 2), they generated a list of words related to the
subject and the following logical expression research was
constructed (step 4):

“((‘code’ OR ‘software’ OR ‘application’) AND (‘clone’ OR
‘cloning’ OR ‘copy’ OR ‘duplicate’ OR ‘duplication’ OR
‘similarity’) AND (‘change’ OR ‘evolution’ OR ‘genealogy’
OR ‘maintenance’ OR ‘management’ OR ‘tracking’))" [6].

Our criticism is that the used terms may not be sufficient
to capture all relevant papers. Indeed, by analyzing the
study by Pate et al. [6], we noted that many terms and
their variations, strongly correlated to the subject, were not
included, as for example: “Near-Miss Clones" [68], “Cut-
and-Paste" [88], “Duplicate Code" [140], “Code siblings" [143].
This may limit the quantity and quality of the studies used
in systematic literature reviews that use traditional text
retrieval provided by the sites (e.g., locating the documents
that contain a certain search term [17]), violating the premise

that researchers must obtain as many relevant studies as
possible [15]. Thus, in the next subsection, we describe our
approach to deal with these limitations.

4.1.2 Strategy Adopted in This Paper

We mitigate the previous limitations centralizing the search
location and performing manual inspection of papers.
Thus, our strategy performs the following steps: 1) Select-
ing paper sources (e.g., venues); 2) Getting all metadata
(BibTeX) of papers published in venues obtained in the
first step to centralize the search location (Mendeley1); 3)
Manually inspecting all papers stored in Mendeley and
the papers covering the bad smells to be selected for our
database.

In order to centralize the search location, we explored
the online database of relevant venues. We noted that all of
these have the option to export citation files (e.g., BibTeX2)
containing information such as Author, Title, “Venue", Ab-
stract, keywords and others. These fields comprise the
data generally used in reviews. However, some sites (e.g.,
Springer) do not include the “Abstract" field in the reference
file. As this information is published on the link of each
paper, one can extract this information and include it in the
reference file. This procedure can be performed by a utility
(e.g., a script) that captures the “Abstract" field. Similarly,
one can also automate the process for collecting the refer-
ence files. Therefore, with the files, one can use tools (e.g.,
Mendeley) to manage them and/or execute personalized
and uniform search operations. With respect to manual
inspection, we consider this strategy as the most suitable,
because the manual inspection enables the identification
of the actual subject of the paper, thus avoiding missing
relevant papers.

Next subsection details the selected venues (paper
sources) and the reasons why they were included.

4.1.3 Venues

As presented in the previous section, we will inspect each
paper published in predetermined venues. This subsection
lists these venues, as well as the reason why they were
included in the review.

Comparing the list of venues used in reviews/surveys
[5, 6, 7, 18, 235], we consider the venues that appeared in
at least three of these and have Topic Area related to the
bad smells. The result was a preliminary list of 14 venues
(e.g., ICSE, TSE, WCRE, ASE). We also added some other
important venues that appeared in two surveys (ESEC/FSE,
FASE, ICSME, OOPSLA, ECOOP and SANER). At the end,
our list of venues consists of 20 venues:

ASE - International Conference on Automated Software
Engineering; CSMR - Conference on Software Maintenance
and Reengineering; ECOOP - European Conference on
Object-Oriented Programming; EMSE - Empirical Software
Engineering; ESEC/FSE3 - European Software Engineering
Conference and International Symposium on Foundations
of Software Engineering; ESEM - Symposium on Empirical

1. https://www.mendeley.com
2. http://www.bibtex.org
3. Both Joint ESEC/FSE and FSE only

http://dl.acm.org/advsearch.cfm
http://ieeexplore.ieee.org/search/advsearch.jsp
http://www.sciencedirect.com/science/search
http://www.sciencedirect.com/science/search
http://onlinelibrary.wiley.com/advanced/search
http://link.springer.com/advanced-search
http://link.springer.com/advanced-search
http://link.springer.com
https://www.mendeley.com
http://www.bibtex.org

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 7

(a)

(b)

Fig. 1. Protocol Representation. (a) Primary Database. (b) Final Database.

Software Engineering and Measurement; FASE - Funda-
mental Approaches to Software Engineering; ICSE - In-
ternational Conference on Software Engineering; ICSME -
International Conference on Software Maintenance and Evo-
lution; IWPC/ICPC - International Workshop/Conference
on Program Comprehension; JSME - Journal of Software
Maintenance and Evolution: Research and Practice; JSS -
Journal of Systems and Software; MSR - Working Confer-
ence on Mining Software Repositories; OOPSLA - Confer-
ence on Object-Oriented Programming, Systems, Languages
and Applications; SCAM - Working Conference on Source
Code Analysis and Manipulation; SP&E - Software: Practice
and Experience; TOSEM - ACM Transactions on Software
Engineering and Methodology; TSE - IEEE Transactions on
Software Engineering; WCRE - Working Conference on Re-
verse Engineering. We also consider SANER - International
Conference on Software Analysis, Evolution and Reengi-
neering, which joined the WCRE and CSMR. Thus, papers
published in the joint meeting of WCRE-CSMR (2014) were
accounted in the SANER conference.

The considered venues are shown in Fig. 1a enclosed
by rectangles. Conferences and Workshops are within the
partially filled rectangles and Journals are within the un-
filled rectangles. The figure also shows the number of papers
found for each venue.

Some venues have their papers published in several
indexing sites. For example, for the ASE conference, the
28th edition was published on IEEExplore site and the 29th

edition is on the ACM site. For these venues, we consider
the papers indexed on both sites. In order to ease the
visualization of this information, the legend (Publisher) on
the top of Fig. 1 allows to verify where the papers of each
venue are published.

The next section details the procedure used to select only
papers related to the bad smells. These papers form the
Primary Database (see Fig. 1a).

4.1.4 Primary Database Construction

To mitigate the problem of Filter Limitations (see Subsection
4.1.1), we centralized the search site by building a local
repository with all the papers from venues listed in Sub-
section 4.1.3. This repository allows the identification of as
many papers as possible related to any software engineering
subject. This subsection describes how this repository was
used to obtain the papers of the Primary Database (see
Fig. 1a).

The local repository construction is defined by the fol-
lowing steps:

1) select the venues and find the site that gives access to
papers (see Subsection 4.1.3);

2) find the citation files (BibTeX) for each paper of all
selected venues (see Subsection 4.1.1);

3) complement the citation file with the paper abstract;
4) import citation files to a bibliography management tool

(we used Mendeley).

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6684409
http://dl.acm.org/citation.cfm?id=2642937

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 8

Using the centralized repository, we apply two initial
filters (see Fig. 1a), which aim at selecting only papers that
study the bad smells. In the rest of this subsection, we detail
these filters.

First Filter. To mitigate the Keywords Limitation problem
(see Subsection 4.1.1), for each paper in the repository,
we manually read the content of the Title, Abstract and
Keywords fields to select those that were related to the
bad smells. If these fields are not enough to know whether
this paper is about bad smells, then some sections of the
paper (e.g., Introduction, Conclusion) are examined. How-
ever, applying these criteria to the preliminary set of papers
had a challenge: some papers are borderline, for which,
inclusion or exclusion from Primary Database are disputable.
One recurring subject for the borderline papers is refac-
toring, because refactoring can be used for different pur-
poses (e.g., improve design, readability, internal structure,
performance, maintainability and/or comprehension [9]). A
reasonable common strategy found in papers is the use of
code with bad smells to identify refactoring opportunities
[80, 381, 392]. However not all refactoring opportunities are
characterized by bad smells [19, 20], some of them can be
discovered by generic metrics (e.g., cohesion, coupling) or
even through other characteristics (e.g., change-proneness).
Therefore, papers that used any type of information, other
than bad smells, to find refactoring opportunities were
excluded from the Primary Database. On the other hand,
papers on refactoring operations (e.g., Extract Method, Move
Method,...) that can be used to remove different bad smells
were included (e.g., Extract Method is employed to remove
DUPLICATED CODE, LONG METHOD, FEATURE ENVY [9]),
as well as papers that report techniques that can be used
to fix different bad smells for different purposes, such as
improving program comprehension. In other words, papers
that proposed tools or methods for generic refactoring and
do not use it to refactor a specific set of bad smells were
excluded from the Primary Database.

In general, borderline papers do not discuss or investi-
gate bad smells, they only report a technique/method that
can be implicitly used in the context of bad smells. As an
example, Tsantalis and Chatzigeorgiou [21] reports an ap-
proach to automatically identify Extract Method refactoring
opportunities, based on identifying two specific situations
that occur in code, where those occurrences are not neces-
sarily characterized as bad smells. Another borderline paper
[22] proposes an approach to automate the Extract Class
refactoring based on the analysis of relationships between
the methods in a class to identify chains of strongly related
methods. However, this paper does not address how the
input class is collected, which might not necessarily be
affected by bad smells. As a result, the input could be, but
not necessarily, classes with low cohesion, which could be,
but not necessarily, classes with BLOB [22] or DIVERGENT
CHANGE [354].

Thus, in order to clarify our rules, the papers were
only included in the Primary Database if they met at least
one of the following criteria: (i) a paper that reports em-
pirical/qualitative results on bad smells (e.g., detection,
analysis, refactoring of bad smells); (ii) a paper that reports
a tool or method used to handle bad smells; (iii) a paper that
reports the usage of bad smells in closely related domains

(e.g., design/documentation). On the other hand, if a paper
just mentions bad smells but does not provide further
discussion or investigation on the bad smell topic, then it
is excluded from the Primary Database.

Second Filter. This filter uses two necessary conditions:
(i) Paper Type: the paper cannot be a short paper or similar,
since these are considered to report preliminary results.
Moreover, short papers can be extended and published
as full papers. Thus, we select only full research papers,
specifically, those published on the main conference track
(e.g., Research Track of SANER). (ii) Threshold Year: the
publication year should be greater or equal to 1990 and
lower than April of 2017. The lower bound was defined
based on the seminal work on refactoring [23, 24]. The upper
bound was defined based on the fact that data collection
finished in April of 2017.

After applying the two filters in the centralized reposi-
tory, the obtained set of papers is referred to as the Primary
Database (see Fig. 1a), which comprises 266 papers that study
the bad smells.

In order to improve the Primary Database recall with
relevant additional papers that could not be captured with
the applied protocol, we proceeded with a snowballing tech-
nique: all references cited in the 266 papers in the Primary
Database were analyzed. We provide details of this protocol
in the next section.

4.2 Data Extraction from References
The extraction of references from the papers in the Primary
Database was automated and non-recursive. We applied two
filters to the retrieved references, shown in Fig. 1b:

Third Filter. Removal of references with equal titles;
Fourth Filter. Inclusion of papers with four properties:

(i) Reference Type: the reference should be a research pa-
per. Books, technical reports, and similar manuscripts are
discarded; (ii) Paper Type: the same criterion as the Second
Filter (see Paper Type on Section 4.1.4) is applied; (iii) Review
Title: analogously to the First Filter of Section 4.1.4, the
papers must study bad smells. However, in this filter, only
the paper title is used to manually define its relevance to
the theme. If the title was not sufficiently clear about its
relationship with the bad smell topic, then that paper was
discarded; (iv) Threshold Year: the same criterion as Second
Filter (see Threshold Year on Section 4.1.4) is applied, i.e.,
papers from 1990 to 2017.

We note here that 9,633 references were extracted and
62.15% (5,987) are duplicated references. In this step, we
identified 85 more papers relevant to the bad smells. Inter-
estingly, these 85 papers are from 60 new venues (see Table
2). Considering these new venues, the one that contributed
with more papers, contributed with only 5 new papers. Most
of the new venues (76.6%) contributed with only one paper.

We constructed the Final Database with 266 papers from
the Primary Database and with 85 papers from the New
Venues Database.

4.3 Conducting the Protocol and Quality Assessment
Our protocol execution was basically performed by the
first author, which has five years of experience in software
development, and also has experience in refactoring.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 9

TABLE 2
New venues from references of Primary Database.

Venues From References #
Information and Software Technology (IST) 5
Dagstuhl Seminar Proceedings (DSP) 4
Symposium on Software Metrics (METRICS) 4
Science of Computer Programming (SCP) 4
Journal Automated Software Engineering (JASE) 3
International Conference on Aspect-Oriented Software Development (AOSD) 2
Brazilian Symposium on Software Engineering (SBES) 2
International Conference on Quality Software (QSIC) 2
International Conference on Software Testing, Verification and Validation (ICST) 2
International Symposium on Empirical Software Engineering (ISESE) 2
Practical Aspects of Declarative Languages (PADL) 2
Symposium on Software Visualization (SoftVis) 2
Software Quality Journal 2
Electronic Comm. of the Eur. Assoc. of Software Science and Tech. (ECEASST) 2
Applied Computing Review (ACM ACR) 1
Annual Computer Security Applications Conference (ACSAC) 1
Australasian Computer Science Conference (ACSC) 1
Asia-Pacific Software Engineering Conference (APSEC) 1
Conf. of the Center for Advanced Studies on Collaborative Research (CASCON) 1
Electronic Notes in Theoretical Computer Science (ENTCS) 1
European Conference on Software Architecture (ECSA) 1
Workshop on Evolution of Large Scale Industrial Software Architectures (ELISA) 1
Extreme Programming and Agile Processes in Software Engineering (XP) 1
Frontiers of Software Maintenance (FoSM) 1
IBM Journal of Research and Development (JRD) 1
Innovations in Systems and Software Engineering (ISSE) 1
Intl. Conf. on Mobile Software Engineering and Systems (MOBILESoft) 1
International Conference on Software Engineering and Applications (ICSOFT-EA) 1
Intl. Conf. on Engineering of Complex Computer Systems (ICECCS) 1
Intl. Conf. on Evaluation and Assessment in Software Engineering (EASE) 1
International Symposium on Search Based Software Engineering (SSBSE) 1
International Symposium on Software Testing and Analysis (ISSTA) 1
International Workshop on Emerging Trends in Software Metrics (WETSoM) 1
International Workshop on Principles of Software Evolution (IWPSE) 1
Joint IWPSE-EVOL 1
Conference on Model Driven Engineering Languages and Systems (MODELS) 1
Conf. on Symp. on Opearting Systems Design & Implementation (OSDI) 1
Workshop on Partial Evaluation and Program Manipulation (PEPM) 1
Product Focused Software Process Improvement (PROFES) 1
Quality of Information and Communications Technology (QUATIC) 1
International Workshop on Managing Technical Debt (MTD) 1
International Workshop on Refactoring & Testing (RefTest) 1
International Symposium on Static Analysis (SAS) 1
Brazilian Symp. on Software Components, Architectures and Reuse (SBCARS) 1
Conference on Software Engineering and Knowledge Engineering (SEKE) 1
Workshop on Software Quality and Maintainability (SQM) 1
Intl. Conf. on Testing of Communicating Systems and Intl. Workshop on Formal
Approaches to Testing of Software (TestCom-FATES) 1

International Conference on World Wide Web (WWW) 1
Formal Aspects of Computing (FAC) 1
Institution of Engineering and Technology (IET Software) 1
International Journal of Applied Software Technology 1
Journal of Computer Information Systems 1
Journal of Object Technology (JOT) 1
Journal Web Engineering (JWE) 1
Knowledge and Information Systems (KAIS) 1
Computer Science and Statistics (Book Chapter) 1
Computer and Information Science (Book Chapter) 1
Software Evolution (Book Chapter) 1
Java in Academia and Research (Book Chapter) 1
Journal Advances in Computers (Book Chapter) 1

The criteria to manually filter papers related to the bad
smells was subject of an agreement analysis. Thus, we
randomly selected a sample of 130 papers from the initial
set of 29,077 (Note that we consider all papers before the
first filter of the protocol, see Fig. 1). In this phase, we do not
consider the papers extracted from references in the Primary
Database (see Subsection 4.2) because in the fourth filter, if
the title was not sufficiently clear regarding its relationship
with bad smells, then the paper was discarded. This sample
has, in equal proportion, papers that were included and
excluded from the Primary Database and we also included
in the sample the borderline papers that were included
and excluded from the Primary Database. Next, the first and

the last authors independently interpreted and applied the
inclusion and exclusion criteria to the sample of 130 papers.
At the end, we computed Kappa coefficient of agreement
[25] for our sample and we arrived at a value of value 0.92,
which is characterized as “substantial agreement" according
to Landis and Koch [26] and then we could rely on the
analysis of the first author only for the rest of the papers.

Moreover, the first and the last author examined the
divergences in inclusion/exclusion criteria of papers. In
general, we have only five conflicts (3.8% from 130 papers):
three false-positives (papers incorrectly included in the topic
of bad smells) and two false-negatives (papers incorrectly
excluded from the topic of bad smells). For false-positives,
actually only one paper was clearly classified incorrectly
([145]) and the others are borderline: one about refactoring
[27] and another about static code analysis [28]. In these
cases, one author classified the paper as bad smell and the
other as non bad smell. However, reading the paper [27],
we observe that it proposes a technique to detect refactoring
candidates by analyzing method traces and does not discuss
the theme of bad smell. Analogously, paper [28] does not
discuss the theme of bad smell but the proposed approach
could be used in the bad smell context. For false-negatives,
we had only two papers. These papers were classified as
bad smell by one author and as non bad smell by the
other author. However, reading the paper [29], we noted
that this identifies refactoring candidates with information
about code clones. The last paper is also about refactoring
[30] and proposes an approach to classify defects using
correction possibilities. This approach takes as input a base
of defect examples (bad-designed code, in our context it
is a bad smell) with correction (refactoring to fix this bad
designed code). At the end, this paper also concludes that
the technique to classify defects was able to identify design
anomalies (bad smells).

4.4 Analysis of the Final Database

In this section, we describe the relevant information that
should be extracted from the papers in the Final Database in
order to answer the research questions in Section 3.

Before describing the extracted fields, we observed that
from all papers in the Final Database, 227 (64.7%) are re-
lated only to the bad smell DUPLICATE CODE. The rest
of the papers, 124 (35.3%) study a set of bad smells (e.g.,
DUPLICATE CODE with LARGE CLASS) or study bad smells
different from DUPLICATE CODE (e.g., FEATURE ENVY). So,
we decided to distinguish between these two sets of papers.
We refer to these as Duplicate Code Group (DCG) and Other
Bad Smells Group (OBSG), respectively. In order to improve
the organization, the bibliographic references at the end of
the paper (Section References) are divided in three parts:
the first part lists the papers that do not meet the criteria
established by the protocol (e.g., short papers), but were
cited somewhere (e.g., Introduction); the second part lists
papers classified as DCG; and the third part lists the OBSG
papers.

Moreover, after a first analysis of selected papers, we
decided that those studies that investigate only the bad
smell DUPLICATED CODE (DCG) would be analyzed only in
the four research questions RQ1.1, RQ2.1, RQ4.1 and RQ5.1

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 10

TABLE 3
Data items extracted from each paper and related research questions.

Data Item Description TAs & RQs

D1 Bad Smell(s) List of bad smell(s) that the paper
study.

TA1: Which.
RQs: 1.1; 1.2.

D2 Year In which year was the study pub-
lished?

TA2: When.
RQs: 2.1; 2.2.

D3 Purpose(s) The main objective(s) of paper.
TA3: What.

RQs: 3.1; 3.2;
3.3; 3.4; 3.5.

D4 Tools What tools we used to handle the bad
smell(s)?

D5 Projects Which open source projects were ana-
lyzed?

D6 Author(s) The author(s) of the paper.
TA4: Who.
RQs: 4.1;
4.2; 4.3.

D7 Institution(s) The institution(s) of author(s): Univer-
sity, Company, etc.

D8 Country(s) The country of institution(s).

D9 Venue Where the paper was published (MSR,
ASE, etc.).

TA5: Where.
RQ: 5.1.

which are in four Thematic Areas, Which, When, Who and
Where, to highlight differences between studies on DUPLI-
CATED CODE and other smell types. This is due to the fact
that: 1) this is a very mature research topic that researchers
started to take into account before work by Fowler and Beck
[9] and work by Brown et al. [10]; 2) this field has some
peculiarities, which deserve a separate more specific study
and indeed there are surveys only about this topic (e.g.,
[6, 235]); 3) as already observed in a previous study [7], this
smell tends to be studied alone, whereas one of the goals of
our systematic literature review is to analyze whether and
why code smells are studied together; 4) we also observed
that the community working only on DUPLICATE CODE and
the community working on the other types of smells are
largely separated.

Table 3 describes the fields that were extracted from the
papers. This table also shows the research questions that
rely on each field. The fields are described in the following.

4.4.1 Bad Smell Information Field — D1
For each paper, we extracted the list of all kinds of bad smell
occurring in papers (D1). We manually inspected the fields
Title, Abstract, Keywords and some sections (e.g., Introduc-
tion, Conclusion). According to the definitions of bad smells
presented in each paper, we grouped the terminology in
unique terms. Therefore, from this inspection, we defined
the list of all bad smells considered in this work. Some
examples of this grouping process are presented in the next
paragraph.

According to Fowler and Beck [9], “LARGE CLASS occurs
when a class is trying to do too much, it often shows up as
too many instance variables". Brown et al. [10] defines “BLOB
CLASS is found in designs where one class monopolizes the pro-
cessing, and other classes primarily encapsulate data". According
to Lanza and Marinescu [31], “GOD CLASS refers to classes
that tend to centralize the intelligence of the system. Performs
too much work on its own, delegating only minor details to a set
of trivial classes and using the data from other classes". Certain
studies (e.g., [312, 371]) generalize the concepts and consider
that the LARGE CLASS is also known as BLOB, WINNEBAGO,

and/or GOD CLASS. On the other hand Mäntylä et al.
[371], reports that the LARGE CLASS can be detected and
analyzed from two points of view: 1) one point related to
the measurement of the class size, using traditional metrics
(e.g., Lines of Code — LOC)4; 2) another point related to
the lack of cohesion, i.e., classes that have responsibilities
with little or no relationship among them. Some papers
[317, 326, 331] study “LARGE CLASS" relating it to size (e.g.,
LOC) and complexity (e.g., McCabe Cyclomatic [32]). In this
case, the notion of complexity — referred to as “COMPLEX
CLASS" — is defined as: “a class that has (at least) one large
and complex method, in terms of cyclomatic complexity and LOC"
[317]. The literature also identifies a LARGE CLASS type
called BRAIN CLASS, defined as: “classes tend to be complex
and centralize the functionality of the system, but, differently from
GOD CLASSES, they do not use much data from foreign classes
and are slightly more cohesive" [378]. Some papers [299, 367]
even concurrently investigate the concept of LARGE and
BRAIN CLASS. In this survey, the term LARGE CLASS is
used to group the papers studying the concepts: BLOB,
WINNEBAGO, and/or GOD CLASS, even because we did
not find papers simultaneously studying a combination of
those bad smells. On the other hand, we found some papers
studying the following combination: COMPLEX CLASS vs.
LARGE CLASS; BRAIN CLASS vs. LARGE CLASS; LARGE
CLASS ONLY vs. LARGE CLASS. Therefore, our classification
considers the COMPLEX CLASS, BRAIN CLASS, and LARGE
CLASS ONLY bad smells separately from the LARGE CLASS.

4.4.2 Time Field — D2

For each paper, we also extracted some field to show how
research on the bad smells has attracted interest over time.
In this case, the year (D2) was extracted from the citation
files.

4.4.3 Empirical Study Related Fields — D3:D5

The aims, findings and implementation aspects covered in
the papers were extracted. More specifically, we manually
identified the purposes featuring of papers (D3), we also
catalogued the tools (D4) and projects (D5) used in exper-
imental setups. For reasons of availability, we catalogued
only the data of open source projects.

4.4.4 Identification and Place Fields — D6:D9

In the following, we describe how the identification field
was extracted. The author (D6) list aims at reporting the
papers of each author. So, it is necessary that each author
has a unique name in that list for each paper. Automatic ex-
traction of the authors’ names was not possible because they
can occur in different forms (e.g., “Godfrey, Michael W." [178]
and “Godfrey, M" [230]). Using last names and first name
initials was not possible either, because similar names can
exist (e.g., “Tung Nguyen" [117] and “Tien Nguyen" [151]). So,
author names were manually extracted inspecting each title
page. Moreover, from that inspection we also extracted other
fields such as, email, address, institution, and web page.
These elements allow checking if an author has different

4. In Taba et al. [317] this concept is referred as “LARGE CLASS" while
in our survey we will use the term “LARGE CLASS ONLY" [311].

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 11

name variations, to avoid inconsistencies/duplication in the
author database.

For each paper, we also extracted some fields to show
how research on bad smells has attracted interest among
places. In this case, the fields D7 (Institution) and D8 (Coun-
try) were extracted in the same manual inspection to extract
Authors. Finally, the field D9 (Venue) was also extracted
from the citation files.

4.5 Limitations and Threats to Validity

In order to filter the most relevant piece of work on bad
smells, we investigated papers published in a limited set of
venues: 14 Conferences and 6 Journals. In this set, not every
venue related to software engineering was included. Only
those that are widely considered relevant to our subject
were considered. Therefore, papers relevant to our subject
may have been published in other venues. To mitigate that
situation, we also investigated the bibliographic references
of the papers included in the Primary Database, snowballing
for other relevant papers.

The Final Database of our survey does not consider every
type of study (e.g., Books, Technical Report, Thesis). We
do not consider short papers or similar (e.g., papers from
the minor conference track). However, our assumption is
that if these studies are relevant, there is a high probability
that researchers will also publish them in a relevant confer-
ence/journal as a full paper.

Another limitation of this survey is that only the authors
participated in the selection and analysis of the papers, in
particular, the protocol execution was basically performed
by the first author and a subset of papers was checked by
the third author. However, our Kappa coefficient is charac-
terized as “substantial agreement" (see Subsection 4.3). From
this qualitative analysis, we observe that we can not control
100% of all factors. However, discrepancies occur at a very
small rate and would not affect the results.

We considered only those papers that explicitly inves-
tigate the bad smell issue (see First Filter in Subsection
4.1.4). For the sake of scope limitation, papers investigating
concepts related to bad smells were not included in this
survey if not explicitly concerned with studying bad smells,
for instance, studies on refactoring that do not refer to
bad smells when proposing refactoring actions were not
included.

Indeed, there is still a threat related to this study. The
process of paper filtering was based on manual reading of
major paper elements as necessary, and indeed, subject to
human error. However, the further analysis of the features
of the paper mitigates the possibility of false positives being
included, but still false negatives may exist.

5 RESULTS ON BAD SMELL TYPES (TA1: which)

The following subsections detail the observations on the
prevalence and diversity related to the different types of
bad smells.

5.1 RQ1.1: Are there bad smells more studied than
others (number of papers)? If so, is there any specific
reason? Are bad smells studied alone or together with
other bad smells (co-occurrences)?
Table 4 shows the entire set of bad smells studied in the Final
Database. The column Together shows the number of papers
where these bad smells co-occurred with other smell(s), the
column Alone shows the number of papers where the bad
smell was the only one studied, and the column Total is
the sum of both. We observe that the bad smells studied
the most are: (i) DUPLICATE CODE; (ii) LARGE CLASS; (iii)
FEATURE ENVY (iv) LONG METHOD, and (v) DATA CLASS.

TABLE 4. Bad smells sorted by number of papers in Final Database.

Bad Smells 1Together 2Alone Total
Duplicated Code 18 5.1% 227 64.7% 245 69.8%
Large Class (Blob Class, God Class) 79 22.5% 8 2.3% 87 24.8%
Feature Envy 46 13.1% 3 0.9% 49 14.0%
Long Method (God Method) 47 13.4% 1 0.3% 48 13.7%
Data Class 37 10.5% 0 0.0% 37 10.5%
Shotgun Surgery 32 9.1% 0 0.0% 32 9.1%
Refused Bequest 30 8.5% 0 0.0% 30 8.5%
Long Parameter List 26 7.4% 0 0.0% 26 7.4%
Spaghetti Code 23 6.6% 0 0.0% 23 6.6%
Message Chains Class 18 5.1% 0 0.0% 18 5.1%
Few Methods (Lazy Class, Small Class) 17 4.8% 0 0.0% 17 4.8%
Abstract Class (Speculative Generality) 16 4.6% 0 0.0% 16 4.6%
Function Class (Func. Decomposition) 16 4.6% 0 0.0% 16 4.6%
Data Clumps 15 4.3% 0 0.0% 15 4.3%
Complex Class Only 14 4.0% 0 0.0% 14 4.0%
Swiss Army Knife 14 4.0% 0 0.0% 14 4.0%
Field Public (CDSBP) 13 3.7% 0 0.0% 13 3.7%
Divergent Change 12 3.4% 0 0.0% 12 3.4%
Misplaced Class 12 3.4% 0 0.0% 12 3.4%
Brain Method 9 2.6% 0 0.0% 9 2.6%
Temporary variable, several purposes 9 2.6% 0 0.0% 9 2.6%
Dispersed (Extensive) Coupling 8 2.3% 0 0.0% 8 2.3%
Intensive Coupling 8 2.3% 0 0.0% 8 2.3%
AntiSingleton 7 2.0% 0 0.0% 7 2.0%
Interface Segregation Principle Violation 7 2.0% 0 0.0% 7 2.0%
Switch Statements 7 2.0% 0 0.0% 7 2.0%
Tradition Breaker 7 2.0% 0 0.0% 7 2.0%
Unit Test Smells 1 0.3% 6 1.7% 7 2.0%
Duplicated code in conditional branches 6 1.7% 0 0.0% 6 1.7%
Large Class Only 6 1.7% 0 0.0% 6 1.7%
Schizophrenic class 6 1.7% 0 0.0% 6 1.7%
Use interface instead of implementation 6 1.7% 0 0.0% 6 1.7%
Brain Class 5 1.4% 0 0.0% 5 1.4%
Middle Man 4 1.1% 1 0.3% 5 1.4%
Ambiguous Interface 4 1.1% 0 0.0% 4 1.1%
Inappropriate Intimacy 4 1.1% 0 0.0% 4 1.1%
Parallel Inheritance Hierarchies 4 1.1% 0 0.0% 4 1.1%
Component Concern Overload 3 0.9% 0 0.0% 3 0.9%
Connector Envy 3 0.9% 0 0.0% 3 0.9%
Duplicate Pointcut 3 0.9% 0 0.0% 3 0.9%
God Pointcut 3 0.9% 0 0.0% 3 0.9%
Lexicon Bad Smells 1 0.3% 2 0.6% 3 0.9%
Primitive Obsession 3 0.9% 0 0.0% 3 0.9%
Redundant Pointcut 3 0.9% 0 0.0% 3 0.9%
Scattered Parasitic Functionality 3 0.9% 0 0.0% 3 0.9%
Smells in Android (Specific) 1 0.3% 2 0.6% 3 0.9%
Type Check (State Check) 3 0.9% 0 0.0% 3 0.9%
Anonymous Pointcut 2 0.6% 0 0.0% 2 0.6%
Classes with Different Interfaces 2 0.6% 0 0.0% 2 0.6%
Composition Bloat 2 0.6% 0 0.0% 2 0.6%
Controller Class 2 0.6% 0 0.0% 2 0.6%
Cyclic Dependency 2 0.6% 0 0.0% 2 0.6%
Extraneous Connector 2 0.6% 0 0.0% 2 0.6%
Forced Join Point 2 0.6% 0 0.0% 2 0.6%
God Aspect 2 0.6% 0 0.0% 2 0.6%
Idle Pointcut 2 0.6% 0 0.0% 2 0.6%
Instanceof 2 0.6% 0 0.0% 2 0.6%
Lava Flow (Dead Code) 2 0.6% 0 0.0% 2 0.6%
Lazy Aspect 2 0.6% 0 0.0% 2 0.6%
Linguistic Antipatterns 0 0.0% 2 0.6% 2 0.6%
Low Cohesion Only 2 0.6% 0 0.0% 2 0.6%
Typecasts 2 0.6% 0 0.0% 2 0.6%
Wide Subsystem Interface 2 0.6% 0 0.0% 2 0.6%
Abstract Method Introduction 1 0.3% 0 0.0% 1 0.3%

continued on next column

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 12

continued from previous column
Bad Smells 1Together 2Alone Total

Annotation Bundle 0 0.0% 1 0.3% 1 0.3%
BaseClassKnowsDerivedClass 1 0.3% 0 0.0% 1 0.3%
BaseClassShouldBeAbstract 1 0.3% 0 0.0% 1 0.3%
Borrowed Pointcut 1 0.3% 0 0.0% 1 0.3%
Child Class 1 0.3% 0 0.0% 1 0.3%
Class Global Variable 1 0.3% 0 0.0% 1 0.3%
Class One Method 1 0.3% 0 0.0% 1 0.3%
Comments 1 0.3% 0 0.0% 1 0.3%
Distorted Hierarchy 1 0.3% 0 0.0% 1 0.3%
Empty catch blocks 1 0.3% 0 0.0% 1 0.3%
Extraneous Adjacent Connector 1 0.3% 0 0.0% 1 0.3%
Field Private 1 0.3% 0 0.0% 1 0.3%
God Package 1 0.3% 0 0.0% 1 0.3%
Has Children 1 0.3% 0 0.0% 1 0.3%
Incomplete Library Class 1 0.3% 0 0.0% 1 0.3%
Junk Material 1 0.3% 0 0.0% 1 0.3%
Many Attributes 1 0.3% 0 0.0% 1 0.3%
ManyFieldAttributesButNotComplex 1 0.3% 0 0.0% 1 0.3%
Method No Parameter 1 0.3% 0 0.0% 1 0.3%
Multiple Interface 1 0.3% 0 0.0% 1 0.3%
No Inheritance 1 0.3% 0 0.0% 1 0.3%
No Polymorphism 1 0.3% 0 0.0% 1 0.3%
Not Abstract 1 0.3% 0 0.0% 1 0.3%
Not Complex 1 0.3% 0 0.0% 1 0.3%
Obsolete Parameter 1 0.3% 0 0.0% 1 0.3%
One Child Class 1 0.3% 0 0.0% 1 0.3%
Parent Class Provides Protected 1 0.3% 0 0.0% 1 0.3%
Promiscuous Package 1 0.3% 0 0.0% 1 0.3%
Rare Overriding 1 0.3% 0 0.0% 1 0.3%
Simulation of multiple inheritance 1 0.3% 0 0.0% 1 0.3%
Smells in CSS (Specific - DSL) 0 0.0% 1 0.3% 1 0.3%
Smells in JavaScript (Specific - DSL) 0 0.0% 1 0.3% 1 0.3%
Smells in MVC Arq. (Specific) 0 0.0% 1 0.3% 1 0.3%
Smells in Puppet (Specific - DSL) 0 0.0% 1 0.3% 1 0.3%
Two Inheritance 1 0.3% 0 0.0% 1 0.3%
Unused Interface 1 0.3% 0 0.0% 1 0.3%
Useless Class 1 0.3% 0 0.0% 1 0.3%
Useless Field 1 0.3% 0 0.0% 1 0.3%
Useless Method 1 0.3% 0 0.0% 1 0.3%
Various Concerns 1 0.3% 0 0.0% 1 0.3%

1 Co-occurrence of bad smells on same paper (e.g.: Large Class and Feature Envy).
2 Single occurrence of bad smell (e.g.: DUPLICATE CODE occur alone on the paper).
DSL: Domain Specific Language.

Table 5 details how these smells co-occur with other
smells in the analyzed papers (e.g., LARGE CLASS co-
occurred with the LONG METHOD in 41 papers).

DUPLICATE CODE appears on the top of the list, present
in 69.8% of the papers. Also note that in 92.6% (227 out of
245) of these cases, DUPLICATE CODE is studied alone, co-
occurring with other bad smells only in 18 out of 245 papers,
mostly with those that can be detected with size metrics
(e.g., LARGE CLASS, LONG METHOD).

LARGE CLASS occurs in 87 (24.8%) papers. Unlike DU-
PLICATE CODE, in most papers LARGE CLASS co-occurs with
other bad smell(s). This fact may be explained by its intrinsic
characteristic (e.g., to be related to many responsibilities).
We observe that in papers studying LARGE CLASS: 1) 47.1%
also consider LONG METHOD; 2) 45.9% consider FEATURE
ENVY; 3) 42.5% consider DATA CLASS, and 4) 34.4% con-
sider SHOTGUN SURGERY, which are also the most studied
bad smells.

FEATURE ENVY occurs in 39.5% (49) of papers in OBSG, a
reduction of 43.6% compared to LARGE CLASS. Analogously
to LARGE CLASS, this smell also has rarely been stud-
ied alone. The smell FEATURE ENVY co-occurs with other
smells, in particular with LARGE CLASS (81.6%) and/or
LONG METHOD (63.2%). Moreover, the co-occurrence of
FEATURE ENVY and SHOTGUN SURGERY is also significant
(55.1%), which may indicate inter-relationship on code, as
we show in Section 7.

LONG METHOD occurs in 48 papers, almost the same
as FEATURE ENVY. This smell is studied alone just once.

As mentioned previously, this fact may be explained by
the high correlation of its occurrence with size/volume
metrics (e.g., LOC). The main bad smells co-occurring with
LONG METHOD are: 1) LARGE CLASS (85.4%), 2) FEATURE
ENVY (64.5%), 3) REFUSED BEQUEST (47.9%) and 4) LONG
PARAMETER LIST (43.7%).

DATA CLASS always co-occurs with LARGE CLASS and
this smell co-occurs with top-4 smells (DUPLICATE CODE,
LARGE CLASS, FEATURE ENVY, LONG METHOD). According
to Fowler and Beck [9], DATA CLASS are classes which only
contain fields and get and set methods for the fields. So, it
is natural that this smell co-occurs with others.

In general, we observe that the bad smells studied the
most are related to metrics of complexity, size, and volume.
Possibly, this may be related to the cognitive perception
as reported by Palomba et al. [326]: “smells related to com-
plex/long source code are generally perceived as an important
threat by developers". Table 4 also shows which bad smells
have received little attention (e.g., GOD PACKAGE, COM-
MENTS). Note that 70 out of the 104 (67.4%) analyzed bad
smells are studied by at most four papers, indicating that
most of the proposed bad smells may be lacking more
studies.

For the other part of this research question, on the rea-
sons for the higher prevalence of some smells, the analyzed
papers justify the choice of studied bad smells using the
following reasons, where we highlighted the papers cited in
the respective studies:

• the ability of available utility tools (e.g., InCode,
DECOR, iPlasma) to handle the bad smells [299, 300,
328] (LARGE CLASS, FEATURE ENVY, LONG METHOD,
DATA CLASS, REFUSED BEQUEST, SHOTGUN SURGERY,
LONG PARAMETER LIST, SPAGHETTI CODE);

• bad smells should occur with reasonable frequency
in the source code of the analyzed systems [317, 319,
325, 327, 328] (LARGE CLASS, FEATURE ENVY, LONG
METHOD, DATA CLASS, REFUSED BEQUEST, SHOTGUN
SURGERY, LONG PARAMETER LIST, SPAGHETTI CODE,
MESSAGE CHAINS, FEW METHODS);

• popularity and diffusion among practitioners. Some
papers consider only bad smells perceived as threats
by developers [326, 328, 372] (LARGE CLASS, FEATURE
ENVY, LONG METHOD, DATA CLASS, REFUSED BE-
QUEST, SHOTGUN SURGERY, LONG PARAMETER LIST,
SPAGHETTI CODE, FEW METHODS);

• representativeness of the respective design problems
[311, 319, 325, 326] (LARGE CLASS, FEATURE ENVY,
LONG METHOD, DATA CLASS, REFUSED BEQUEST,
LONG PARAMETER LIST, SPAGHETTI CODE, MESSAGE
CHAINS, FEW METHODS);

• the tradition and/or consolidation in the scientific lit-
erature (e.g., Fowler and Beck [9], Brown et al. [10])
[317, 319, 325, 327, 328] (LARGE CLASS, FEATURE
ENVY, LONG METHOD, DATA CLASS, REFUSED BE-
QUEST, SHOTGUN SURGERY, LONG PARAMETER LIST,
SPAGHETTI CODE, MESSAGE CHAINS, FEW METHODS);

• the inter-relation of some bad smells can also influ-
ence the set of bad smells analyzed in the papers,
e.g., studying LARGE CLASS greatly (90.8%) involves
considering other bad smells, such as LONG METHOD

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 13

TABLE 5
Top five bad smells — map of co-occurrence of smells.

Duplicated Code (18\245) Large Class (79\87) Feature Envy (46\49) Long Method (47\48) Data Class (37\37)

#
Pa

pe
rs

Large Class 13 Long Method 41 Large Class 40 Large Class 41 Large Class 37
Feature Envy 11 Feature Envy 40 Long Method 31 Feature Envy 31 Feature Envy 25
Long Method 11 Data Class 37 Shotgun Surgery 27 Refused Bequest 23 Shotgun Surgery 22
Data Class 7 Refused Bequest 30 Data Class 25 Long Parameter List 21 Long Method 18
Long Parameter List 7 Shotgun Surgery 30 Refused Bequest 20 Data Class 18 Refused Bequest 17
Refused Bequest 7 Long Parameter List 26 Data Clump 13 Shotgun Surgery 18 Data Clump 12
Shotgun Surgery 7 Spaghetti Code 23 Long Parameter List 13 Speculative Generality 14 Long Parameter List 9
Data Clump 6 Message Chains 17 Misplaced Class 12 Message Chains 13 Brain Method 8
Schizophrenic Class 5 Lazy Class 16 Divergent Change 11 Complex Class Only 12 Misplaced Class 8
Divergent Change 4 Func. Decomposition 16 Duplicated Code 11 Lazy Class 12 Duplicated Code 7

...

and/or DATA CLASS (see Table 4). However, this factor
is not explicitly mentioned in the literature;

• the conceptual simplicity of smells is another implicit
point to increase the interest, e.g., understanding DU-
PLICATE CODE relies on the concept of similarity. On
the other hand, understanding some other bad smells
may require the assimilation of various concepts, e.g.,
modern characterization of SPAGHETTI CODE is linked
to multiple structural features (e.g., inheritance, poly-
morphism) and semantics (e.g., names of classes and
methods suggesting procedural programming) [366].

We also investigated the factors that could explain why
DUPLICATE CODE is significantly more studied than other
types of smells (occurring in 69.8% of papers). In addi-
tion to previous factors, the other reasons of the interest
on this smell is that it is extremely versatile with several
applications. The following items support the assumption
of versatility:

• this type of smell can be found at intra- [69, 70, 74] and
inter- [73, 143, 175] software designs;

• this type of smell can be considered regardless of the
programming language [135, 144, 182, 261] and/or
paradigm [178, 215, 232, 245].

Given the peculiarity of this type of smell, the much
higher number of papers dealing with DUPLICATE CODE
with respect to other types of smells, and the fact that this
type of smell is almost always studied alone, unlike the
other types of smells, we conjecture that DUPLICATE CODE
is a particular case of bad smell which has been largely
studied in a different way than other smell types. In other
words, research on DUPLICATE CODE represents a topic on
its own which deserves a separate and different type of
literature review.

The second most recurring smell is LARGE CLASS and
according to Kim et al. [33], a refactoring process can in-
crease some measures (e.g., LOC) that are associated with
the LARGE CLASS bad smell as follows: “preferentially refac-
tored modules experience a higher rate of reduction in certain
complexity measures, but increase LOC and crosscutting changes
more than the rest of modules". This suggests that the LARGE
CLASS bad smell could be found even in refactored code,
indicating that this smell is not trivial to get rid of, thus
helping to explain the large interest in it.

Lessons About RQ1.1

We found that some bad smells are much more studied

in the literature than others. DUPLICATE CODE is the
bad smell studied the most, and interestingly, it is
studied alone. The other most prevalent ones (LARGE
CLASS, FEATURE ENVY, LONG METHOD) co-occur in
papers. Moreover, to a certain degree, the most studied
smells are likely to be related to size metrics, e.g.,
LARGE CLASS and LONG METHOD.

5.2 RQ1.2: Has research improved the original catalogs
of bad smells? If so, does this improvement occur by
the description of unpublished/new bad smells or by the
specialization of existing bad smells?

To answer this question, we tracked the cited references
of each OBSG paper searching for papers that defined bad
smells concepts.

Our procedure consisted of the following steps:

• For each bad smell in Table 4:
– For each OBSG paper studying the current bad smell:
∗ we recorded the cited references related to the

current bad smell (number of occurrences and
year).

– we labeled the most common and earliest reference
as the “origin" of the bad smell.

Table 6 summarizes the data from this procedure. It is
important to recognize that the listed bad smells were not
necessarily coined in the corresponding papers. The papers
represent the first studies on the corresponding smell in
the group OBSG. For instance, SPAGHETTI CODE dates back
at least since late seventies, but the work by Brown et al.
[10] was the first one in the OBSG group where this smell
occurred.

The bad smells by Brown et al. [10] are present in 27
papers (21.7%). Similarly, but to a greater extent, the bad
smells by Fowler and Beck [9] are present in 102 papers
(82.2%). Note that all papers that study the bad smells by
Brown et al. [10] also study some bad smells by Fowler and
Beck [9]. We also observed that out of the 40 anti-patterns
presented by Brown et al. [10], only a small fraction (12.5%)
has been studied (see Table 6). One possible explanation is
that most anti-patterns defined by Brown et al. [10] cannot
be considered as bad smells and are difficult to be detected
with automated analysis of code or from version control
repositories. For example, some of them relate to project
management issues, others to architectural bad decisions.
Only a third of those anti-patterns relate directly to code
and can be actually considered as code smells.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 14

TABLE 6
Origin of bad smells in OBSG papers.

Brown et al. [10] (1998): Spaghetti Code 22; Function Class (Functional
Decomposition) 16; Swiss Army Knife 14; Lava Flow (dead code) 2; Controller
Class 2.
Fowler and Beck [9] (1999): Large Class (Blob Class, God Class) 84; Feature
Envy 48; Long Method (God Method) 46; Data Class 36; Shotgun Surgery 31;
Refused Bequest 29; Long Parameter List 25; Duplicated Code 18; Message
Chains 18; Abstract Class (Speculative Generality) 15; Few Methods (Lazy
Class, Small Class) 15; Data Clumps 14; Field Public (Class Data Should
Be Private - CDSBP) 13; Divergent Change 12; Misplaced Class 11; Tempo-
rary Variable 8; AntiSingleton 7; Switch Statements 7; Duplicated code in
conditional branches 5; Middle Man 5; Inappropriate Intimacy 4; Parallel
Inheritance Hierarchies 4; Primitive Obsession 3; Alternative Classes with
Different Interfaces 2; Comments 1; Incomplete Library Class 1.
Deursen et al. [34] (2001): Unit Test Smells 7.
Demeyer et al. [35] (2002): Type Check (State Check) 3.
van Emden and Moonen [379] (2002): Instanceof 2; Typecasts 2.
Hannemann and Kiczales [36] (2002): Cyclic Dependency 2.
Marinescu [37] (2002): Brain Class 5.
Martin [38] (2003): Interface Segregation Principle Violation (ISPV) 6; Use
interface instead of implementation 5; Wide Subsystem Interface 2; God
Package 1.
Mäntylä et al. [371] (2004): Complex Class Only 13; Large Class Only 6.
Monteiro and Fernandes [39] (2005): Lazy Aspect 2.
Lanza and Marinescu [31] (2006): Brain Method 9; Dispersed (Extensive)
Coupling 8; Intensive Coupling 8; Tradition Breaker 7.
Piveta et al. [40] (2006): Anonymous Pointcut 2.
Srivisut and Muenchaisri [41] (2007): Duplicate Pointcut 3; Abstract Method
Introduction 1; Borrowed Pointcut 1; Junk Material 1; Various Concerns 1.
Trifu and Reupke [42] (2007): Schizophrenic Class 6.
Abebe et al. [43] (2009): Lexicon Bad Smells 3.
Garcia et al. [44] (2009): Ambiguous Interface 4; Component Concern Over-
load 3; Connector Envy 3; Scattered Parasitic Functionality 3; Extraneous
Connector 2; Extraneous Adjacent Connector 1.
Khomh et al. [311] (2009): Low Cohesion Only 2; Class Global Variable 1;
Child Class 1; Class One Method 1; Field Private 1; Has Children 1; Many
Attributes 1; Method No Parameter 1; Multiple Interface 1; No Inheritance
1; No Polymorphism 1; Not Abstract 1; Not Complex 1; One Child Class 1;
Parent Class Provides Protected 1; Rare Overriding 1; Two Inheritance 1.
Macia Bertran et al. [294] (2011): God Pointcut 3; Redundant Pointcut 3;
Composition Bloat 2; Forced Join Point 2; God Aspect 2; Idle Pointcut 2.
Liu et al. [296] (2012): Useless Class 1; Useless Field 1; Useless Method 1.
Yamashita and Moonen [313] (2012): Simulation of multiple inheritance 1.
Arnaoudova et al. [398] (2013): Linguistic Antipatterns 2.
Fard and Mesbah [355] (2013): Empty Catch Blocks 1.
Linares-Vásquez et al. [314] (2014): BaseClassKnowsDerivedClass 1; Base-
ClassShouldBeAbstract 1; ManyFieldAttributesButNotComplex 1.
Oizumi et al. [320] (2014): Unused Interface 1.

The number at the end of each smell denotes the number of papers that study
this smell.

Fowler and Beck [9] describe 22 bad smells; however, the
analysis conducted in the references reveals that other bad
smells are also credited to Fowler and Beck. This happens
because, there is an online catalog that extends the book, and
beside the bad smells, Fowler and Beck also present some
development conventions considered to be good practice,
and the violation of these practices are considered as bad
smells by some studies. For example, CLASS DATA SHOULD
BE PRIVATE (CDSBP) is a bad smell defined as: “a class
exposing its attributes" [326], also known as FIELD PUBLIC
[311]. Tufano et al. [360] credit this bad smell to Fowler and
Beck. However, Fowler and Beck do not explicitly declare
this bad smell, but present the concept that the public fields
should be converted to private fields and advisor methods
should be created (Encapsulate Field [9]). Therefore, Fowler
and Beck implicitly declare this “bad smell" and hence some
researchers credit its origin to them. The same happens with
other bad smells from Table 6 (e.g., ANTISINGLETON [319],
MISPLACED CLASS [345]).

We also found that the combination of bad smells is a
strategy to justify the description of new bad smells. For

example, the smell “DUPLICATE CODE IN CONDITIONAL
BRANCHES", defined as: “same or similar code structure re-
peated within the branches of a conditional statement" [322],
is the combination of SWITCH STATEMENTS [9] and DU-
PLICATE CODE [9]. The statement “The problem with switch
statements is essentially that of duplication" [9] confirms our
observation.

The interpretation of bad smell subjective definitions
also has led to new bad smell descriptions. This can be
found in Mäntylä et al. [371], where the authors show
that LARGE CLASS can be interpreted using two points of
view (Size — LARGE CLASS ONLY [311] and Complexity —
COMPLEX CLASS [317]). The same happens with other bad
smells (e.g., MANY ATTRIBUTES [311], BRAIN CLASS [324],
CLASS ONE METHOD [335]).

The literature also describes original bad smells, i.e.,
those that appear from the systematic observation or ne-
cessity. One example of original bad smells was proposed
by Abebe et al. [43], who define a “LEXICON BAD SMELL”
as: “a concept similar to that of a “code smell” and it refers to
potential lexicon construction problems, which could be solved
by means of refactoring (typically renaming) actions". Similarly,
other bad smells are also considered original (e.g., COMPO-
SITION BLOAT [294], FORCED JOIN POINT [294], LINGUISTIC
ANTIPATTERNS [398]).

We also found a set of bad smells that only exist in a
specific context. In terms of context, we can identify three
categories:

Architectural/design pattern: the smells are pro-
posed/defined based on the corresponding architec-
ture/pattern. Aniche et al. [409] observe that the definition
of classical smells does not consider the architecture of the
system, limiting their use (e.g., “In MVC, Data Access Object
(DAO) classes are responsible for dealing with the communica-
tion towards the databases. These classes, besides not containing
complex and long methods (traditional smells) should also limit
the complexity of SQL queries residing in them" [409]). Thus,
Aniche et al. [409] provide a catalogue of six smells that
are specific to web systems that rely on the MVC pattern.
Similarly, Arcelli Fontana et al. [45] shows that some false
positive smells can be related to design patterns (e.g., false
positives of FEATURE ENVY are related to visitor design
pattern).

Environmental: In this category, the runtime environ-
ment is considered to propose the catalogue of smells.
Hecht et al. [416], proposes an Android bad smell (IGS -
Internal Getter/Setter) that occurs when a field is accessed,
within the declaring class, through a getter/setter. This
indirect access to the field may decrease the performance.
This strategy is a common practice in languages like Java
because compilers or virtual machines can inline the access.
However, in Android, the usage of a trivial getter/setter is
often converted into a virtual method call, which makes the
operation at least three times slower than a direct access.
Other examples can be found in [368, 411, 416].

Domain Specific Language (DSL): we found some
smells that occur in specific languages, especially in DSLs
[46] and do not generalize for general-purpose languages.
(e.g., CSS [410], JavaScript [412], Puppet [415]).

The traditional bad smells (Fowler and Beck [9] and
Brown et al. [10]) are those that have received more attention

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 15

from researchers, although there exists an important body of
knowledge enhancing the original catalogs.

Lessons About RQ1.2

We found that researchers have been suggesting new
interpretations for the definitions of existing bad smells
or even given synonyms for existing bad smells. This is
an indication of fragmentation of definitions due to the
lack of systematic or/and formal taxonomies for code
smells.

6 RESULTS ON INTEREST ON SMELLS OVER TIME
(TA2: when)
This area contains questions on how research on bad smells
has attracted interest over time.

6.1 RQ2.1: Has the interest in bad smells evolved over
the years?

Fig. 2. Distribution of number of papers over time, organized by groups.

Fig. 2 shows the evolution over the years of the num-
ber of papers studying DUPLICATE CODE only (DCG) and
the other smells (OBSG), respectively. Work on DUPLICATE
CODE started 10 years earlier (even earlier than work by
Fowler and Beck [9] and work by Brown et al. [10]). In the
Final Database DUPLICATE CODE is the oldest bad smell. This
topic also experienced a higher rate of growth in the number
of papers earlier (around 2004), while the other bad smells
started receiving more attention only since 2010. This might
in part explain why DUPLICATE CODE tend to be studied
mainly alone and why the number of papers on this type of
smell is much larger than other smell types. These findings
again suggest that DUPLICATE CODE can be considered as a
topic on its own.

To complement the analysis of Fig. 2, we considered the
slope of the regression line for the number of papers in a
20-year period. We considered two groups: 1) all papers
in the selected venues, and 2) only papers on bad smells
selected for this review. In order to compare the two slopes,
the number of papers were normalized by the maximum
values of each group, respectively. We found that the slope
β for all papers is 0.033 (Adj.R2 = 0.906), where β=0.039
after 2004, and β=0.031 before 2005, i.e., the growth rate
is almost the same in both decades. On the other hand,
we found that the slope β for papers on smells only is
0.052 (Adj.R2 = 0.890), where β=0.072 after 2004, and

β=0.018 before 2005, indicating that after 2004 the bad smells
experienced a much higher growth rate than before and
higher than other areas on average.

Analytically, between 1992 and 2003, the Final Database
shows only 22 papers and most of them (90.9%) were
dedicated to the study of DUPLICATE CODE (see Fig. 2). In
2004, the number of publications significantly increased. In
this year, the DUPLICATE CODE issue has matured because
of the steady number of papers after that year, as shown in
Fig. 2. We also observe that in this year the books by Brown
et al. [10] and Fowler and Beck [9], published in 1998 and
1999, respectively, started to have an impact on the scientific
community.

Until the end of 2010, most of the papers (79.0%) studied
only DUPLICATE CODE. Between 2011 and 2012, the number
of papers on DCG and OBSG remained practically stable
(see Fig. 2). The year 2013 presented the largest number of
publications on bad smells. Also, in this year the number
of papers in the DCG and OBSG groups was equivalent. In
2014, the total number of papers decreased. This reduction
was more significant for the OBSG papers. We also observed
a decreasing trend of the interest in DUPLICATE CODE in the
last years, with a number of papers lower with respect to the
other types of smells (e.g., LARGE CLASS, LONG METHOD),
whose interest still remains high after 2014.

Considering only OBSG papers, Table 7 shows that the
interest in the bad smells studied the most (in more than
seven papers) is proportionally distributed over the past
decades. While these bad smells represent 21.1%, 22 out of
a total of 104 bad smells, they are studied in 82.2%, 102 out
of 124 papers of the OBSG group. This means that this list
is quite representative of the total number of OBSG papers,
but more than 78.9% of the different kinds of studied bad
smells are not covered in this list, suggesting that for those
bad smells more studies may still be required. Until the end
of 2003, we did not find publications on the most recurring
smells. Thus, these years are omitted from Table 7.

As discussed in RQ1.1, LARGE CLASS is the bad smell
studied the most in the OBSG papers (see Table 4). Our
dataset shows that the first papers about this bad smell date
back to 2004 (see Table 7). Until 2007, the interest in this
smell remained practically stable. Between 2008 and 2013,
the interest marked a sensible growth. The promising results
of earlier studies may have possibly boosted the interest
since 2008. We also observed that the interest in LARGE
CLASS had a strong growth between 2010 and 2013 and a
strong decline in 2014.

This observation is also valid for the bad smell LONG
METHOD, because this smell heavily co-occurs with LARGE
CLASS (see Table 5). For FEATURE ENVY, the interest grows
until 2013 and remains stable for the next two years.

In Table 7, we also observe that the interest in some bad
smells (e.g., SHOTGUN SURGERY, REFUSED BEQUEST, LONG
PARAMETER LIST, ...) is not continuous over the years and
is restricted to small ranges (e.g., 2006 — 2011). Considering
only full years (exception of 2017), we can also observe that
the last five years are the most representative in terms of
variety of bad smells and quantity of studies.

IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 16

TABLE 7
OBSG papers distributed over time and bad smells.

````````̀Bad Smells
Years 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 Total

Large Class 3 (3.4%) 3 (3.4%) 4 (4.6%) 1 (1.1%) 3 (3.4%) 3 (3.4%) 6 (6.9%) 7 (8.0%) 10 (11.5%) 16 (18.4%) 8 (9.2%) 11 (12.6%) 12 (13.8%) 87 (70%)
Feature Envy 1 (2.0%) 3 (6.1%) 1 (2.0%) 1 (2.0%) 1 (2.0%) 4 (8.2%) 3 (6.1%) 5 (10.2%) 8 (16.3%) 8 (16.3%) 8 (16.3%) 6 (12.2%) 49 (40%)
Long Method 1 (2.1%) 1 (2.1%) 2 (4.2%) 1 (2.1%) 1 (2.1%) 1 (2.1%) 3 (6.3%) 1 (2.1%) 7 (14.6%) 11 (22.9%) 6 (12.5%) 5 (10.4%) 8 (16.7%) 48 (39%)

Data Class 2 (5.4%) 1 (2.7%) 2 (5.4%) 1 (2.7%) 1 (2.7%) 1 (2.7%) 2 (5.4%) 2 (5.4%) 7 (18.9%) 5 (13.5%) 6 (16.2%) 7 (18.9%) 37 (30%)
Shotgun Surgery 1 (3.1%) 2 (6.3%) 1 (3.1%) 1 (3.1%) 1 (3.1%) 3 (9.4%) 7 (21.9%) 4 (12.5%) 8 (25.0%) 4 (12.5%) 32 (26%)
Refused Bequest 1 (3.3%) 2 (6.7%) 1 (3.3%) 1 (3.3%) 1 (3.3%) 4 (13.3%) 8 (26.7%) 4 (13.3%) 4 (13.3%) 4 (13.3%) 30 (24%)

Long Parameter List 1 (3.8%) 1 (3.8%) 1 (3.8%) 1 (3.8%) 1 (3.8%) 7 (26.9%) 6 (23.1%) 4 (15.4%) 1 (3.8%) 3 (11.5%) 26 (21%)
Spaghetti Code 1 (4.3%) 2 (8.7%) 3 (13.0%) 3 (13.0%) 5 (21.7%) 4 (17.4%) 3 (13.0%) 2 (8.7%) 23 (19%)

Message Chains Class 1 (5.6%) 1 (5.6%) 1 (5.6%) 1 (5.6%) 3 (16.7%) 3 (16.7%) 2 (11.1%) 4 (22.2%) 2 (11.1%) 18 (15%)
Lazy Class 1 (5.9%) 1 (5.9%) 1 (5.9%) 1 (5.9%) 4 (23.5%) 2 (11.8%) 4 (23.5%) 1 (5.9%) 2 (11.8%) 17 (14%)

Speculative Generality 1 (0.0%) 1 (6.3%) 1 (12.5%) 3 (6.3%) 4 (12.5%) 3 (18.8%) 1 (12.5%) 2 (12.5%) 16 (13%)
Func. Decomposition 1 (0.0%) 1 (6.3%) 2 (6.3%) 3 (0.0%) 1 (18.8%) 2 (25.0%) 3 (18.8%) 2 (6.3%) 1 (6.3%) 16 (13%)

Data Clump 1 (6.7%) 1 (6.7%) 1 (6.7%) 2 (13.3%) 4 (26.7%) 2 (13.3%) 3 (20.0%) 1 (6.7%) 15 (12%)
Swiss Army Knife 1 (7.1%) 2 (14.3%) 1 (7.1%) 3 (21.4%) 3 (21.4%) 1 (7.1%) 1 (7.1%) 2 (14.3%) 14 (11%)

Complex Class Only 1 (7.1%) 2 (14.3%) 3 (21.4%) 2 (14.3%) 3 (21.4%) 3 (21.4%) 14 (11%)
Field Public (CDSBP) 1 (0.0%) 2 (7.7%) 4 (15.4%) 2 (7.7%) 2 (0.0%) 2 (15.4%) 13 (10%)

Misplaced Class 1 (8.3%) 3 (25.0%) 5 (41.7%) 1 (8.3%) 2 (16.7%) 12 (10%)
Divergent Change 1 (0.0%) 1 (0.0%) 3 (16.7%) 1 (33.3%) 1 (16.7%) 4 (16.7%) 1 (8.3%) 12 (10%)

Temporary Variable 1 (0.0%) 1 (0.0%) 1 (0.0%) 4 (22.2%) 1 (11.1%) 1 (11.1%) 9 (7%)
Brain Method 1 (0.0%) 1 (11.1%) 1 (44.4%) 1 (11.1%) 3 (0.0%) 2 (22.2%) 9 (7%)

Intensive Coupling 1 (12.5%) 1 (12.5%) 2 (25.0%) 1 (12.5%) 2 (25.0%) 1 (12.5%) 8 (6%)
Extensive Coupling 1 (12.5%) 2 (12.5%) 1 (12.5%) 2 (50.0%) 2 (25.0%) 8 (6%)

Lessons About RQ2.1

The number of papers on DUPLICATE CODE had in-
creased from 2004 to 2014. From 1992 to 2003 few
studies were conducted and an important decrease can
be observed since 2015.

The first paper concerned with other types of smells
dates back 2002 and papers about these smells expe-
rienced a consistent increase after 2010, registering a
peak in 2013.

We observe that most of the earliest smells in the
OBSG group (e.g., Brown et al. [10]) have not received
much attention, and there seems to be no trend toward
change.

6.2 RQ2.2: Has the research community interested in
bad smells evolved over the years?

RQ2.1 reported on the number of papers over the years
for the different kinds of bad smells. This question comple-
ments RQ2.1 from the point of view of number of authors.
However, in this research question we only consider OBSG
papers because this is our main focus.

Fig. 3 presents the distribution of the number of au-
thors that published papers on bad smells, between 2002
and 2017. In this case, all papers in the OBSG group are
considered. An author is counted once for each year he/she
has published a paper.

Moreover, Fig. 4 shows the cumulative number of au-
thors between 2002 and April 2017. Here, each author is
counted only once in the year of his/her oldest paper and
each year adds to the cumulative number of authors of the
previous year the number of newcomer authors publishing
that year.

Fig. 3. Absolute number of authors over time (OBSG papers).

In our systematic literature review, we collected the pa-
pers published between the years 1990 and 2017. However,
until the end of the year of 2001, we did not find publica-
tions in the OBSG group. Thus, these years are omitted from
Fig. 3 and Fig. 4.

Until the end of 2009, the absolute number of authors
was relatively low and remained virtually constant (see
Fig. 3). On the other hand, the cumulative number of
authors had grown moderately and, in this period, there
were only 48 distinct researchers publishing papers about
bad smells (see Fig. 4).

Between 2010 and 2013, the number (absolute and cumu-
lative) of authors significantly increased (see Fig. 3 and 4).
We observe that in these years, the studies by Brown et al.
[10] and Fowler and Beck [9], published respectively in 1998
and 1999, started to gain more visibility. Thus, a new set of
smells started to be studied (see Table 7).

In 2014 and 2015, the absolute number of authors de-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 17

Fig. 4. Cumulative number of distinct authors over time (OBSG papers).

creased (see Fig. 3). However, the cumulative number of
authors keeps growing steadily (see Fig. 4) which means
that in this period, new authors are still being attracted
by this research topic. This is confirmed the following year
(2016), where both figures show an increase on the absolute
and cumulative numbers. Interestingly, in 2016 the number
of different authors is the highest one, but the number of
papers did not increase proportionally, indicating that there
were more authors per paper in this year, evidencing an
increase in the mean size of groups.

Lessons About RQ2.2

Bad smell is a growing research topic that has been
continuously attracting interest by new researchers
exploring several different perspectives. Generally, we
observe that this research topic became quite popular
and it is gaining more visibility in the scientific com-
munity.

7 RESULTS ON AIMS, FINDINGS AND SETTINGS
(TA3: what)
This section presents answers to questions related to the
aims (main goals of papers) and the experimental setting
(tools and subject systems used to evaluate the research). As
explained earlier, DUPLICATE CODE is not considered. We
only consider papers where DUPLICATE CODE is studied
together with other smells.

7.1 RQ3.1: Which are the most commonly targeted
aims?

In order to answer this research question, we manually
identified the purposes of studies. These aims were not pre-
defined, but they emerged from the qualitative analysis of
papers, where we coded the sentences containing the aims
of the papers. We describe the thirteen different purposes
identified:

1) Detection: the goal is to detect bad smells in source
code. Generally, these papers also compare the new
detection technique with existing approaches.

2) Inter-relationship: the goal is to show how bad smells
are related to each other.

Fig. 5. Aims of OBSG papers.

3) Qualitative characterization: the goal is to comprehend
the underlying characteristics of bad smells. Gener-
ally, this kind of work tries to map the subjective
human perception of bad smells to more objective
“rules/standards", sometimes proposing new types of
bad smells.

4) Refactoring: the goal is to apply and/or create tech-
niques to remove/correct bad smells. Generally, these
studies involve a detection step, as secondary goal.

5) Impact: the goal is to understand how bad smells
impact on attributes related to maintenance, quality
and/or evolution of software. Sometimes, they employ
refactoring techniques to quantify the impact of bad
smells on attributes related to maintenance.

6) Prevention: the goal is to build and/or apply tech-
niques to prevent the introduction of bad smells.

7) Smell evolution: the goal is to understand how bad
smells evolve over time and how factors related to
software maintenance evolve accordingly. Generally,
historical smell evolution is based on the analysis and
comparison of several versions of source code from
the project repository. We considered in this category
descriptive studies. If the aim is to predict the future,
we classify the paper in the following distinct category.

8) Prediction: the goal is to predict the future behavior
of factors related to maintenance, e.g., predict software
maintainability based on bad smell information.

9) Surveys/reviews: the goal is to compile a summary of
the main facts and findings related to bad smells. The
compilation can be made based on questionnaires an-
swered by professionals or even checking the scientific
literature.

10) Tools: the goal is to propose tools/techniques to docu-
ment and visualize the types of bad smells.

11) Intra-smell prioritization: given a set of code entities
with the same type of bad smell (e.g., DATA CLASS), the



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 18

goal is to identify the most appropriate order of entities
to analyze/refactor.

12) Inter-smell prioritization: given a set of different types
of bad smells (e.g., SHOTGUN SURGERY, FEATURE
ENVY), the goal is to investigate which set should be
the subject of structuring/analysis. Therefore, given a
set of different types of smells, they identify which type
of bad smell should be refactored first.

13) Source code prioritization: it is a mix between Intra- and
Inter-smell prioritization. In other words, given a set of
different types of bad smells and a subset of infected
code, for each kind of bad smell, the goal is to identify
which code elements should be subject to maintenance.

Fig. 5 proportionally presents the aims found in the
OBSG papers. In the first position (30.7%), we have papers
proposing tools and techniques intended to detect different
types of bad smells. This category accounts for every pa-
per that proposes a tool/technique to identify bad smells,
regardless of the strategy (e.g., Metrics-based [339], Parallel
Evolutionary Algorithms [340], SVM-based [364], Bayesian
approach [373, 408]), or the development environment. Most
Detection papers (96.7%) are focused on detecting bad smells
based on the analysis of the source code.

One remark is that the Detection aim is highly related
to the Impact aim, because papers that aim at analyzing the
impact of bad smells, typically, have first to detect them.
Indeed, we observe that the inconclusive knowledge about
the negative impact of bad smells can be partially attributed
to tools/techniques that detect them, explaining the large
number of studies also found in these categories. Due to the
fact that there is a high variety of tools, and discrepancies
on what those tools find, discrepant results in different
studies using different tools cannot be discarded; as already
observed by Pate et al. [6]: “there are contradictions among the
reported findings". Moreover, the inherent difficulties to have
bad smell detectors with high precision and recall may also
explain part of the large interest.

In the second position (24.3%), we found studies focused
on verifying how the occurrence of bad smells impacts
several factors (e.g., Quality [299], Change-proneness [311],
Fault-proneness [331], Defect-proneness [367]) related to
software maintenance/evolution. This may be explained by
the necessity of answering if tackling bad smells actually
brings relevant benefits. Moreover, the number of factors
and their possible combinations with distinct smells are
high, thus requiring different studies.

The fact that the study of Impact has been receiving
so much attention until now suggests that there are still
no comprehensive and sufficient evidence on the extent
of negative effects associated with bad smells on software
maintenance and evolution. For instance, Yamashita [324]
states that “Deligiannis et al. (2003) reported that GOD CLASS
indicated problems, while Abbes et al. (2011) concluded that a
GOD CLASS in isolation is not harmful".

As shown in Fig. 5, Qualitative Characterization and Refac-
toring are in third (11.4%) and fourth (9.3%) positions, re-
spectively. Refactoring papers are those providing strategies
to code refactoring and removal of undesirable effects of bad
smells (e.g., [391, 392, 393]). Papers classified as Qualitative
Characterization are those aimed at comprehending the bad
smell mechanisms. They generally transcribe the subjective

human perception into objective rules and sometimes pro-
pose new bad smells (e.g., [312, 326, 371]).

The other categories are less prevalent, including no
more than four papers per category. Moreover, there are
aims still lacking studies, for example, smell priorization or
prevention. These categories suggests research opportuni-
ties. However, to explore these new areas, some challenges
must be overcome (e.g., bad smell detectors which have
high precision and recall independently of the analyzed
project).

In our classification, some papers (19) were classified
in more than one category, as they were considered as
having multiple aims. The paper by Hall et al. [357] is an
example: the authors develop a tool to detect five bad smells
(DATA CLUMPS, SWITCH STATEMENTS, SPECULATIVE GEN-
ERALITY, MESSAGE CHAINS, and MIDDLE MAN) and also
quantify their effects on software faults.

Lessons About RQ3.1

We identified thirteen categories of aims and some of
them are more frequent than others. The top-2 aims
are Detection and Impact papers that aim at analyz-
ing the impact of bad smells, typically, have first to
detect them. Moreover, the reports on the impact of
bad smells sometimes contradict each other. This may
explain the large interest on assessing the impact of
bad smells. Some aims still lack studies (e.g., Smell
Prevention). Thus, we identified research opportunities
by quantifying the aims.

7.2 RQ3.2: What are the main reported findings?

To extract the main findings from OBSG papers, first we
manually read the content of the paper abstract. If not
enough, then we examined the conclusions. Furthermore,
when necessary, we read the other parts of the paper
to find their research questions and respective answers.
For all OBSG papers, we have stated their main findings.
Next, we analyzed those findings using thematic analysis
[47], a technique for identifying and recording patterns
(or “themes”) within a collection of documents. Thematic
analysis involves the following steps: 1) initial reading of
the findings, 2) generating initial codes for each finding,
3) searching for themes among codes, 4) reviewing the
themes to find opportunities for merging, and 5) defining
and naming the final themes. These steps were performed
independently by one author of the paper and revised by
another author until reaching a consensus.

During the thematic analysis, we observed that certain
terms are used inconsistently. According to Tian [48], the
terms defect, failure, fault, error have specific meaning. How-
ever, we concluded that these terms have been used as
synonyms (bug [317], fault [331], error [348], defect [378]).
Our conclusion relies on the fact that their datasets are based
on issue-tracking systems (e.g., Bugzilla), and thus refers
to the same entity. In this paper, we will standardize those
names using the term bug.

We also observed that similar findings were written in
different ways, e.g., Olbrich et al. [378] reports that smelly
entities contain more defects than other kinds of entities



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 19

TABLE 8
Main findings (OBSG papers).

ID Type Theme Convergence References

01 Maintenance Adaptive activities are frequently used to remove smells [376]◦

02 Maintenance Refactoring contributes to alleviate or remove of smells X [381]◦ [391]∗ [393]∗

03 Maintenance Refactoring is not related to the quality indicators (e.g., metrics) [308]◦

04 Maintenance Refactoring is not frequently used to remove smells X [308]◦ [369]◦ [376]◦

05 Maintenance Refactoring can introduce smells X [360]◦ [388]∗

06 Maintenance Refactoring can move smells [387]∗

07 Maintenance Refactoring arbitrary smells does not reduce bug-proneness [357]•

08 Maintenance Refactoring smelly code does not reduce maintenance effort [323]◦

09 Maintenance Low level refactoring (e.g., narrowly-scoped changes) does not remove architecturally-relevant smells [318]◦

10 Maintenance Refactoring effort is related to smell refactoring sequence [296]•

11 Maintenance Smells are frequently ignored in favor of fixing bugs [321]◦

12 Maintenance Entities statically related to smelly code are refactoring-prone [334]◦

13 Change-prone Entities statically related to smelly and design-patterned entities are change-prone [332]◦

14 Change-prone Smelly entities are change-prone X [311]◦ [319]• [325]◦ [378]◦ [380]◦

15 Change-prone Some smells are more change-prone than other smells X [311]◦ [319]• [325]◦

16 Change-prone Smelly design model entities are change-prone [370]◦

17 Bug-prone Entities having co-changing dependencies with smelly entities are bug-prone [331]◦

18 Bug-prone Smelly design models entities are bug-prone [370]◦

19 Bug-prone Smelly entities are bug-prone X
[295]◦ [317]◦ [319]• [334]◦
[348]◦ [357]• [378]◦ [412]∗

20 Bug-prone Entities participating in static dependency or co-change with smelly entities are bug-prone X [331]◦ [334]◦ [367]◦

21 Positive Aspect Some instances of smells are the best solution [387]∗

22 Positive Aspect Some kinds of smells or some smell instances are less bug-prone X [295]◦ [357]•

23 Positive Aspect Entities participating in static relationships between smells and design patterns are less bug-prone than other smell classes [332]◦

24 Association Automatically-detected smells are not correlated with architectural problems [315]•

25 Association Smelly entities are associated with architectural problems [318]◦

26 Association Smells are associated with the increment of maintenance effort (e.g., editing, navigating) X [324]• [330]◦

27 Association Some smells are associated with specific design pattern [332]◦

28 Association Some smells are associated with test smells [351]•

29 Association Some smells are correlated with metrics X [299]◦ [312]◦ [314]◦ [371]◦

30 Association Some smells are not correlated with metrics X [312]◦ [371]◦

31 Association The number of smells impact on the values of metrics [299]◦

32 Association Smells have a negative impact on the developers’ performance (e.g., time) X [304]◦ [382]•

33 Association The influence of smells on maintainability is relatively small X [324]• [328]•

34 Association The intensity of smells may or may not represent a problem [326]◦

35 Association The kind of smell impacts on the types of changes [325]◦

36 Association Some smells could be domain-dependent X [299]◦ [314]◦ [383]◦

37 Association Some maintainability factors (e.g., design consistency) have relation to the definitions of smells [313]◦

38 Association Smells have a negative impact on the energy consumption [411]◦

39 Association Smells have a negative impact on the memory performance [416]◦

40 Association File size impacts reading and searching activities more than smells [330]◦

41 Perception Smelly entities perception is influenced by professional position (e.g., lead developer) [312]◦

42 Perception Smelly entities are perceived as poor practices [401]∗

43 Perception Some smells are not perceived as design problems [326]◦

44 Perception Some smells are easily identified [400]∗

45 Detection
Techniques New strategies to identify smells (e.g., based on Machine Learning) 2�

[300]◦ [301]◦ [303]◦ [309]◦ [329]•
[345]◦ [354]◦ [356]◦ [359]◦ [361]◦
[375]• [383]◦ [385]◦ [396]∗ [397]∗

46 Detection
Techniques Proposed approach is more efficient/effective than state of the art 2�

[310]◦ [335]• [337]◦ [340]◦ [347]◦
[358]◦ [364]◦ [365]• [366]• [373]◦
[391]∗ [392]∗ [393]∗ [408]∗

47 Detection
Techniques Different detectors for a same smell produce different answers [350]◦

48 Detection
Techniques Bug prediction based on smells are improved including new factor(s) (e.g., history information of smells) X [317]◦ [352]◦ [395]∗

49 Life Cycle The number of smelly components increases/decreases in the periods of time [380]◦

50 Life Cycle Technical debt (e.g., code debt, documentation debt) increases over time due to
the introduction of new instances that are not fixed [298]◦

51 Life Cycle Smells are born with the entity X [351]• [360]◦ [369]◦ [376]◦

52 Life Cycle Entities with low review coverage or overloaded developers are smell-prone X [344]◦ [343]◦ [360]◦

53 Relationship Interaction of smells (e.g., collocated/coupled) are associated with maintenance problems X [324]• [327]• [328]•

54 Relationship Agglomerations of smells and certain topologies are more related to architectural problems X [320]• [349]•

55 Relationship Agglomerations of smells and certain topologies are more related to design problems [346]•

56 Catalog New set of smells is proposed X [301]◦ [354]◦ [361]◦ [385]◦
∗Single occurence of smell; ◦Co-occurrence of smells; •Co-study of smells; XConvergent finding; 2�A special type of convergent finding.

and Li and Shatnawi [348] reports that some smells were
positively associated with the probability of error in the
respective entities. In these situations, we standardized the
sentences in order to merge the findings into a theme (e.g.,
smelly entities are bug-prone).

Table 8 shows the themes extracted from the find-
ings in OBSG papers. This table also shows the consen-
sus/convergence of findings. Each finding reported by two
or more papers is considered as converging. Following our
definition of convergence, we observed some reasons for
that convergence:

• i) extension paper: an extended version of a particular
paper is published in other venue. In general, this oc-

curs because authors submit their preliminary results to
the conferences and afterwards, with the consolidation
of research, a new paper is published in a journal and
this paper contains the old and the new findings (e.g.,
[369, 376]).

• ii) replication paper: the study presents a replication of
previous work. For this case, in general, the replication
paper is conducted by other authors and the experi-
mental setup could have variations, but the goal and
the analysis process are similar, e.g., the paper [298]
presents a replication of the work by Potdar and Shihab
[49]. The paper [329] replicate the findings from previ-
ous work ([327]) on inter-smell relations by analyzing



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 20

larger systems and by including both industrial and
open source ones.

• iii) coincidence: Two or more independent studies con-
clude similar things. This situation is similar to the
replication paper, but the papers do not have similar-
ities on the analysis method, for example: Chatzige-
orgiou and Manakos [369] investigated the frequency
with which the refactoring activities are applied on
smelly code, Bavota et al. [308] investigated which are
the refactoring activities applied on smelly components.
Both papers conclude that the refactoring activities are
not frequently used to remove smells.

The convergence of a finding does not necessarily means
that it can be generalized to any smell/system/situation,
e.g., the finding “smells are born with the entity" [351, 360,
369, 376] cannot be generalized to LEXICON BAD SMELLS
because we did not find empirical studies that analyze
when such smells are introduced. Instead, the convergence
of a finding helps researchers to explore in details the
papers that are similar. Regarding the findings classified as
Detection Techniques, we also consider that they are conver-
gence findings (2�) because we observed a “consensus" on
their aims and results (e.g., investigate strategies to identify
smells and somehow improve other baselines). The data
reveals that 40% of the findings are convergent (see Table
8).

Table 9 shows the main contradictions/divergences
among the findings. The findings listed in the second and
third column of Table 9 are the same findings as in Table
8 organized to make explicit the divergences between the
findings that are on the same row. For example, in the first
row (ID 01), we have a conflict on findings that details
how the smells are removed. In this case, considering the
numerous catalogs [9, 10] and tools designed to help the
developers on smell refactoring (e.g., JDeodorant [50]), it
looks like refactoring is the principal treatment to remove
smells but the findings listed on this columns are opposite
to this observation (e.g., refactoring is not frequently used
to remove smells). In other words, these two columns detail
the findings that have some level of divergence (e.g., a
paper claimed the finding “X" and another paper reports an
opposite result). Table 9 also has a column implications and
challenges that describes the consequence of the divergences,
e.g., standard refactoring catalogs could be rethought. This
column also details the issues that must be addressed or
considered in further studies. There are several levels of
divergences and this depends on human perception, thus
our strategy follows these steps: two authors examined
independently each finding listed in Table 8 and using their
expertise produced a list of findings that have some level of
divergence. Next, these lists are revised by these authors
until reaching a consensus. In the end, we found seven
divergences and they are detailed on Table 9. In general, the
conflicts and their implications are related to the limitations
and threats to validity of papers. Challenges are associated
with experimental setup/environment. Some findings of
Table 8 (e.g., ID 56) are not listed on Table 9, because they
do not have a divergence with other findings in Table 8.

In the next paragraphs, we report the some observations
with respect to the findings and/or divergences from pa-
pers.

From the perspective of Maintenance, we observed sur-
prising findings, e.g., refactoring is not frequently used to
remove smells. Instead, they are removed by adaptive activ-
ities, suggesting that adaptive activities could be analyzed
and used to improve refactoring catalogs. Nonetheless, en-
tities statically related to smelly code (ANTISINGLETON,
LONG METHOD, COMPLEX CLASS, LONG PARAMETER LIST,
MESSAGE CHAINS, SWISS ARMY KNIFE, REFUSED BEQUEST,
SPECULATIVE GENERALITY) are refactoring-prone [334],
meaning that smelly entities may be useful to drive refac-
toring but not necessarily on themselves.

We also observed that some smells are removed with
multiple refactoring operations. A LARGE CLASS has many
non-inter-related responsibilities, suggesting that part of its
behavior could be split into other components. Thus, Extract
Class and/or Extract Subclass may be performed several
times, but developers may not necessarily refactor all un-
related responsibilities. Considering this observation, the
question if refactoring removes or not smells was answered
with an indication that refactoring is not frequently used
to remove smells [308, 369, 376]. However, we can argue
that refactoring operations are used to reduce the symptom
of bad smells or even their intensity. This observation can
be more prevalent in maintenance tasks where the time
and/or the complexity are critical factors. This view may
in part explain why smelly code are refactoring-prone, but
refactoring operations do not remove the smells.

We would have an indication that refactoring operations
are useful to improve the maintainability of projects, be-
cause there is some evidence that the smells are associated
with maintenance effort [324, 330], and because there are
multiple guidelines to remove smells (e.g., [9, 10]). How-
ever, some empirical studies show that refactoring smelly
code does not reduce maintenance effort [323]. Thus, these
findings are contradictory (see the second item in Table 9).

The main findings also reveal some unusual things.
Some instances of smells are the best solution in specific
contexts. This finding is conflicting because, in general,
smelly entities are perceived as poor practices (see the last
item in Table 9). According to Vaucher et al. [387], LARGE
(GOD) CLASSES are sometimes embodied in design as the
best solution to a particular problem. Although they are not
“good” code, these classes cannot be improved and remain
relatively untouched from version to version. However,
considering that recently developed projects, in principle,
could be more likely to follow good modern practices than
old projects, the reproduction of this study could produce a
different result with newer projects.

Regarding Change/Bug Proneness and Positive Aspects,
there is an interesting relationship. An unexpected finding
is that some kinds of smells or some smell instances are less
bug-prone. Hall et al. [357] report that MESSAGE CHAINS
which occurred in larger files reduced bugs, being valid for
all analyzed systems. They also report that DATA CLUMPS
reduce bugs, but only in two systems. Similar results are
reported for MIDDLE MAN, SPECULATIVE GENERALITY,
SHOTGUN SURGERY and FEATURE ENVY [295, 357].

These “positive aspects" contradict the “harmful aspects"
of smells. A lot of papers report that smelly entities are
bug-prone [295, 317, 319, 334, 348, 357, 378, 412]. In this
context, the smell MESSAGE CHAIN is associated with bugs



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 21

TABLE 9
Main findings and their divergences (OBSG papers).

ID Main Findings Conflicting Findings Implications and Challenges

01
ZRefactoring contributes to alleviate or
remove of smells [9, 51, 381, 391, 393].

ZRefactoring is not frequently used to
remove smells [308, 369, 376].
ZAdaptive activities are frequently
used to remove smells [376].
ZRefactoring can introduce smells [360,
388].
ZRefactoring can move1 smells [387].

These conflicting findings could suggest developers to disregard refactoring on
smelly entities. Considering that empirical studies have shown that refactoring
takes places within adaptive activities, deciding on adequate refactoring suitable
for the specific evolution context is still a challenge.

02
ZSmells are associated with the incre-
ment of maintenance effort (e.g., edit-
ing, navigating) [324, 330].

ZRefactoring smelly code does not re-
duce maintenance effort [323].

The developers’ could produce non standard strategies (e.g., specific for a
project) to control smelly codes. In other words, standard refactoring catalogs
could be rethought. There are many factors associated with the maintenance
effort. Thus, we need studies to explore in detail the different factors related to
maintenance effort and their relationship with code smells and refactoring.

03
ZSmelly entities are bug-prone [295,
317, 319, 334, 348, 357, 378, 412].

ZSome kinds of smells or some smell
instances are less bug-prone [295, 357].
ZEntities participating in static rela-
tionships between smells and design
patterns are less bug-prone than other
smell classes [332].

Strategies of bug-prediction/control based on smells are less effective than it
could be. This reveals the need to map the situations in which the smell instances
are bug-prone and from those that are less bug-prone. The discovery of patterns,
enable us to distinguish the smell instances that are bug-prone from those that
are less bug-prone. This could improve the control of bugs based on smells.

04
ZSome smells are correlated with
source code metrics [299, 312, 314, 371].

ZSome smells are not correlated with
source code metrics [312, 371].

This implies that the detection strategies based exclusively on metrics are limited
and this causes distrust among the users and the fear might prevent adoption
of smell detection tools in practice. The challenge is related to defining effective
detection strategies to complement the ones based on metrics.

05

ZSmelly entities are associated with ar-
chitectural problems [318].
ZAgglomerations of smells and certain
topologies are more related to architec-
tural problems [320, 349].

ZAutomatically-detected smells are not
correlated with architectural problems
[315].

Aspects related to architectural issues are neglected by tools that automatically
detect the smells. This indicates the necessity of other studies that investigate
the association/correlation between the architectural problems and the smelly
entities. The set of smells and architectural problems that are relevant and
representative is important in the future works.

06
ZSmells have a negative impact on
the developers’ performance (e.g., time)
[304, 382].

ZThe influence of smells on maintain-
ability is relatively small [324, 328].

These findings suggest that developers’ performance could be an aspect sepa-
rated from the concept of maintainability of systems. However, the developers’
performance is intrinsically linked to maintainability. Thus, we have some level
of contradiction in the different findings and we suggest new studies devoted to
cover issues related to the software maintainability and their relationship with
smells.

07
ZSmelly entities are perceived as prob-
lems and/or poor practices [401].

ZThe intensity of smells may or may
not represent a problem [326].
ZSome instances of smells are the best
solution [387].

Even the human perception does not reflect all cases observed in the real world.
Thus, there is the necessity of future studies to map and evaluate the subjective
human perception. In particular, using smelly codes classified as poor practices
and those classified as the best solution.

1Move smells from one part of the code to another.

[317, 319, 334, 357]. However, these findings are not uniform
on all the analyzed systems. In other words, some instances
of these smells are bug-prone and others are non-bug-
prone. We also observe this situation for other kinds of
smell, e.g., SPECULATIVE GENERALITY [317, 319, 334, 357],
SHOTGUN SURGERY [295, 348], DATA CLUMP [357]. Thus,
the apparent contradiction (see the third item in Table 9) is
not strong because there is a factor of context (e.g., human
effect, subject system). This suggests that the effect of smells
is particularly dependent on the context changing from a
system to another.

Regarding to findings of type Association, there are many
tools for smell detection, and most of them are based
on source code metrics. They use this strategy because
smelly entity impacts on the values of metrics [299, 314].
However, some smells are not correlated with source code
metrics [312, 371]. Thus, we observed that the correlation
between metrics and code smells is not a general finding
(see the fourth item in Table 9). According to Mäntylä
et al. [371], instances of LARGE CLASS are not strongly
correlated with metrics based on the number of attributes
and/or operations (e.g, LOC). On the other hand, Arcelli
Fontana et al. [299] report that LARGE (GOD) CLASS has a
strong correlation with the metric Access To Foreign Data
(ATFD). Mäntylä and Lassenius [312] report that this and
other smells can be difficult to detect because they can be

measured in many different ways. These findings show that
proposing associations have some traps, and finding cause-
effect relations are challenging because there are many fac-
tors to be considered.

Considering the main tools (see Subsection 7.4) that
automatically detect smells, they have limitations on iden-
tifying the interaction of smells (e.g., collocated/coupled).
Thus, the finding “automatically-detected smells are not
correlated with architectural problems [315]" could be seen
as a consequence of their limitations, especially because this
finding is divergent with respect to others (agglomerations
of smells and certain topologies are more related to archi-
tectural problems [320, 349]), as shown by the fifth item in
Table 9.

With respect to the theme Detection Techniques, as re-
ported in Table 8, we observe that different detectors for
the same smell produce different answers (47), which is
coherent with the need for new strategies to identify smells
(45) or even approaches more efficient/effective than state-
of-the-art (46). The number of papers concerned with this
theme also suggests some trend: the tools/techniques need
to be improved (e.g., precision, recall). In this context,
some papers report an improvement in the state-of-art (e.g.,
[310, 347]). However, as observed in Section 7.4, a lot of them
do not share their implementations limiting their applicabil-
ity (e.g., [306, 307]). Moreover from the perspective of open



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 22

science, the unavailability of implementations hinder repro-
ducibility and impose barriers to the underlying empirical
studies, in particular for those aiming at comparing new
approaches with the state-of-the-art.

Regarding to the theme Relationship, the interaction of
smells is another investigation trend. In this case, the in-
teraction between smells (e.g., use, collocated, coupled)
seems to be more meaningful than the isolated occurrence.
Some state-of-the-art tools (e.g., DECOR [366]) corrobo-
rate on that using a combination of smells to identify
other kinds of smells (e.g., SPAGHETTI CODE is related to
LONG METHOD). There are also papers reporting on the
association between agglomerations of smells and mainte-
nance/architectural/design problems (e.g., [346, 349]).

Finally, one trend is related to improving the Catalog
of smells for embracing technological transformations (e.g.,
mobile device). As shown in Section 5.1, this occurs in two
forms: 1) some papers propose specific smells, based on
their need (e.g., architecture [409], environment [416]); 2)
others use the interpretation of subjective smell definitions
to define a new set of smells (e.g., DUPLICATE CODE IN
CONDITIONAL BRANCHES [322]). On the other hand, tech-
nological transformation in conjunction with deficiencies of
techniques/tools lead to challenges. Some papers report that
smells have a negative impact on the energy consumption
and/or memory performance, especially in mobile devices
(e.g., [330, 411]). Thus, app stores could, in principle, use
this kind of information to classify the quality of their apps.
However, these stores do not provide access to the source
code for all apps, imposing a challenge for the current
techniques/tools.

Lessons About RQ3.2

Regarding the specific findings, although refactoring
has been proposed to remove smells, there are several
subtleties that make this activity inherently complex,
as shown in the findings Maintenance. Although, in
general, smelly entities and their dependents are more
bug/change-prone, there are some exceptions.

There are several studies that associate (or not)
smells with some other factor, however, more in-depth
studies on cause-effect are still lacking to provide con-
clusive evidence. For example, some findings show
that smells can be or not correlated with code metrics,
showing that other factors, such as human perception,
should be considered.

There is a large body of knowledge on techniques
to detect smells that aims at improving the state-of-the-
art, despite the necessity for more adoption of open
science regarding these techniques.

Technical debt tends to increase over the life cycle,
although smells typically are existing since the first
version of a code component.

7.3 RQ3.3: Considering the co-occurrence of bad
smells in the papers of our dataset, how many of them
actually study some relations between bad smells and
what are the main findings of these co-studies?

RQ1.1 reported on the most common co-occurrences of
bad smells in papers. The co-occurrence may be merely
coincidental. This question complements RQ1.1 because we
investigate not only the frequency of smells being studied in
the same paper, but deepen on the aims and results related
to the inter-relationship between those smells.

In order to answer this question, we selected the top-
5 smells (Table 4), and those papers which showed co-
occurrences of smells (Table 5) were examined in order to
find the co-studies. Recall that we consider as co-studies
those papers where the co-occurrence of smells in the
paper is intentionally designed to investigate some inter-
relationship or interaction between them.

Our dataset shows 93 papers classified as “co-occurrence
only" or “co-study" (Table 15 details this classification to
each OBSG paper). Co-occurrence-only papers are the most
common (79.5%). Co-study papers are focused on identi-
fying the instances of smells which are relevant according
to some criterion, e.g., instances5 whose refactoring im-
prove the maintainability. For example, Oizumi et al. [320]
co-studied smells to identify architectural problems, and
observed that agglomerations of smells identify architec-
tural problems significantly better than individual instances.
Similarly, Yamashita and Moonen [327] observed that the
interactions between bad smells affect maintenance. We also
observe that the interactions between smells are obtained
by applying techniques that correlate the co-occurrence
of smells on the same artifact (e.g., Principal Component
Analysis — PCA [327]) and then, the statistically significant
correlations are qualitatively analyzed to explain them.

Table 10 is similar to Table 5 in RQ1.1; however, this
table focuses only on bad smells that were co-studied
(e.g., LARGE CLASS was co-studied with DATA CLASS in
8 papers). We observe that only 2 out of the 18 papers
where DUPLICATE CODE co-occurs with other smells, are
actually co-study papers. Other types of smells also reveal
a low number of co-studies with respect to co-occurrences.
In the following, we report the main results on co-studies of
smells.

DUPLICATE CODE. Although this smell is mostly stud-
ied alone, there are still some co-studies of DUPLICATE
CODE with other smells. Liu et al. [296] uses the possible re-
lationship between LONG METHOD and DUPLICATE CODE
to support prioritization of refactoring because removing
DUPLICATE CODE would make the LONG METHOD disap-
pear. According to Fowler and Beck [9], this relationship
exists “When a class is trying to do too much, it often shows
up as too many instance variables. When a class has too many
instance variables, DUPLICATE CODE cannot be far behind".
Similarly, Parnin et al. [336] also report this relation, namely:
“the (long) method is often difficult to understand and may
contain DUPLICATE CODE". However, this assumption is not
true for all instances of LONG METHOD and DUPLICATE
CODE (e.g., refactoring the clones on a LONG METHOD with

5. Some instances of smells do not affect the maintainability, e.g.,
DATA CLUMP indicates fewer maintenance problems [324].



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 23

TABLE 10
Top five bad smells — map of co-studies of smells.

Duplicated Code (2\18) Large Class (15\79) Feature Envy (9\46) Long Method (12\47) Data Class (11\37)

#
Pa

pe
rs

Feature Envy 2 Data Class 8 Large Class 8 Large Class 7 Large Class 8
Large Class 2 Feature Envy 8 Long Method 6 Feature Envy 6 Feature Envy 5
Long Method 2 Long Method 7 Data Class 5 Data Class 4 Long Method 4
Data Clump 1 Shotgun Surgery 5 Shotgun Surgery 5 Divergent Change 4 Shotgun Surgery 4
External Duplication 1 Controller Class 3 Divergent Change 3 Shotgun Surgery 4 Controller Class 3
Internal Duplication 1 Divergent Change 3 ISP Violation 3 Class Global Variable 3 Data Clump 3
Long Parameter List 1 ISP Violation 3 Duplicated Code 2 Method No Parameter 3 Divergent Change 3
Message Chains 1 Complex Class 2 Long Parameter List 2 No Inheritance 3 ISP Violation 2
Primitive Obsession 1 Duplicated Code 2 Temporary variable 2 No Polymorphism 3 Inappropriate Intimacy 1
Schizophrenic Class 1 Long Parameter List 2 Data Clump 1 Spaghetti Code 3 Long Parameter List 1

... ... ... ...

few cloned lines does not necessarily, remove the LONG
METHOD) and none of these papers detail the situations
where the relation between LONG METHOD, LARGE CLASS
and DUPLICATE CODE is relevant. Thus, we suggest that it
is still necessary to identify situations where the relationship
between DUPLICATE CODE and LONG METHOD is relevant
because not all LONG METHODS are caused by DUPLICATE
CODE and vice-versa. Similarly, we also consider important
to investigate the relation between DUPLICATE CODE and
LARGE CLASS because although the former may cause the
latter, the latter is not always a consequence of the former.

LARGE CLASS. The literature relates LARGE CLASS
to LONG METHOD and LONG PARAMETER LIST by vol-
ume/size metrics as follows: a) “LONG METHOD is a method
with a high number of lines of code and a lot of variables and pa-
rameters are used" [311]; b)“Consider a parameter list long when
the number of parameters exceeds 5" [355]. LARGE CLASSES
are highly coupled to DATA CLASSES [356], which mostly
present incoming dependencies from FEATURE ENVY meth-
ods [327]. Some studies relate LARGE CLASS to FEATURE
ENVY [327, 375], and LONG METHODS to LARGE CLASS
[323, 327].

Palomba et al. [354] proposes a new bad smell detection
technique based on change history mining. This technique
is especially suited to finding smells manifested in code
changes. In fact, they propose a detection strategy based
on past changes, i.e., they speculate that changing LARGE
CLASS with LONG METHODS, which are often affected by
FEATURE ENVY, suggests triggering changes in several areas
of the system, which reveals the occurrence of SHOTGUN
SURGERY. Another finding related to this relationship is
that: “the GOD CLASS and classes with SHOTGUN SURGERY
were changed more frequently than the other classes" [323].

FEATURE ENVY. As previously mentioned, this smell is
mostly studied with other smells, especially with LARGE
CLASS and/or LONG METHOD. This is expected, because
these smells are related to “how many responsibilities are
implemented in an entity (method/class)". Thus, if an entity
implements many responsibilities, the probability that this
entity is mostly interested in other entities also grows, and
this behavior is related to the definition of FEATURE ENVY.
This type of relation was reported in [329, 375]. The smell
SHOTGUN SURGERY can occur when a single responsibility
has been split up among a large number of classes (symp-
tom of code scattering [39]). Thus, responsibility scattering
could potentially introduce FEATURE ENVY. However, this
relation is unclear in the literature.

LONG METHOD. Liu et al. [296] report a scenario of pos-

sible relation between FEATURE ENVY and LONG METHOD.
Its premise is that LONG METHODS result by the combi-
nation of bad smells (e.g., FEATURE ENVY and DUPLICATE
CODE). In [327], they showed that the majority of the LARGE
CLASSES also manifest LONG METHODS, and several of
these LARGE CLASSES accessed data/methods from other
areas of the system.

DATA CLASS. According to Yamashita and Moonen
[327], most of the artifacts with DATA CLASS present depen-
dencies with FEATURE ENVY methods. Pietrzak and Walter
[375] report that in 92% of cases, the existence of DATA
CLASS indicates the presence of FEATURE ENVY. Strategies
to detect LARGE CLASS usually consider the size (e.g., LOC)
and the occurrence of DATA CLASS [373]. According to
Moha et al. [365], a LARGE CLASS is associated with several
DATA CLASSES. Pietrzak and Walter [375] report that DATA
CLASS suggests the existence of LARGE CLASS because
DATA CLASS is related to FEATURE ENVY.

We observe that some meaningful relationships were not
explicitly co-studied in the literature, e.g., Arcelli Fontana
et al. [309] point out that “LONG METHOD refers to methods
that tend to centralize the functionality of a class" and suggest
that clients of a class that have LONG METHOD(S) probably
do not need to invoke the additional methods of this class.
In other words, clients are unlikely to invoke the inherited
super-class methods [52]. Thus, we conjecture a possible re-
lationship between LONG METHOD and REFUSED BEQUEST.
Another interesting point to note is that smells are likely
inter-related, especially, if they occur in LARGE CLASSES. In
other words, if the size of code elements grows up, different
kinds of anomalies related to those large structures will
likely appear. In this sense, one would think of smells to
better characterize anomalies in large structures, to use that
characterization to assess the (negative) impact in products
and process, and possibly guide the process for fixing those
anomalies.

Karasneh et al. [370] investigated the relationship be-
tween quality of the UML design models and the source
code. They report that, on average, the proportion of classes
in design models and code with the same smells is 37%. This
is an evidence that smells may appear early. This study was
focused on seven types of smells but they do not consider
the interactions between them. Thus, according to our clas-
sification, this study is a co-occurrence of smells. We would
suggest that empirical studies considering the interactions
between smells are needed, especially to investigate the
relationship between design models and source code.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 24

Lessons About RQ3.3

We observed that the most frequently studied
bad smells (LARGE CLASS, FEATURE ENVY, LONG
METHOD) co-occur in papers. However, only a small
percentage of these co-occurrences are actual co-studies
that investigate the interaction between them, suggest-
ing that this is still an area deserving attention. The
current studies on the co-existence of smells in code
suggest an association with maintenance and design
problems.

7.4 RQ3.4: Which are the most used tools for handling
bad smells in the experimental setup?

Fig. 6. Tools to handle bad smells (OBSG papers).

Fig. 6 presents the main tools/techniques used for han-
dling bad smells, extracted from the papers. It is worth men-
tioning that some papers (e.g., [299, 312, 364]) use several
tools/techniques because sometimes they perform exper-
imental comparisons. In this case, each one is separately
cataloged with its respective name (e.g., JDeodorant,
iPlasma) and if this tool/technique appears in other pa-
pers, the number of occurrences is incremented. This pro-
cedure revealed that out of 82 tools/techniques, about 62
appeared in only one paper (e.g., SMURF [364], Jmove [392])
and 12 occur in two papers (e.g., HistoryMiner [351],
HIST [354]). Thus, these were accounted in the Others group
(see Fig. 6). Others represent 53.7% of the total occurrences.
This finding demonstrates that the tools/techniques are
greatly spread over the papers, reinforcing the suggestion
that researchers are crediting bad smell inconclusive impacts
to tools/techniques, yielding the search for new detection
methods. Another argument is found in the discussion
section of paper by Rasool and Arshad [417], who report
that PMD and JDeodorant tools detect GOD CLASS partially
differently if applied to the same source code. According to
them, most of this disparity is due to the use of different
metrics in the detection strategies.

In our study, we grouped the DECOR, DETEX and
Ptidej occurrences in the same classification because, ac-

cording to the Ptidej6 team, “DECOR is a method whose
instances are detection techniques for code and design smells.
DETEX, our instantiation of DECOR, allows the specification and
the detection of defects such as code smells and antipatterns
using a unified vocabulary and a dedicated language. Ptidej is
the front-end to the tool suite for evaluating and improving the
quality of object-oriented programs, reverse-engineering object-
oriented programs (AOL, C/C++, Java), and promoting patterns.
Ptidej integrates DECOR as well as visualization algorithms to
ease the understanding of detected defects."

According to Fig. 6, DECOR (DEtection & CORrection
[366]) is the most frequent tool, representing 14.4% of all
occurrences. We suggest that the main reasons that yield
this wide acceptance are:

1) the technique is widely documented in the scientific
literature [53, 365, 366], allowing the comprehension of
the internally used mechanisms;

2) it provides the creation of rules considering the rela-
tion/interaction among several bad smell types (see
Fig. 4 in [366]); Yamashita and Moonen [372] report that
one of the most desirable feature in tools handling bad
smells is the customization ability (see Table V in [372]);

3) The tool is able to detect a higher number of distinct
identifiable bad smells compared to other tools.

The second most frequent tools are InCode/InFusion
(8.1%). These were proprietary tools developed by the same
company (which does not exist anymore) and the difference
is that InFusion was more comprehensive and offered
more features. The two tools use the same bad smell detec-
tion mechanisms, therefore, we grouped their occurrences.

In next positions, we have JDeodorant (7.5%) and
Borland Together (5.6%) tools. Borland Together7 is
a proprietary tool that allows to identify several bad smells
(e.g., DATA CLASS, FEATURE ENVY, SHOTGUN SURGERY, ...)
[323]. On the other hand, JDeodorant8 is an open source
tool that allows to identify five bad smells, namely: FEA-
TURE ENVY, TYPE CHECKING, LONG METHOD, GOD CLASS
and DUPLICATE CODE. Compared to DECOR, both tools are
more restrictive concerning the composition of rules used to
detect bad smells.

In this paper, we did not perform a systematic analysis of
the tools/techniques listed before because there are already
some studies about this [112, 417]. On the other hand, these
studies do not rank the tools by the number of occurrences
in papers as presented here.

To unveil the limitations of tools, we analyzed the
available features in the most used tools (top-8). The fea-
tures were extracted from the papers using those tools in
empirical studies (e.g., [320, 350, 391]) and from papers
that describe the tools (e.g., [31, 335, 342]); and whenever
necessary, we also checked the implementation of the tool
(e.g., PMD, Ptidej). Table 11 details the main features of the
top-8 tools. For some features (represented by •), we were
not able to check the presence of these features in some tools.

In the first group of features (Detection Technique), there
are tools that aim to detect more than a fixed set of smells.

6. http://www.ptidej.net/research/designsmells
7. http://www.borland.com/en-GB/Products/

Requirements-Management/Together
8. https://github.com/tsantalis/JDeodorant

http://www.ptidej.net/research/designsmells
http://www.borland.com/en-GB/Products/Requirements-Management/Together
http://www.borland.com/en-GB/Products/Requirements-Management/Together
https://github.com/tsantalis/JDeodorant


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 25

TABLE 11
Features of top-8 tools (OBSG papers).

Type Features Description D
EC

O
R

/P
ti

de
j

In
C

od
e/

in
Fu

si
on

JD
eo

do
ra

nt

B
or

la
nd

To
ge

th
er

iP
la

sm
a

PM
D

O
rg

an
ic

/S
C

O
O

P

St
en

ch
B

lo
ss

om

Detection
Technique

Machine learning based detection technique. •
Configurable set of detected smells. X • X

Fixed thresholds in detection rules. • X • •
Thresholds of metrics are available for customization. X • • •
Thresholds of metrics are specified dynamically (e.g., boxplot). X X • X • •
Describe relationships between classes (e.g., aggregation). X • •

Distribution
&

Scope

Form of distribution. } } ⊗ ⊗ } ⊕ ⊗ ⊗
Supported languages:

Java, X X X X X X X X

C++, X X X X

Other languages. X X

Refactoring
&

Architecture

Support for Refactoring. X •
Detection of architecturally relevant smells. • X

Categorization of inter-related smells. • X

Usability

Interaction with smelly code. X X • X©X X

Interactive visualization environment. X X • X

On-the-fly detection of smells while coding. • X

Metrics used are collected by external tools/JAR. X© • X

Analysis of multiple versions of a system. •
Filtering capabilities (e.g., production or test code). •

X Feature avaliabled; X© Feature partially available.

• Information undetermined and/or unavailable.

} Standalone;⊗ Plugin;⊕ Standalone & Plugin.

So, they provide a DSL (Domain Specific Language) for the
specification of detection strategies, enabling the selection
of metrics and thresholds for each smell. On the other hand,
we observed tools that are more rigid, where the thresholds
and/or metrics used to detect the smells are not available for
customization. In some tools, the thresholds of metrics are
specified according to the system, e.g. using statistical tech-
niques [31]. For the tools where the metrics are dynamically
specified, it is also possible to customize thresholds, e.g.
Moha et al. [335] describe parameter “fuzziness". The tool
Ptidej can collect inter-method/class relationship data (e.g.,
aggregation). This feature is useful to specify rules used
to detect smells (e.g., FUNCTIONAL DECOMPOSITION [335]).
However, Ptidej does not collect intra-method relationship
data and according to Hall et al. [357] this feature is helpful
for detecting some smells (e.g., SWITCH STATEMENTS).

In the second group of features (Distribution & Scope),
we noticed that the tools are distributed in plugins and/or
standalone packages. There are tools designed to handle
multiple languages, but the main language is Java.

In the third group of features (Refactoring & Architecture),
we found only one tool that provide a mechanism designed
to assist refactoring. In this case, the tool JDeodorant9

supports Extract Method, Extract Class and Move Method
refactorings. We also identified a tool that detects smells
based on their influence on a specific aspect of the soft-
ware. In particular, the tool Organic/SCOOP is designed to
identify architecturally relevant smells using architecturally-
sensitive metrics and strategies [54]. According to Oizumi
et al. [320], this tool is also able to categorize the smells into
four topologies.

The fourth group of features in Table 11 is related to
usability. Most of the investigated tools allow developers
to interact with smelly code, i.e., the tools provide the
location of the detected smells, allowing developers to iden-

9. https://github.com/tsantalis/JDeodorant

tify source code that require immediate refactoring, as well
as dependencies between smells. This feature is partially
present for the tool PMD, because the plugin version has
this feature, but the standalone version does not. The next
property is related to the visual information that supports
smell understanding. In JDeodorant10, each smell instance
is visualized in the form of an enriched UML class diagram
showing the dependencies between the class members in-
volved in the code smell. This visualization allows develop-
ers to have a better understanding of the causes and severity
of each code smell instance. Stench Blossom [342] provides
an interactive visualization environment designed to give
programmers a quick, high-level overview of the smells
in their code, and then, if desired, to help understanding
the sources of those smells. This tool also has on-the-fly
detection of smells while coding. We also noticed that some
tools do not collect all the metrics necessary to identify
smells, for example: i) organic/SCOOP receives as input a
metrics file in csv format [54]; ii) the tool JDeodorant relies
on external clone detection tools for finding DUPLICATED
CODE within a Java project [55]. The last two items of
Table 11 are features unavailable in the top-8 tools that could
improve their usability. For example, according to Macia
et al. [54] the analysis of multiple versions of a system can
identify critical smells and tend to improve the accuracy of
conventional detection strategies.

We also classified the tools/techniques as follow: a)
Public: the paper shares a link that allows to download
the source code and/or a compiled version of the tool, and
the hyperlink was still available to download in 2017; b)
Deprecated: the same as Public, but either the hyperlink is
broken or it does not exist; c) Commercial: tools that need
payment to be used; d) Ad-Hoc: researchers do not share
the implementations of these tools/techniques.

Below, we quantify these classes of tools:

• Public: we found 35 implementations (see Table 14):
– 12 share the source code and some compiled version

(e.g., JDeodorant [50], DECOR/Ptidej [366], PMD);
– 11 share only the source code (e.g.,
ChangeDistiller [325], HULK [358], Puppeteer
[415]);

– and the remaining only share the compiled ver-
sion (e.g., SpIRIT [338], LBSDetectors [399], LAPD
[401]).

• Deprecated: we found 5 tools/techniques whose hyper-
link does not work anymore (e.g., InCode/InFusion,
Organic/SCOOP).

• Commercial: we found 4 tools (Pascal Analyzer,
Borland Together, Understand, SonarQube).

• Ad-Hoc: we found 33 tools/techniques (e.g., P-EA
[340], HIST [354], OBEY [388]).

Table 14 shows which tools/techniques are used by the
papers to handle the bad smells. The association between
tools/techniques and smells were extracted from the text in
papers and is represented with “X" in each cell of Table 14.
We use this strategy because there are tools/techniques that
do not have a public documentation and/or do not have a
public version. This means that some bias is possible: Fu and

10. https://users.encs.concordia.ca/%7Enikolaos/projects.html

https://github.com/tsantalis/JDeodorant
https://marketplace.eclipse.org/content/jdeodorant
http://www.ptidej.net/team/development/psf/
https://pmd.github.io/
https://bitbucket.org/sealuzh/tools-changedistiller
https://github.com/Echtzeitsysteme/hulk-ase-2016
https://github.com/tushartushar/Puppeteer
http://sites.google.com/site/santiagoavidal/projects/spirit
http://selab.fbk.eu/LexiconBadSmellWiki/
http://www.veneraarnaoudova.ca/linguistic-anti-pattern-detector-lapd/
https://www.intooitus.com/products/incode
http://www.les.inf.puc-rio.br/opus/tools/tools_scoop.html
https://users.encs.concordia.ca/%7Enikolaos/projects.html


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 26

Shen [301] wrote “For SHOTGUN SURGERY, we compare our
approach with DECOR", however the current implementation
of DECOR does not detect this smell. Another situation
might occur in papers that use two or more tools to detect
a code smell, these tools are able to detect different types of
smells and the paper does not specify which smells each tool
was able to detect [313]. We believe that the first situation
is uncommon, probably because a previous version of that
tool could actually detect the corresponding smell. The last
condition is also unusual, most papers specify which smells
each tool was able to detect [299, 323, 324, 357].

From Table 14, we can observe the distribution of tools
between our classification (Public, Deprecated, Commercial,
Ad-Hoc) and the bad smells. In general, our data show
that 75.0% of smells can be detected by Public tools and
47.1% by Ad-Hoc tools. Considering only smells that occur
in more than two papers (Smells listed in columns of Table
14 which are before the red line), we have 47 smells, and
72.3% of them can be detected by Ad-Hoc and Public tools.
Moreover, with the exception of PARALLEL INHERITANCE
HIERARCHIES, all other smells handled by Ad-Hoc tools are
also handled by Public tools. On the other hand, there are
57 less studied smells (they appear in at most two papers).
From them, 63.1% can be detected by Public tools and 24.5%
by Ad-Hoc tools.

We can observe that empirical studies are typically con-
ducted with the most common smells detected by the exist-
ing tools. However, there is a very high number of distinct
smells which are already detectable by some tool, but some
of these have not been extensively investigated in empirical
studies, e.g., PROMISCUOUS PACKAGE occurs in one paper
[359]. The literature also reports smells that have not been
investigated empirically, e.g., Brown et al. [10] proposes the
smell POLTERGEISTS — “classes with very limited roles and
effective life cycles. They often start processes for other objects".
For this kind of smell, extensions on the available detection
tools could be proposed to make empirical studies possible.
For instance, the smell POLTERGEIST is found in classes with
few responsibilities, with few commits during the life cycle,
with most of the features being done by other objects, i.e.,
rules that seem reasonable to be automated.

We suggest that studies on these smells could better
characterize their effective impact in software development
and maintenance. Those studies could be even character-
ized as co-studies to investigate the interaction between
that large set of distinct smells still poorly understood in
the literature. Moreover, it is important to recognize that
available tools still have some level of inaccuracy or some
level of disagreement among them on how to detect smells.
Thus, conclusions from empirical studies may also disagree
depending on the tools used. A possible recommendation
is that studies should consider detecting smells from more
than one tool to compare the agreement level on the conclu-
sions.

Lessons About RQ3.4

We observed a high diversity on the range of tools
used in the experimental settings to handle smells.
Many do not share their implementations, limiting

their applicability. Moreover from the perspective of
open science, these unavailable implementations hin-
der reproducibility and impose barriers to the under-
lying empirical studies, in particular for those aiming
at comparing new approaches with the state-of-the-
art. Our data also show that most of the smells can
be detected by public tools. Finally, we observed that
empirical studies are typically conducted with the most
common smells detected by the existing tools.

7.5 RQ3.5: Which are the most frequent subject
projects used in experimental evaluation?

Fig. 7. Projects used in experiments (OBSG papers).

Fig. 7 presents the main subject systems used in the
empirical studies presented in the analyzed papers.

The subject projects were also collected from manual
analysis of the papers. These projects are cataloged with
their respective names and the number of occurrences was
incremented when a cataloged system appears in another
paper. Similarly, when the paper uses closed source soft-
ware, we increment the occurrences of Proprietary Systems.
At the end, we found 226 distinct open source systems and
found 18 occurrences of Proprietary Systems. From the total,
155 systems were used in just one paper, 39 systems were
used in two papers, and another 15 systems occur in up to
five papers. So, these 209 less frequently studied systems
were grouped into the Others class, which represents 33.9%
of the occurrences (see Fig. 7). We observe that there is a
huge variability of subject systems being studied, and 63.5%
of these are studied only once. This is an indicator that there
is no widely accepted benchmark for bad smell studies and
this can partially explain why there are some contradictory
conclusions on the impact of bad smells.

In our study, which considers papers studying other
types of bad smell, we found that 80.9% of papers per-
form empirical studies using open source systems, 14.8%
use industrial/commercial systems with proprietary code
(Proprietary Systems), and the remaining (4.3%) are sub-
jective studies (e.g., interview, questionnaire, observation
of developers). Most researchers perform empirical stud-
ies using open source software and we suggest that this

https://bitbucket.org/ptidejteam/ptidej-5/src


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 27

preference may be credited to the following factors: 1) sim-
plicity to access information (source code, documentation,
versions); 2) possibility to replicate the study conveying
reliability/credibility; 3) community interest in the open
source subject. In [6], the authors do not distinguish the type
of analyzed source code.

The Java language is the most prevalent. The ArgoUML11

system is present in 20.6% of analyzed papers and accounts
for 5.1% of occurrences, being the most prevalent. The
Apache Xerces12 project is the second most recurring. It
appears in 19.8% of analyzed papers and accounts for 4.9%
of occurrences. The following systems are JFreeChart13

and GanttProject14. Each one appears in 11.5% of ana-
lyzed papers and individually accounts for 2.9% of occur-
rences.

The seven top-ranked systems have at least three fea-
tures that may partially explain the preference of the re-
searchers: 1) they are large systems, widely disseminated in
the open source community; 2) they are long lived projects
with more than ten years, and stored in public reposito-
ries, allowing access to old versions of the code, which
is relevant, as some bad smells (e.g., SHOTGUN SURGERY,
FEATURE ENVY) are essentially studied over the history of
the systems; 3) they are structured in subprojects, provid-
ing some evidence that the managers of these projects are
concerned with using techniques for improving modularity
and reuse, which is coherent with the concept of refactoring
and minimization of the bad smell negative effects.

Lessons About RQ3.5

As previously mentioned, the reports on the impact
of bad smells sometimes contradict each other. These
contradictions may be credited to the wide range of
tools and subject systems used in the experimental set-
tings, suggesting that the lack of well-designed bench-
marks should be addressed. The benchmarks could be
constructed by searching for systems having the same
characteristics as the most used systems.

8 RESULTS ON RESEARCHERS (TA4: who)
The next subsections are aimed at establishing the relation-
ships among researchers with respect to research groups,
and according to their interest in the different bad smells.

8.1 RQ4.1: How is the research community grouped
around the types of smells? Do researchers study a
broad and diverse set of bad smells, or concentrate on
one or a few bad smells?
Fig. 8 shows the distribution of the distinct 530 authors in
two groups: DCG and OBSG. There are 315 nodes (59.4%)
in the DCG group, which corresponds to authors that pub-
lished papers related only to DUPLICATE CODE (grey nodes
in Fig. 8). The nodes in the group OBSG are classified into
five categories:

11. http://argouml.tigris.org/
12. http://xerces.apache.org/
13. http://www.jfree.org/jfreechart/
14. https://sourceforge.net/projects/ganttproject/

Fig. 8. Clusters of authors by paper groups (DCG/OBSG).

1) Yellow nodes: authors who DO NOT investigate DU-
PLICATE CODE;

2) Brown nodes: authors who study DUPLICATE CODE
together with other smell(s) but did not publish papers
in group DCG (e.g., co-occurrence of FEATURE ENVY
and DUPLICATE CODE);

3) Green nodes: authors who have papers in both groups
(DCG/OBSG), but mostly in DCG group;

4) Orange nodes: authors who have papers in both groups
(DCG/OBSG), but mostly in OBSG group;

5) Blue nodes: authors who have papers in both groups
(DCG/OBSG), in similar proportion.

There is only a small fraction of 29 authors (5.5%) in the
intersection (Green, Blue and Orange).

It is interesting to note that DUPLICATE CODE has to
be considered as a particular category of smell, not only
because it is the oldest being studied, the one with large
number of papers and the one being studied mainly alone,
but also because the research community working on DU-
PLICATE CODE is largely separated from the community
studying the other types of bad smells. Indeed, there are just
a few authors working on these two universes. One possible
reason is that the interest in DUPLICATE CODE emerged
much before the other bad smells had been characterized, so
its community has been nurtured for a longer time. Another
possible explanation for this is that DUPLICATE CODE is
quite versatile and does not heavily depend on internal or
external factors of software. Also, the detection of this bad
smell is not influenced directly by the existence of other
types of bad smells (e.g., LARGE CLASS) and this could also
have contributed to the observed behavior.

We observe that the OBSG community would benefit
from more interaction with the DCG community. For in-
stance, consider the study of genealogy of CLONES, which
describes how groups of CLONES change over multiple
versions of a system [219]. There are several DCG papers
on this topic [160, 181, 207]. Even if there are some papers
that studied the life cycle of smells (e.g., [308, 321, 360]),

http://argouml.tigris.org/
http://xerces.apache.org/
http://www.jfree.org/jfreechart/
https://sourceforge.net/projects/ganttproject/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 28

to the best of our knowledge, there was not an intentional
reuse of the methodological framework already developed
for DUPLICATE CODE (CLONE).

Fig. 9. Amount of bad smells studied by each author in OBSG papers.

To answer the second part of RQ (if researchers study
a diverse set of smells or concentrate on few smells), we
analyze the authors of OBSG papers. In this group, there are
215 distinct authors, who were grouped in Fig. 9 according
to the number of distinct smells. From this figure, only
88 authors (40.9%) studied more than six smells and these
are distributed into 22 clusters at the bottom of Fig. 9. 46
authors, a representative fraction (21.4%), studied only one
bad smell.

Although the authors of OBSG papers have a reasonable
interest in studying several bad smells types, the bad smell
diversity is somewhat limited. This may be explained by
the fact that the bad smells studied the most represent only
a small set of the whole universe of proposed smells (e.g.,
LARGE CLASS, LONG METHOD, FEATURE ENVY), and still,
they are likely to be studied in the same papers, as shown
in Table 4.

Lessons About RQ4.1

Authors have different levels of interest in bad smells
and few of them try to study smells that are apparently
unrelated or tackle studies with a wide range of bad
smells. We observe again that DUPLICATE CODE repre-
sents a smell on its own which deserves a separate and
different type of literature review.

8.2 RQ4.2: Who are the researchers mostly interested
(by number of papers) to the area of bad smells? Which
were the countries and universities where bad smells
studies have been conducted?
This research question focuses on elucidating which re-
searchers have contributed more to specific bad smell topics.

Fig. 10. Number of papers by author (OBSG papers).

The goal is to facilitate information access and to promote
collaboration among researchers with similar interests.

A required disclaimer is that this question does not
aim at ranking the most productive researchers. Researchers
may work on different research lines other than bad smells.
In our survey, we did not analyze every publication from
researchers; therefore, it does not make sense to compare
the productivity of researchers with these data.

Analyzing the OBSG papers, the main authors are: Yann-
Gaël Guéhéneuc15 (14.6%), Foutse Khomh16 (13.0%), An-
drea De Lucia17 (11.3%), Rocco Oliveto18 (11.3%), Gabriele
Bavota19 (10.5%). Fig. 10 summarizes this information. In
general, the top-5 currently play the role of advisor or
principal investigator.

The second part of this research question is aimed at
pointing out institutions with more interest in bad smells,
thus elucidating where specific kinds of investigation have
been carried out. Even if the number of published papers is
a reasonable proxy measure for level of interest in a theme,
there could be other factors that would characterize the
interest that were not considered.

The researchers more concerned in other bad smells
and/or in the combination of them (OBSG papers) are af-
filiated to the following institutions: Polytechnique of Mon-
tréal20, University of Salerno21, University of Montréal22,
University of Sannio23, and University of Molise24 (see
Fig. 11).

Data also reveals that Montréal (Canada) is the main
site concentrating researchers interested in studying other
bad smells, as well combinations of them. Specifically the
institutions: Polytechnique of Montréal and University of
Montréal are the main representatives in this area (Group
OBSG).

15. http://www.yann-gael.gueheneuc.net/Work/Info/
16. http://www.khomh.net/
17. http://docenti.unisa.it/andrea.delucia
18. http://docenti.unimol.it/index.php?u=rocco.oliveto
19. http://www.inf.usi.ch/faculty/bavota/
20. http://www.polymtl.ca/
21. http://web.unisa.it/en
22. http://www.umontreal.ca/english/
23. http://www.unisannio.it/
24. http://www.unimol.it/english/

http://www.yann-gael.gueheneuc.net/Work/Info/
http://www.khomh.net/
http://docenti.unisa.it/andrea.delucia
http://docenti.unimol.it/index.php?u=rocco.oliveto
http://www.inf.usi.ch/faculty/bavota/
http://www.polymtl.ca/
http://web.unisa.it/en
http://www.umontreal.ca/english/
http://www.unisannio.it/
http://www.unimol.it/english/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 29

Fig. 11. List of affiliations on OBSG papers.

Our dataset shows that Canada (18.9%), USA (18.4%),
Brazil (9.0%) and Italy (8.0%) are the most representative
countries for the number of authors (see details in Fig. 12).
With respect to the number of research centers, this sequence
is a little different: USA (22.2%), Germany (11.1%), Canada
(9.8%), Italy (7.4%) and Brazil (6.1%), see details in Fig. 13.
The same analysis, but in terms of the number of publica-
tions, reveals another ranking: Canada (35), Italy (29), USA
(24), Netherlands (12), Norway (12) and Brazil (11). The
main research centers and their main authors are detailed
in Fig. 11, where we use the number of papers to sort the
research centers.

Analyzing Fig. 11, we observed that some authors move
between the institutions or are affiliated with various insti-
tutions. In some cases, the collaboration with an institution
occurs before the author becomes affiliated to that institu-
tion.

Another remark is that the universities are largely re-
sponsible for conducting research on the bad smells. Con-
sidering all authors of OBSG papers, only eight (4.4%) are
not affiliated to universities.

Lessons About RQ4.2

We reported the main authors interested in the bad
smells and their countries/affiliations. This informa-
tion helps to monitor and track the progress and/or
scientific trends and it is especially useful for new-
comers to this field. We also observed that universities
are largely responsible for conducting research on bad
smells.

8.3 RQ4.3: How are the authors and their research
groups interconnected? Does this interconnection im-
pact on publications?

Social network analysis (SNA) is a suitable framework to
answer this research question. According to Farine et al.
[56], “social network analysis is a tool for studying the social
organization of groups based on the associations or interactions
between individuals".

In SNA, individuals are represented by nodes and the
relationships between them are represented by lines con-
necting the nodes. These diagrams are very useful to re-
veal group structures that are hidden (e.g., stars, alliances,
subgroups) [57]. In this work, we used Gephi [58], an
open source software that allows the creation, handling, and
representation of these SNA graphs.

In order to answer this research question, we rely on
Fig. 12, where the authors are represented by nodes. The
line connecting two nodes means that both authors co-
authored one or more papers. The size of each node rep-
resents the number of papers published by the author in
the corresponding group (OBSG papers). Analogously, the
line thickness connecting the nodes represents the extent
to which the authors are publishing together. Finally, the
node colors represent the country of the research institutions
which the author is affiliated with. If an author published
papers with different affiliations and the countries of the
institutions are different, affiliation and country of the most
recent paper is considered in the analysis. We also inves-
tigated the movement of authors and we observed that 19
(8.8%) out of 215 distinct authors in the OBSG papers moved
between universities (institutions). However, if we consider
moving between countries, only 9 (4.2%) moved from one
country to another.

Fig. 12 shows every author of OBSG papers and we
observe the existence of several groups of different sizes. A
group is characterized by a cluster, which can be isolated or
have an interface with other groups (see Fig. 12). Most of the
groups are comprised of authors that do not interact with
other groups, i.e., clusters are more well-defined. Moreover,
when interaction occurs, typically, the main/large node in a
group (cluster) is the one that interacts with other groups.
Actually, this also may explain why those nodes are larger.
Most clusters are one-colored, indicating that groups are
likely to be restricted to the same country, i.e., geographic
localization is an important factor to determine collabora-
tion.

We also observed that the groups are quite heteroge-
neous, in terms of number of papers. Some groups are
exclusively composed of authors having just one paper or a



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 30

Fig. 12. Social Network Graph of authors in OBSG papers.

small number of papers. On the other hand, other groups are
composed of authors having a moderate or higher number
of papers. There are also more heterogeneous groups, i.e.,
groups having authors with a high variance in the number
of papers, suggesting different roles of the researchers, e.g.,
advisor/PI or student. In general, Fig. 12 gives an idea of
how future collaborations will look like, e.g., newcomers
(students) will emerge from the interaction with authors
(advisors) having a moderate or high number of papers.

The second part of this research question aims at clar-
ifying if the interconnections among the authors have an
effect on publishing. We calculated the correlation co-
efficient between the number of papers of authors and
their corresponding number of different co-authors. We
use Pearson correlation due to the relatively large size of
data (df=212) [59]. For authors in the OBSG group, we
have a relatively high Pearson’s correlation: 0.848805, p-
value<2.2e−16, df=212, IC 95% (0.805813 0.882896). Al-
though this result was expected, we show it to reinforce
the role of collaboration.

We also investigate if the co-authorship graph (Fig. 12)
has the properties of a “small world graph”, in which most
nodes are not neighbors of one another, but the neighbors
of any given node are likely to be neighbors of each other
and most nodes can be reached from every other node by

a small number of edges. According to Telesford et al. [60],
for disconnected graphs, small world analysis can be done
on the largest connected component of the network. Fig. 12
contains a large connected component along with many
smaller disconnected components that vary in size. This
largest component contains around 41.9% (90 of 215) of all
authors and they have 246 edges between them. The study
by Telesford et al. [60] reports on a quantitative approach
for identifying a small world graph. In their approach,
the clustering coefficient (C) and short path lengths (L) of
the large connected component are measured against those
of their equivalent derived random networks (Crand and
Lrand). Next, these measures are used to calculate the small-
coefficient (σ). They report that a small world graph is a
graph with: C � Crand, L ≈ Lrand and σ > 1. For the
large connected component of Fig. 12, these conditions are
met (C = 0.805; Crand = 0.071; L = 3.743; Lrand =
3.075; σ = 9.30). We conclude that this large connected
component is a small world graph, where the collaboration
is flourished, and they are responsible for most of the OBSG
papers (69 out of 124), having a higher number of papers per
author. The disconnected 30 sub-graphs represent smaller
groups with a lower number of papers, in general, but
collectively they produce a significant number of OBSG
papers (55 out of 124). This division of the papers between



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 31

Fig. 13. Social Network Graph of affiliations in OBSG papers.

a large connected group and many isolated groups unveils
the dynamics of how the findings are being produced.

In order to complement the analysis of Fig. 12, we also
created Fig. 13 to represent the interconnections between
research groups. This figure is like the previous one (Fig. 12),
however, the universities (institutions) are represented by
nodes and the colors show their countries. The node size
still represents the number of papers, and the score inside
the labels shows the number of authors with that affiliation
— in this case, we consider the affiliation of authors at the
time of publishing. In general, this new figure gives an idea
of how committed are the research centers on the bad smells
and how much they are working together.

Analyzing Fig. 13, we observe that some research cen-
ters are highly interconnected to others, e.g., University
of Maryland (10), University of Molise (10), University of
Salerno (10), University of Sannio (10), Polytechnique of
Montréal (9), University of Lugano (9). However, the den-

sity of interconnections does not always correspond to the
number of papers (size of nodes), e.g., the authors affiliated
with the University of Maryland published four papers. On
the other hand, many of these interconnections reflects the
interest on bad smells, e.g., the University of Salerno and
the Polytechnique of Montréal shows fourteen and twenty-
two papers, respectively. So, the institutions are reasonably
different and, possibly, this is reflected in the number of
authors (score inside the label of nodes), e.g., the University
of Salerno showed six authors and the Polytechnique of
Montréal had eleven authors.

Lessons About RQ4.3

The scientific connections among researchers (observed
by SNAs) seem to exert some influence on publishing,
including defining those bad smells that are subject



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 32

of studies. The community is organized into a large
small world graph of collaborations that is responsible
for most studies. Moreover, there is a large number of
disconnected groups that are responsible for a substan-
tial part (44%) of the studies. We observe a concentra-
tion on some geographic locations and/or affiliations,
which can be explained by the small world graph of
collaborations.

9 RESULTS ON THE DISTRIBUTION OF PAPERS
AMONG VENUES (TA5: where)
This section quantifies the venues that are more prone to
publish bad smell studies.

9.1 RQ5.1: Are there venues more inclined to publish
papers on a particular set of bad smells?

Fig. 14. Venues distribution by groups (OBSG/DCG).

To answer this question, the proportion of indexed
papers in the main venues over more than one decade
(2002 — 2017) is presented in Table 12. This table consid-
ers only OBSG papers and presents venues with three or
more publications. The 13 venues presented in this table
are responsible for 69.3% of the OBSG papers. In order
to complement the analysis and to provide an overview
of our dataset, Fig. 14 considers all papers of the Final
Database and the dataset is organized into two categories
(OBSG/DCG). The 27 venues presented in this figure are
responsible for 82.3% of the papers comprising the Final
Database. This figure shows that there are some venues
where DUPLICATE CODE papers are almost as frequent as all
other bad smells together. For instance, considering the top-
15 venues, ICSME, WCRE, SCAM, and ICSE have a higher
proportion of papers on DUPLICATE CODE compared to all
other bad smells together. Other venues in the top-15, where
the proportion of DUPLICATE CODE is high (more than 1/3)
compared to all other bad smells are ICPC, CSMR, EMSE
and MSR.

Numerically, the results show that ICSME is the main sci-
entific vehicle to disseminate knowledge about bad smells
(see Table 12 and Fig. 14). In 2004, the first papers about
other bad smells appeared [339, 371]. According to Table 12,
the years 2012, 2013, and 2016 were for ICSME the most
representative in the series with 53.8% (7) of the papers on
bad smells.

In the second position, considering only OBSG papers,
we have the TSE journal with 12 papers (see Table 12).
In comparison with ICSME, first papers published in TSE
appeared later (2007), as expected; in terms of number of
papers, the years 2013 and 2014 were the most representa-
tive for TSE.

Following, we have WCRE with 7% of the papers com-
prising the group OBSG (see Table 12). The earliest study
considering other bad smells [379] appeared in 2002. Sim-
ilarly to ICSME, WCRE was dominated (70.0%) by DUPLI-
CATE CODE publications (see Fig. 14). Generally, the number
of papers published in this venue increased (see Table 12).

In 2014, WCRE joined CSMR and in this year the pa-
pers were published in the proceedings of CSMR-WCRE,
while in 2015 CSMR-WCRE was named International Con-
ference on Software Analysis, Evolution, and Reengineer-
ing (SANER). Thus, to avoid data superposition, since
2014 WCRE and CSMR papers were separately classified
(SANER). It is interesting to note that if considered together,
CSMR, WCRE, and SANER would be the venue with the
largest number of papers.

In order to explain why researchers publish more in
ICSME and WCRE25 than in other conferences (e.g., ICSE,
SCAM), we analyzed the “Program Committee" composition
of the most representative editions (2010 — 2016). These
years were more representative because they represent
79.0%, 98 out of 124 papers comprising the OBSG group
(see Fig. 2). Combining this information with the researchers
and their inter-connections, we observed that the commit-
tees of the main venues (ICSME/WCRE) include many
more researchers with an interest in bad smells than other
conferences and generally, most of these researchers are
points of interface within their research groups (see details
in Subsection 8.3). So, it is natural that these venues gain
visibility from the interested community and researchers are
stimulated to publish there.

We observed that most venues are interested in bad
smells regardless of its type. Exploring the Research Tracks of
the main venues, we observed that the call for papers usu-
ally has generic topics (e.g., Software refactoring, restructuring,
renovation, migration and reengineering at ICSME; Program
transformation and refactoring at WCRE) and, in some cases,
there are bad smell specific topics (e.g., Code cloning and code
provenance at ICSME) coexisting with generic topics. With
respect to specific topic of bad smells, the most common
is related to clones. This also demonstrates that DUPLICATE
CODE smell is a more mature and specific topic, unlike other
smells. Also, the co-occurrence of specific and generic topics
on bad smells would explain why the community working
only on DUPLICATE CODE and the community working on
the other types of smells are largely separated.

According to the data, 2013 was the year with the largest
number of venues (15) simultaneously publishing papers in
the bad smell area, and we can observe that this is the year
with the largest number of papers in the main venues. This
would suggest a growing interest in the topic. This fact also
explains the peak of 42 papers observed in Fig. 2.

25. We also consider CSMR-WCRE and SANER.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 33

TABLE 12
Venues distribution (OBSG papers).

XXXXXVenues
Years 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 Total

ICSME 2 (15.4%) 1 (7.7%) 1 (7.7%) 2 (15.4%) 2 (15.4%) 1 (7.7%) 1 (7.7%) 3 (23.1%) 13 (10%)

TSE 1 (8.3%) 1 (8.3%) 1 (8.3%) 1 (8.3%) 3 (25.0%) 3 (25.0%) 1 (8.3%) 1 (8.3%) 12 (10%)

WCRE 1 (11.1%) 2 (22.2%) 3 (33.3%) 3 (33.3%) 9 (7%)

CSMR 1 (12.5%) 1 (12.5%) 1 (12.5%) 2 (25.0%) 1 (12.5%) 2 (25.0%) 8 (6%)

IWPC/ICPC 1 (14.3%) 1 (14.3%) 2 (28.6%) 3 (42.9%) 7 (6%)

EMSE 1 (16.7%) 1 (16.7%) 1 (16.7%) 3 (50.0%) 6 (5%)

JSS 1 (16.7%) 2 (33.3%) 1 (16.7%) 1 (16.7%) 1 (16.7%) 6 (5%)

SANER 1 (16.7%) 3 (50.0%) 2 (33.3%) 6 (5%)

SCAM 2 (40.0%) 1 (20.0%) 2 (40.0%) 5 (4%)

ASE 1 (25.0%) 1 (25.0%) 2 (50.0%) 4 (3%)

ESEM 1 (25.0%) 1 (25.0%) 2 (50.0%) 4 (3%)

ICSE 1 (33.3%) 1 (33.3%) 1 (33.3%) 3 (2%)

MSR 1 (33.3%) 1 (33.3%) 1 (33.3%) 3 (2%)

Lessons About RQ5.1

Some venues, like ICSE, SCAM, ICSME, WCRE, ICPC,
CSMR, and EMSE, have a higher proportion of DCG
papers, being highest in ICSE and SCAM. Since 2004,
the interest in other bad smells has increased, where
TSE and ICSME are the venues with highest proportion
of studies.

We also observed that the call for papers of venues
might in part explain why community working on
DUPLICATE CODE is largely separated from the com-
munity studying the other types of bad smells, having
indeed a specific topic of interest.

10 DISCUSSION & FUTURE DIRECTIONS

We have shown that although a large body of knowledge
has been produced regarding the detection of smells and
respective association with maintenance factors, there is still
some surprising and contradictory results. In this section,
we provide a perspective on how smell detection and mon-
itoring can be further investigated to drive towards more
convergent and actionable evidence.

10.1 On the improvement of smell detection with new
kind of metrics

Metrics are largely used to define rules for smell detection
in code entities (e.g., class/method). Several metrics have
been implemented, e.g., the PADL framework implements
more than 60 metrics [334], and many of them are used
to detect smelly codes [352]. Table 13 shows the most
recurrent metrics on OBSG papers organized according to
sixteen dimensions based on previous work [309]. The most
frequent dimensions are related to the most studied smells
in OBSG papers (Table 4). Typical approaches compute
these metrics from the source code of one snapshot of
the system (e.g., [305, 306]). However, over recent years,
the metrics also have been collected from version-control
systems (e.g., SVN, Git) [301, 354, 361], which still allows
extracting metrics for a specific snapshot (revision), but
also allows extracting other kind of metrics (e.g., classes
added/removed/moved/renamed), i.e., the Change Informa-
tion dimension. Metrics can also be extracted from UML di-
agrams [370]. However, generally these diagrams are rarely
included in version control systems together with source

TABLE 13
Most discussed metrics on OBSG papers.

Frequency Dimension Example of Metrics

High Size Lines of Code (LOC), Number of Classes (NOCS).
High Complexity Cyclomatic Complexity (CYCLO), Weighted Methods Count (WMC).

High Cohesion Tight Class Cohesion (TCC), Lack of cohesion in methods (LCOM).

High Coupling Coupling Between Objects (CBO), Access to Foreign Data (ATFD).

Medium Lexical Vocabulary of Method Name (VMN), Vocabulary of Field Name (VFN).

Medium Inheritance Number of children (NOC), Depth in inheritance tree (DIT).

Medium Encapsulation Number of Public Attribute (NOPA), Number of Accessor Methods (NOAM).

Medium Structural Static Method (SM), Abstract Class (AC), Overridden Method (OM).

Low Polymorphism Number of Potentially Polymorphic Instructions (NPPI).

Low Performance
Number of Garbage Collection Calls (NGCC), Memory Usage (UM), Number
of Delayed Frames (NDF).

Low
Design Pattern

(MVC)
Number of Routes (NOR), Number of Services as Dependencies (NSD), Non-
Framework Response for a Class (NFRFC).

Low Change
Information

Number of Methods Committed (NMC), Number of Classes Modified (NCM).

Low Architecture-
Sensitive

Number of External Elements (NEE), External Fan-out (EFO).

Low
Developer IDE

Activity Number of Viewed files (NVF), Time Used For Editing (TUE).

Low Textual Commit Messages Analysis, Comment Messages Analysis.

Low Design Models
(UML)

Number of Smelly Classes in Models (NSCM).

Frequency on OBSG papers: High≥ 5; 3≤Medium≤ 4; 0≤ Low≤ 2.

code, so extracting metrics from UML diagrams would first
require reverse engineering them from source code.

Future Direction: We suggest that metrics from other
sources could be investigated to improve the quality of
current detection strategies. As examples of new sources,
we suggest to explore the less studied metrics that can be
obtained from different kind of repositories: (i) developer
profile (e.g., expertise on specific components); (ii) develop-
ment environment (e.g., error/faults on integration scripts);
(iii) UML diagrams (e.g., class diagrams); (iv) communica-
tion process (e.g., time used to report/discuss issue(s)).

10.2 On the use of evolution metrics for smell monitor-
ing

We observed that most of the detection approaches (see
Fig. 5), define composite rules based on metrics (e.g., GOD
CLASS: a class has high AOFD (Access Of Foreign Data)
and WMPC (Weighted Method Count) and TCC (Tight Class
Cohesion) [306]). To define what is “high”, two strategies to
define thresholds for the corresponding metrics have been
proposed: thresholds can be constant (e.g., [357, 405]) or vari-
able according to a predefined criterion, for example, project-
specific thresholds (e.g., [339, 364]). Over recent years, we
observe that variable thresholds have received greater atten-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 34

tion, and many techniques to define those thresholds have
been proposed, e.g., Maiga et al. [364] use the statistical
theory of supervised learning (SVM); Moha et al. [366] use
the classical statistical methods (inter-quartile ranges) and
Khomh et al. [373] use conditional probability (Bayesian
Belief Network). The hypothesis that constant thresholds
may be too restrictive to cope with a wide range of specific
contexts may be an indication that instead of detecting
smells on the current revision to decide if refactoring is
required or not, a more continuous approach of monitoring
the evolution of smell-related metrics may play an impor-
tant role in taking more informed decision on the necessity
of refactoring.

Bavota et al. [308] detect the smell COMPLEX CLASS with
the rule: “a class having at least one method for which McCabe
cyclomatic complexity is higher than 10". Their results showed
the lack of interest of developers in refactoring COMPLEX
CLASSES, because that would be very challenging. Based on
this observation, maybe developers or software engineers
are interested in monitoring the evolution to prevent the
introduction of these kinds of bad smells, rather than fixing
them.

A recent study [61] has shown that, in general, smells are
long-lived and those that are removed, tend to be removed
just after the insertion (after∼10 commits). So, there is some
indication that developers might be especially interested in
monitoring the introduction of anomalies.

Future Direction: We suggest that rules for smell de-
tection could also rely on the evolutionary tendencies of
metrics, e.g., the evolution of the McCabe metric on the dif-
ferent versions of the system could be monitored to inform a
timely configuration for refactoring. Although, some strategies
to detect smells from the version history have been pro-
posed (e.g., HIST [354]), to the best of our knowledge no
study has investigated/considered the evolution of metrics
(e.g., increase/decrease) to construct rules based on variable
threshold to detect bad smells (e.g., LONG METHOD: all
methods having LOC higher than the average of the system and
LOC being increased over the releases).

10.3 On the human perception of bad smell
Some papers map or evaluate the subjective human percep-
tion of bad smells, e.g., [162, 312, 313, 326] (see Subsection
7.1). These papers concentrate on two groups of interest: De-
velopers and Students. One interesting fact is that although a
bad smell is detected in the source code, the developer may
not agree that it is indeed a smell, and even more, he/she
may not agree on the convenience of restructuring the code,
posing a major challenge for detection and recommending
tools.

An interesting issue may raise on the nature of bad
smells. From a practical point of view, interesting bad smells
are those that can be automatically detected. The detection
process is a binary classifier: code components are classi-
fied as smelly or not. This dichotomy is used strictly in
most studies on bad smells. Once an element is considered
smelly, it typically carries all properties inherent to the
corresponding bad smell(s). There is a recent study [352]
that re-characterizes the dichotomous nature of bad smells
to consider the intensity of bad smells, in order to improve
bug prediction.

This raises the question that the association of an element
with a design flaw that is convenient or even feasible to
be restructured is much more complex than the dichotomic
answer of bad smell detection. Nonetheless, the quantitative
models already proposed for detection are an important
asset to find and prioritize the relevant design flaws that
are likely to be restructured.

Future Direction: We suggest that detection strategies
evolve from a binary classification technique to a new en-
vironment for informed decisions about sub-optimal code
that must be restructured, reporting the rationale, risks,
consequences and benefits of that restructuring. In other
words, this view is coherent with the previous directions,
where we need a more holistic interpretation of sub-optimal
code that is grounded on several aspects of development,
including a retrospective and prospective analysis of metrics
of interest.

10.4 On the necessity of representative benchmarks
Pate et al. [6] also show that ArgoUML is the most analyzed
system, occurring in 26.6% of papers (8 out of 30 studies).
Pate et al. [6] also reports a large diversity of open source
systems used in empirical studies (in 30 papers, they found
51 different systems). We found 226 distinct open source
systems and 18 proprietary systems. Note that Pate et al. [6] do
not distinguish between open source and proprietary systems,
and their work considers only CLONES. Nevertheless, both
our and their data confirm the lack of a representative
database containing source code and documentation, which
could describe where and how bad smells could be fixed.
This database would contribute toward conducting repro-
ducible studies. As observed by Pate et al. [6], “this makes
clear the need for comparative studies in which the following
variables are controlled: subject system, tracking interval, and
tracking duration".

Moreover, we observed that apparent contradictions on
research findings that we have reported previously are
mostly consequence of the known threats to external va-
lidity. This is somehow expected because whenever some
research finding is valid for some subject systems, different
conclusions can be expected in studies using different sys-
tems.

Future Direction: The creation of a representative bench-
mark is very laborious to construct and would require a co-
ordinated joint effort in order to be successful. In this direc-
tion, Palomba et al. [62] propose an open dataset (Landfill26)
with 243 instances of five types of smells identified from
20 open source projects. Recently, Tufano et al. [351][359]
improved this dataset to consider other smells (e.g., EAGER
TEST) and they also included other open source projects
(e.g., HSQLDB). However, the current dataset is restricted to
a few kinds of smells (six code smells and two test smells).
We also observed that Landfill does not permit discussion
on how to refactor the instances of smells.

As an additional effort in the direction of robust bench-
mark, we suggest enhancing the promotion for adoption of
open science practices, such as, the publication of datasets
and artifacts used in empirical studies would provide in
the short-term a large amount of data that would permit

26. http://www.sesa.unisa.it/landfill/

http://www.sesa.unisa.it/landfill/


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 35

replications to better understand the influence of the context
in the reported findings. Moreover, data availability would
eventually permit the integration of different datasets into a
large scale curated benchmark.

10.5 On the concept of smell lineage
Pate et al. [6] report four approaches for constructing clone
lineage (or similarly, fragment traces) in terms of evolu-
tion. In one of these approaches, the clones are detected
in all source code versions of interest, and then corre-
sponding clones in consecutive versions are retroactively
linked. Analyzing papers that use this type of technique
(e.g., [6, 181, 219]), they map patterns that can model the
appearance, disappearance, or reappearance of a clone be-
tween versions of code (e.g., a removal/change followed
by an addition/change operation could cause another code
fragment to reappear as a clone).

Considering the other types of smells (e.g., FUNCTIONAL
DECOMPOSITION, SPAGHETTI CODE), in recent years, we
have observed that some papers (e.g., [361, 360]) use the
concept of lineage. Tufano et al. [360] investigated when
developers introduce bad smells. They use multiple reposi-
tories and analyze each repository (ri) using a HistoryMiner.
This tool mines the entire change history of ri, checks out
each commit in chronological order, and then runs their Ad-
Hoc implementation of a smell detector (HistoryMiner —
similar to DECOR). As output, the tool produces for each
source code file fj ∈ ri the list of commits in which fj has
been involved, specifying if fj has been added, deleted, or
modified and if fj was affected, in that specific commit, by
one of the five considered smells. So, they can say when
bad smells are introduced. However, they do not consider
that the snippets of code can be moved from one entity
to another, for example: the method A was in class C1 on
release R1 and on the next release R2 this method was
moved to class C2. This suggests that the smells could also
move between entities. Therefore, distinguishing the cases
where a smell was removed and a new one was added
from cases when an entity was moved/renamed/created
is important to construct a good lineage of smells. On this
direction, Palomba et al. [354, 361] propose the tool HIST
that considers this limitation. However, this tool is Ad-
Hoc (the researchers do not share the implementation) and
this limits its use by the community. Additionally, in these
papers, they do not investigate the co-occurrence of smells
on the perspective of lineage.

Future Direction: We suggest that lineage of bad smells
is an interesting topic of research, in particular to discover
patterns between related bad smells (e.g., FEATURE ENVY
and SHOTGUN SURGERY) or smells that co-occur in the same
entity. Given the challenge of defining a background for
smell lineage, the OBSG community would benefit from an
interaction with DCG community, e.g., to reuse the public
frameworks already developed (e.g., SPCP-Miner27).

Wit et al. [102] proposes a plugin that can detect and
track clones based on clipboard activities of programmers.
This technique is based on the assumption that program-
mers’ copy-paste activities are the primary reason for the
creation of code clones and they use this strategy because

27. https://homepage.usask.ca/~mam815/spcpminer/

it is the simplest form of reuse mechanism [210]. Bavota
et al. [308] define the smell FEATURE ENVY as “a method is
more interested in a class other than the one it is actually in".
Additionally, Ahmed et al. [288] reports that the develop-
ers tend to perform more frequent copy-paste inside the
same file (class). It is reasonable to assume that copy-paste
performed across different entities (e.g., between methods
on different classes), could introduce the smell FEATURE
ENVY. This suggests that the activities inside the editor (e.g.,
copy-paste) can be monitored to detect and/or prevent the
introduction of other bad smells.

10.6 On the new contexts for bad smells
The number of studied smells have been increasing over the
last years. We found 104 different smells in the literature and
considered several others to be similar, e.g., BLOB/LARGE
CLASS. Many of these smells are small variations on each
other, and others can be the re-characterization of other
smells in specific contexts. For example, considering the
runtime environment of the application (environmental con-
text), Hecht et al. [368] propose the smell INTERNAL GET-
TER/SETTER, because in Android the usage of getter/setter
is converted into a virtual invocation, which makes the
operation three times slower than a direct access. Distefano
and Filipović [63] describe some consequences of memory
leaks. One of these, Limbo, can arise from useless objects that
occupy a huge amount of memory and are referenced by
a long running method: although the objects are not used,
they cannot be collected by the Garbage Collector (GC). In
Android, when the system is running on low memory, the
system calls the method onLowMemory(). However, if this
method is not implemented, the Android system kills the
process in order to free the memory [368]. So, in terms of
Environmental Context, in Android systems the Limbo pattern
could be seen as a bad smell which can cause an abnormal
termination of programs. A variation of this pattern can
occur when a “LONG METHOD" (e.g., in terms of LOC)
create a list of objects, then performs many operations not
related to that list, and only at the end of the method,
the objects in the list are handled. Thus, the “bad pattern",
occurs because the list is created at the beginning and not at
the end. In Environmental Context, this pattern can contribute
to the situation of low memory and can cause the abnormal
termination of the program.

According to Yamashita and Moonen [313], bad smells
indicate that there are issues with code quality, such as un-
derstandability, e.g., in [327] artifacts with FEATURE ENVY
and GOD METHOD were associated with time-consuming
changes because they involved highly complex changes in
terms of the number of changing points required to com-
plete the task and also regarding the number of elements
to be considered simultaneously to complete the task. So,
considering the cognitive requirement and the complexity
of tasks on artifacts with smells (e.g, FEATURE ENVY and
GOD METHOD) and the requirements on performance (e.g.,
in a swapless Linux or in an embedded environment, when
the memory is used fully up, the system kills any arbitrary
process to reclaim memory28), we observe that relationships
with semantical sense were not explicitly studied in the

28. http://dl.acm.org/citation.cfm?id=1982324

https://homepage.usask.ca/~mam815/spcpminer/
http://dl.acm.org/citation.cfm?id=1982324


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 36

literature, e.g., are artifacts with co-occurrence of classical
smells (e.g., FEATURE ENVY, GOD METHOD) more asso-
ciated to memory leaks or abnormal terminations? If so,
this association could be more intense in languages without
Garbage Collector (e.g., C++) because memory allocation is
managed by the system source code (e.g., malloc/free) and,
due to the cognitive requirement of an entity with smells,
programmers could insert memory leaks.

Future Direction: We suggest that the study of bad
smells in Environmental Context would reveal new find-
ings/patterns that would have practical outcomes, such as
the LIMBO smell.

10.7 Existing taxonomies and their limitations
Taxonomy is defined as “a system for naming and organiz-
ing things into groups which share similar qualities29". Our
systematic literature review reports a large number of smells
(104) and they cover many aspects of the software develop-
ment (e.g., software maintainability, software architecture).
Besides the seminal work by Fowler and Beck [9] and Brown
et al. [10], other papers also propose taxonomies of smells.

According to Mäntylä et al. [64], a taxonomy makes
the smells more understandable and recognizes the re-
lationships between smells. They propose a higher level
taxonomy for 22 bad smells identified by Fowler and Beck
[9]. Their taxonomy defines seven classes, namely: bloaters,
object-orientation abusers, change preventers, dispensables, encap-
sulators, couplers and others. Their findings indicate that a
taxonomy for smells could help to explain the correlations
between them (e.g., the class couplers have a correlation
with the class change preventers). However, this taxonomy is
restricted only to the code smells, and also does not consider
the interpretation of subjective definitions of some smells, as
example, LARGE CLASS can be interpreted using two points
of view (Size — LARGE CLASS ONLY [311] and Complexity
— COMPLEX CLASS [317]). Another restriction is related to
the way in which programmers think about smells: this
taxonomy is not based upon developer intent or on their
activities (e.g., refactoring). In this direction, Chatterji et al.
[268] conducted a survey with developers and they found
many limitations to the current taxonomy of code clones,
e.g., taxonomy based on different techniques used in clone
detection that helps to determine corresponding techniques
and types (which kind of clone is detected by which tech-
nique or tool).

Moha et al. [366] proposed a taxonomy that describes the
structural relationships among code and design smells, and
their measurable, structural, and lexical properties. It also
describes the structural relationships among design smells
and some code smells. It provides an overview of all key
concepts that characterise a design smell and it also makes
explicit the relationships among code and design smells.
However, in terms of code smells, they use only 17 smells
and most of them (65%) are defined by Fowler and Beck
[9]. They classify only four design smells (FUNCTIONAL
DECOMPOSITION, SPAGHETTI CODE, SWISS ARMY KNIFE
and BLOB CLASS).

Wake [65] also proposed classifications of code smells.
Their taxonomy distinguished code smells that occur in or

29. Cambridge Dictionaries online, http://dictionary.cambridge.org.

among classes. He further distinguished measurable smells,
smells related to code duplication, smells due to conditional
logic, and others. Nevertheless, this taxonomy also has
similar limitations than the previous ones (e.g., small set
of smells).

According to Usman et al. [66], the design of a new
taxonomy follows six steps: 1) define the subject matter
and adopt a definition; 2) specify the descriptive terms that
can be used to describe and differentiate subject matter
instances; 3) design a classification procedure (qualitative
and/or quantitative), which the subject matter instances are
systematically assigned to classes or categories; 4) propose
a classification structure (e.g., hierarchy) and 5) conduct an
validation process (e.g. utility demonstration). In context of
sub-optimal code, as previously mentioned, the definitions
do not converge (e.g, bad smell, code smell, anti-pattern).
In addition, in the last years new types of smells, besides
the ones defined by Fowler and Beck [9] and by Brown
et al. [10] have emerged, such as smells based on lexicon
[43] or smells defined in the context of mobile applications
[330, 411], as discussed in the previous subsection. To create
a taxonomy of smells, these definitions should be enumer-
ated, normalized (e.g., homogenize words) and thoroughly
analyzed, following the above protocol steps, which is not a
trivial task.

Future Direction: In general, all taxonomies are re-
stricted to a small set of smells. Thus, new taxonomies
that incorporate existing knowledge of well-known bad
smells and organize the recent proposed myriad of smells
are required to avoid re-inventing specific ad-hoc smell
definitions where specialization of more general concepts
could facilitate the dissemination of knowledge.

11 CONCLUSION

We conducted a systematic literature review in order to in-
vestigate the current relevant body of knowledge about the
bad smells. Our review is composed of a set of 351 papers
(Final Database), which are classified as Duplicate Code Group
(DCG) or Other Bad Smell Group (OBSG). We mainly focused
on OBSG papers, because we noticed that DUPLICATED
CODE is a very well defined topic with previous surveys
already available and a community largely separated from
the OBSG community. In addition, DUPLICATED CODE is
generally studied alone, while we were interested in under-
standing how different types of smells are studied together.

We presented the main findings in five Thematic Areas
(TAs).

TA1: Which. The data revealed that the DUPLICATE
CODE bad smell is present in 69.8% of the selected papers,
and studies considering the combination of DUPLICATE
CODE with other bad smells are not common (7.4% — 18
out of 245). However, analyzing the other kinds of bad
smells (OBSG), we observed that they are rather studied
together with others (e.g., LONG METHOD occurs in 47.1%
of papers that study the smell LARGE CLASS). Currently,
most OBSG papers are concentrated in studying bad smells
characterized by volume metrics. Moreover, although the
number of different kinds of bad smells have been prolif-
erating over the years, the most studied smells are still a
half-dozen, mostly related to size and cohesion. It is not

http://dictionary.cambridge.org


IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 37

clear that the long tail of less studied kinds of smells can
play an important role in assessing design because of their
low prevalence, but still they would possibly provide more
precise information than just saying that a class is large,
without more precise clues on what to do next. We also
observed that most of the earliest bad smells (e.g., Brown
et al. [10]) have not received due attention, that is, they are
peripheral concerning the number of studies. The bad smells
by Brown et al. [10] are present in 21.7% of OBSG papers.
Similarly, but to a greater extent, the bad smells by Fowler
and Beck [9] are present in 82.2% of OBSG papers. From
the point of view of the variety of different identified bad
smells (104 in total), we observed that most of them (58%)
were sporadically studied. In this case, they were studied by
up to five papers (see Table 15), that is, they seem to have
still just a marginal interest.

TA2: When. Analyzing the studies over time, we ob-
served that studies on DUPLICATE CODE had increased until
2014, but decreased since 2015, whereas studies on the other
smells have a linear growth, with a peak in 2013. We also
observed that before the year 2011, only 21% of papers
studied other types of bad smells and after this period,
this value grew up to 45%. This increment of OBSG papers
is reflected in the number of authors: between 2010 and
2017 the cumulative number of distinct authors increased of
67%. Thus, the identification and analysis of bad smells is a
growing topic that has been continuously attracting interest.
The data indicate that the interest (number of papers) in
this research topic has been rising over the years, and new
researchers are joining the area every year.

TA3: What. Concerning methodological aspects and re-
search findings, the literature presents several types of bad
smells and sometimes a given bad smell presents multiple
definitions or interpretations. Moreover, different elements
of experimental setting such as research aims, subject sys-
tems, used tools have large variability. So, the lack of
adoption of open science (represented by the insufficient
availability of standard and open benchmarks and tools)
partially contributes to the existence of multiple ways of
analyzing the bad smell impact, thus, explaining why the
results of some papers may be contradictory. We have
systematically organized the findings produced over more
than a decade to unveil the convergent, divergent and main
findings. Our results also suggest that studying a particular
combination of bad smells just because they are present in
the code or because they are conveniently detected by tools
may not provide a formal explanation that relates those
bad smells (e.g., REFUSED BEQUEST and LONG METHOD).
Additionally, co-studying bad smells, i.e., investigating the
interaction of different smells on affected code components,
looks promising and may help to reveal conditions where
bad smells are relevant to software maintenance. We also
observed that 21% of papers classified as co-occurrence can
be actually considered as co-studies and only 18% of the 104
smells documented in our dataset are investigated in empir-
ical co-studies. As mentioned previously and also reported
by Zhang et al. [7], many bad smells have a marginal inter-
est (e.g., MIDDLE MAN, PRIMITIVE OBSESSION, PARALLEL
INHERITANCE HIERARCHIES). We think that they have been
neglected because there is few evidences of their negative
impact on source code. However, it would be interesting

to include these smells in co-studies investigating their
interaction with widely studied bad smells. For example,
Mäntylä et al. [64] report that PARALLEL INHERITANCE
HIERARCHIES cause REFUSED BEQUEST, which in turn may
be related to LONG METHODS. Finally, we also identified
the main purposes of papers and our data shows that Detec-
tion (30.7%), Impact (24.3%), and Qualitative Characterization
(11.4%) are the most frequent aims.

TA4: Who. Concerning the researchers studying other
bad smells than DUPLICATE CODE, we observed that they
have several levels of interest in the subject, that is, some of
them publish sporadically and others continuously. There is
a large connected graph of collaborating authors that has
the small world property, indicating high flow of information
within that group of researchers. On the other hand, there
is a large number of smaller disconnected graphs which
still produce a significant part of studies (44%). This divi-
sion between a large connected group and many isolated
groups unveils the dynamics of how the findings are being
produced. We also observed that some research centers are
highly interconnected to others.

TA5: Where. We showed that some venues have a much
higher proportion of studies on DUPLICATE CODE, while
others are more balanced with other bad smells. The pres-
ence in the list of topics of some conference of specific topics
concerned with DUPLICATED CODE and generic topics on
bad smells might explain why the community working only
on DUPLICATE CODE and the community working on the
other types of smells are largely separated.

In general, our results show that a large body of knowl-
edge has been produced on bad smells. Nonetheless, there
are still some divergences due to the lack of generality
of current studies. Moreover, despite the several different
kinds of associations that have been found regarding bad
smells in code, there is little evidence on cause-effect re-
lations that would provide more actionable knowledge on
available empirical data.

ACKNOWLEDGMENTS

The authors would like to thank the partial funding of
the Brazilian governmental agencies FAPEMIG, CNPq and
CAPES.



IE
E

E
TR

A
N

S
A

C
TIO

N
S

O
N

S
O

FTW
A

R
E

E
N

G
IN

E
E

R
IN

G
38

TABLE 14. Tools/techniques used by the OBSG papers to handle the smells.

La
rg

e
C

la
ss

(B
lo

b
cl

as
s,

G
od

C
la

ss
)

Fe
at

ur
e

En
vy

Lo
ng

M
et

ho
d

(G
od

M
et

ho
d)

D
at

a
C

la
ss

Sh
ot

gu
n

Su
rg

er
y

R
ef

us
ed

B
eq

ue
st

Lo
ng

Pa
ra

m
et

er
Li

st
Sp

ag
he

tt
i

C
od

e
D

up
li

ca
te

d
C

od
e

M
es

sa
ge

C
ha

in
s

C
la

ss
Fu

nc
ti

on
C

la
ss

(F
un

c.
D

ec
om

po
si

ti
on

)
A

bs
tr

ac
t

C
la

ss
(S

pe
cu

la
ti

ve
G

en
er

al
it

y)
Fe

w
M

et
ho

ds
(L

az
y

cl
as

se
s,

Sm
al

l
C

la
ss

)
D

at
a

C
lu

m
ps

Sw
is

s
A

rm
y

K
ni

fe
C

om
pl

ex
C

la
ss

O
nl

y
Fi

el
d

Pu
bl

ic
(C

D
SB

P)
D

iv
er

ge
nt

C
ha

ng
e

M
is

pl
ac

ed
C

la
ss

B
ra

in
M

et
ho

d
Te

m
po

ra
ry

va
ri

ab
le

,s
ev

er
al

pu
rp

os
es

In
te

ns
iv

e
C

ou
pl

in
g

D
is

pe
rs

ed
(E

xt
en

si
ve

)
C

ou
pl

in
g

Sw
it

ch
St

at
em

en
ts

U
ni

t
Te

st
Sm

el
ls

A
nt

iS
in

gl
et

on
Tr

ad
it

io
n

B
re

ak
er

La
rg

e
C

la
ss

O
nl

y
In

te
rf

ac
e

Se
gr

eg
at

io
n

Pr
in

ci
pl

e
V

io
la

ti
on

Sc
hi

zo
ph

re
ni

c
cl

as
s

B
ra

in
C

la
ss

D
up

li
ca

te
d

co
de

in
co

nd
it

io
na

l
br

an
ch

es
U

se
in

te
rf

ac
e

in
st

ea
d

of
im

pl
em

en
ta

ti
on

M
id

dl
e

M
an

Pa
ra

ll
el

In
he

ri
ta

nc
e

H
ie

ra
rc

hi
es

In
ap

pr
op

ri
at

e
In

ti
m

ac
y

A
m

bi
gu

ou
s

In
te

rf
ac

e
Pr

im
it

iv
e

O
bs

es
si

on
Le

xi
co

n
B

ad
Sm

el
ls

Ty
pe

C
he

ck
(S

ta
te

C
he

ck
)

D
up

li
ca

te
Po

in
tc

ut
G

od
Po

in
tc

ut
R

ed
un

da
nt

Po
in

tc
ut

C
on

ne
ct

or
En

vy
C

om
po

ne
nt

C
on

ce
rn

O
ve

rl
oa

d
Sc

at
te

re
d

Pa
ra

si
ti

c
Fu

nc
ti

on
al

it
y

Sm
el

ls
in

A
nd

ro
id

(S
pe

ci
fic

)
C

on
tr

ol
le

r
C

la
ss

Lo
w

C
oh

es
io

n
O

nl
y

C
la

ss
es

w
it

h
D

if
fe

re
nt

In
te

rf
ac

es
W

id
e

Su
bs

ys
te

m
In

te
rf

ac
e

In
st

an
ce

of
Ty

pe
ca

st
s

G
od

A
sp

ec
t

C
om

po
si

ti
on

B
lo

at
Fo

rc
ed

Jo
in

Po
in

t
La

zy
A

sp
ec

t
Li

ng
ui

st
ic

A
nt

ip
at

te
rn

s
A

no
ny

m
ou

s
Po

in
tc

ut
La

va
Fl

ow
(d

ea
d

co
de

)
Ex

tr
an

eo
us

C
on

ne
ct

or
C

yc
li

c
D

ep
en

de
nc

y
Id

le
Po

in
tc

ut
C

hi
ld

C
la

ss
C

la
ss

G
lo

ba
l

V
ar

ia
bl

e
C

la
ss

O
ne

M
et

ho
d

Fi
el

d
Pr

iv
at

e
H

as
C

hi
ld

re
n

M
an

y
A

tt
ri

bu
te

s
M

et
ho

d
N

o
Pa

ra
m

et
er

M
ul

ti
pl

e
In

te
rf

ac
e

N
o

In
he

ri
ta

nc
e

N
o

Po
ly

m
or

ph
is

m
N

ot
A

bs
tr

ac
t

N
ot

C
om

pl
ex

O
ne

C
hi

ld
C

la
ss

Pa
re

nt
C

la
ss

Pr
ov

id
es

Pr
ot

ec
te

d
R

ar
e

O
ve

rr
id

in
g

Tw
o

In
he

ri
ta

nc
e

In
co

m
pl

et
e

Li
br

ar
y

C
la

ss
C

om
m

en
ts

Si
m

ul
at

io
n

of
m

ul
ti

pl
e

in
he

ri
ta

nc
e

U
se

le
ss

Fi
el

d
U

se
le

ss
M

et
ho

d
U

se
le

ss
C

la
ss

Em
pt

y
ca

tc
h

bl
oc

ks
B

as
eC

la
ss

K
no

w
sD

er
iv

ed
C

la
ss

B
as

eC
la

ss
Sh

ou
ld

B
eA

bs
tr

ac
t

M
an

yF
ie

ld
A

tt
ri

bu
te

sB
ut

N
ot

C
om

pl
ex

Ju
nk

M
at

er
ia

l
B

or
ro

w
ed

Po
in

tc
ut

V
ar

io
us

C
on

ce
rn

s
A

bs
tr

ac
t

M
et

ho
d

In
tr

od
uc

ti
on

G
od

Pa
ck

ag
e

Ex
tr

an
eo

us
A

dj
ac

en
t

C
on

ne
ct

or
U

nu
se

d
In

te
rf

ac
e

Pr
om

is
cu

ou
s

Pa
ck

ag
e

D
is

to
rt

ed
H

ie
ra

rc
hy

Sm
el

ls
in

M
V

C
A

rq
.(

Sp
ec

ifi
c)

Sm
el

ls
in

C
SS

(S
pe

ci
fic

-
D

SL
)

Sm
el

ls
in

Ja
va

Sc
ri

pt
(S

pe
ci

fic
-

D
SL

)
O

bs
ol

et
e

Pa
ra

m
et

er
A

nn
ot

at
io

n
B

un
dl

e
Sm

el
ls

in
Pu

pp
et

(S
pe

ci
fic

-
D

SL
)

[294] X X X X X X X X X X X
2D-DSL X X X X X X X X X X

Noseprints X X X X X X X X X X
Prodetection X X X X X X X X X

P-EA X X X X X X X X
BLOP X X X X X X X

HistoryMiner X X X X X X
BBT X X X X X
HIST X X X X X
[295] X X X X X

TACO X X X X X
BDTEX X X X X

[296] X X X X
[297] X X X X
[298] X X X X

SMURF X X X X
[299] X X X
[300] X X X
[301] X X X
[302] X X X
[303] X X X

EvolutionAnalyzer X X
Fluid Tool X X

[304] X X
[305] X X
[306] X X
[307] X X
Van X X

AntiPattern Scanner X
Methodbook X

OBEY X
Teamscale X

TestEvoHound X
Borland Together X X X X X X X X X X X X X X X X X X X X X X X X X

Understand X X X X X X X X X X X X X X X X X X X X X X
Pascal Analyzer X X

SonarQube X
inFusion/Incode X X X X X X X X X X X X X X X X X X X X X X X X X X X
SCOOP/Organic X X X X X X X X X X X X X X

CodeVizard X X
IYC X X

TestSmells X
DECOR X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
MuLATo X X X X X X X X X X X X X X X X X X X X X X
iPlasma X X X X X X X X X X X X X X X X

[308] X X X X X X X X X X X
Stench Blossom X X X X X X X X X X X X

SpIRIT X X X X X X X X X X
jDeodorant X X X X X X X X
InsRefactor X X X X X X X

PMD X X X X X X X
JCodeOdor X X X X X X

JSNOSE X X X X X X
Cbsdetector X X X X X

HULK X X X X X
Checkstyle X X X X

[309] X X X X
[310] X X X X

Paprika X X X X
Metrics X X X

SourceMiner X X X
ConQAT X X

SDMetrics X X

continued on next page



IE
E

E
TR

A
N

S
A

C
TIO

N
S

O
N

S
O

FTW
A

R
E

E
N

G
IN

E
E

R
IN

G
39

continued from previous page

La
rg

e
C

la
ss

(B
lo

b
cl

as
s,

G
od

C
la

ss
)

Fe
at

ur
e

En
vy

Lo
ng

M
et

ho
d

(G
od

M
et

ho
d)

D
at

a
C

la
ss

Sh
ot

gu
n

Su
rg

er
y

R
ef

us
ed

B
eq

ue
st

Lo
ng

Pa
ra

m
et

er
Li

st
Sp

ag
he

tt
i

C
od

e
D

up
li

ca
te

d
C

od
e

M
es

sa
ge

C
ha

in
s

C
la

ss
Fu

nc
ti

on
C

la
ss

(F
un

c.
D

ec
om

po
si

ti
on

)
A

bs
tr

ac
t

C
la

ss
(S

pe
cu

la
ti

ve
G

en
er

al
it

y)
Fe

w
M

et
ho

ds
(L

az
y

cl
as

se
s,

Sm
al

l
C

la
ss

)
D

at
a

C
lu

m
ps

Sw
is

s
A

rm
y

K
ni

fe
C

om
pl

ex
C

la
ss

O
nl

y
Fi

el
d

Pu
bl

ic
(C

D
SB

P)
D

iv
er

ge
nt

C
ha

ng
e

M
is

pl
ac

ed
C

la
ss

B
ra

in
M

et
ho

d
Te

m
po

ra
ry

va
ri

ab
le

,s
ev

er
al

pu
rp

os
es

In
te

ns
iv

e
C

ou
pl

in
g

D
is

pe
rs

ed
(E

xt
en

si
ve

)
C

ou
pl

in
g

Sw
it

ch
St

at
em

en
ts

U
ni

t
Te

st
Sm

el
ls

A
nt

iS
in

gl
et

on
Tr

ad
it

io
n

B
re

ak
er

La
rg

e
C

la
ss

O
nl

y
In

te
rf

ac
e

Se
gr

eg
at

io
n

Pr
in

ci
pl

e
V

io
la

ti
on

Sc
hi

zo
ph

re
ni

c
cl

as
s

B
ra

in
C

la
ss

D
up

li
ca

te
d

co
de

in
co

nd
it

io
na

l
br

an
ch

es
U

se
in

te
rf

ac
e

in
st

ea
d

of
im

pl
em

en
ta

ti
on

M
id

dl
e

M
an

Pa
ra

ll
el

In
he

ri
ta

nc
e

H
ie

ra
rc

hi
es

In
ap

pr
op

ri
at

e
In

ti
m

ac
y

A
m

bi
gu

ou
s

In
te

rf
ac

e
Pr

im
it

iv
e

O
bs

es
si

on
Le

xi
co

n
B

ad
Sm

el
ls

Ty
pe

C
he

ck
(S

ta
te

C
he

ck
)

D
up

li
ca

te
Po

in
tc

ut
G

od
Po

in
tc

ut
R

ed
un

da
nt

Po
in

tc
ut

C
on

ne
ct

or
En

vy
C

om
po

ne
nt

C
on

ce
rn

O
ve

rl
oa

d
Sc

at
te

re
d

Pa
ra

si
ti

c
Fu

nc
ti

on
al

it
y

Sm
el

ls
in

A
nd

ro
id

(S
pe

ci
fic

)
C

on
tr

ol
le

r
C

la
ss

Lo
w

C
oh

es
io

n
O

nl
y

C
la

ss
es

w
it

h
D

if
fe

re
nt

In
te

rf
ac

es
W

id
e

Su
bs

ys
te

m
In

te
rf

ac
e

In
st

an
ce

of
Ty

pe
ca

st
s

G
od

A
sp

ec
t

C
om

po
si

ti
on

B
lo

at
Fo

rc
ed

Jo
in

Po
in

t
La

zy
A

sp
ec

t
Li

ng
ui

st
ic

A
nt

ip
at

te
rn

s
A

no
ny

m
ou

s
Po

in
tc

ut
La

va
Fl

ow
(d

ea
d

co
de

)
Ex

tr
an

eo
us

C
on

ne
ct

or
C

yc
li

c
D

ep
en

de
nc

y
Id

le
Po

in
tc

ut
C

hi
ld

C
la

ss
C

la
ss

G
lo

ba
l

V
ar

ia
bl

e
C

la
ss

O
ne

M
et

ho
d

Fi
el

d
Pr

iv
at

e
H

as
C

hi
ld

re
n

M
an

y
A

tt
ri

bu
te

s
M

et
ho

d
N

o
Pa

ra
m

et
er

M
ul

ti
pl

e
In

te
rf

ac
e

N
o

In
he

ri
ta

nc
e

N
o

Po
ly

m
or

ph
is

m
N

ot
A

bs
tr

ac
t

N
ot

C
om

pl
ex

O
ne

C
hi

ld
C

la
ss

Pa
re

nt
C

la
ss

Pr
ov

id
es

Pr
ot

ec
te

d
R

ar
e

O
ve

rr
id

in
g

Tw
o

In
he

ri
ta

nc
e

In
co

m
pl

et
e

Li
br

ar
y

C
la

ss
C

om
m

en
ts

Si
m

ul
at

io
n

of
m

ul
ti

pl
e

in
he

ri
ta

nc
e

U
se

le
ss

Fi
el

d
U

se
le

ss
M

et
ho

d
U

se
le

ss
C

la
ss

Em
pt

y
ca

tc
h

bl
oc

ks
B

as
eC

la
ss

K
no

w
sD

er
iv

ed
C

la
ss

B
as

eC
la

ss
Sh

ou
ld

B
eA

bs
tr

ac
t

M
an

yF
ie

ld
A

tt
ri

bu
te

sB
ut

N
ot

C
om

pl
ex

Ju
nk

M
at

er
ia

l
B

or
ro

w
ed

Po
in

tc
ut

V
ar

io
us

C
on

ce
rn

s
A

bs
tr

ac
t

M
et

ho
d

In
tr

od
uc

ti
on

G
od

Pa
ck

ag
e

Ex
tr

an
eo

us
A

dj
ac

en
t

C
on

ne
ct

or
U

nu
se

d
In

te
rf

ac
e

Pr
om

is
cu

ou
s

Pa
ck

ag
e

D
is

to
rt

ed
H

ie
ra

rc
hy

Sm
el

ls
in

M
V

C
A

rq
.(

Sp
ec

ifi
c)

Sm
el

ls
in

C
SS

(S
pe

ci
fic

-
D

SL
)

Sm
el

ls
in

Ja
va

Sc
ri

pt
(S

pe
ci

fic
-

D
SL

)
O

bs
ol

et
e

Pa
ra

m
et

er
A

nn
ot

at
io

n
B

un
dl

e
Sm

el
ls

in
Pu

pp
et

(S
pe

ci
fic

-
D

SL
)

Hot-Pepper X
JCCD X
JMove X
LAPD X

LBSDetectors X
NiCad X

Puppeteer X
SAME X

SKUNK X
SmellCSS X
SmellJS X

SmellyCat X
TestHound X

Trex X

Ad-Hoc Commercial Deprecated Public



IE
E

E
TR

A
N

S
A

C
TIO

N
S

O
N

S
O

FTW
A

R
E

E
N

G
IN

E
E

R
IN

G
40

TABLE 15. Bad smells of each paper in OBSG.
Pa

pe
r

ID

La
rg

e
C

la
ss

(B
lo

b
cl

as
s,

G
od

C
la

ss
)

Fe
at

ur
e

En
vy

Lo
ng

M
et

ho
d

(G
od

M
et

ho
d)

D
at

a
C

la
ss

Sh
ot

gu
n

Su
rg

er
y

R
ef

us
ed

B
eq

ue
st

Lo
ng

Pa
ra

m
et

er
Li

st
Sp

ag
he

tt
i

C
od

e
D

up
li

ca
te

d
C

od
e

M
es

sa
ge

C
ha

in
s

C
la

ss
Fe

w
M

et
ho

ds
(L

az
y

C
la

ss
,S

m
al

l
C

la
ss

)
A

bs
tr

ac
t

C
la

ss
(S

pe
cu

la
ti

ve
G

en
er

al
it

y)
Fu

nc
ti

on
C

la
ss

(F
un

c.
D

ec
om

po
si

ti
on

)
D

at
a

C
lu

m
ps

C
om

pl
ex

C
la

ss
O

nl
y

Sw
is

s
A

rm
y

K
ni

fe
Fi

el
d

Pu
bl

ic
(C

D
SB

P)
D

iv
er

ge
nt

C
ha

ng
e

M
is

pl
ac

ed
C

la
ss

Te
m

po
ra

ry
V

ar
ia

bl
e,

Se
ve

ra
l

Pu
rp

os
es

B
ra

in
M

et
ho

d
In

te
ns

iv
e

C
ou

pl
in

g
D

is
pe

rs
ed

(E
xt

en
si

ve
)

C
ou

pl
in

g
In

te
rf

ac
e

Se
gr

eg
at

io
n

Pr
in

ci
pl

e
V

io
la

ti
on

Sw
it

ch
St

at
em

en
ts

U
ni

t
Te

st
Sm

el
ls

A
nt

iS
in

gl
et

on
Tr

ad
it

io
n

B
re

ak
er

La
rg

e
C

la
ss

O
nl

y
D

up
li

ca
te

d
C

od
e

in
C

on
di

ti
on

al
B

ra
nc

he
s

U
se

In
te

rf
ac

e
In

st
ea

d
of

Im
pl

em
en

ta
ti

on
Sc

hi
zo

ph
re

ni
c

C
la

ss
B

ra
in

C
la

ss
M

id
dl

e
M

an
Pa

ra
ll

el
In

he
ri

ta
nc

e
H

ie
ra

rc
hi

es
In

ap
pr

op
ri

at
e

In
ti

m
ac

y
A

m
bi

gu
ou

s
In

te
rf

ac
e

Pr
im

it
iv

e
O

bs
es

si
on

Le
xi

co
n

B
ad

Sm
el

ls
Ty

pe
C

he
ck

(S
ta

te
C

he
ck

)
D

up
li

ca
te

Po
in

tc
ut

G
od

Po
in

tc
ut

R
ed

un
da

nt
Po

in
tc

ut
C

on
ne

ct
or

En
vy

C
om

po
ne

nt
C

on
ce

rn
O

ve
rl

oa
d

Sc
at

te
re

d
Pa

ra
si

ti
c

Fu
nc

ti
on

al
it

y
Sm

el
ls

in
A

nd
ro

id
(S

pe
ci

fic
)

C
on

tr
ol

le
r

C
la

ss
Lo

w
C

oh
es

io
n

O
nl

y
C

la
ss

es
w

it
h

D
if

fe
re

nt
In

te
rf

ac
es

W
id

e
Su

bs
ys

te
m

In
te

rf
ac

e
In

st
an

ce
of

Ty
pe

ca
st

s
G

od
A

sp
ec

t
C

om
po

si
ti

on
B

lo
at

Fo
rc

ed
Jo

in
Po

in
t

La
zy

A
sp

ec
t

Li
ng

ui
st

ic
A

nt
ip

at
te

rn
s

A
no

ny
m

ou
s

Po
in

tc
ut

La
va

Fl
ow

(D
ea

d
C

od
e)

Ex
tr

an
eo

us
C

on
ne

ct
or

C
yc

li
c

D
ep

en
de

nc
y

Id
le

Po
in

tc
ut

C
hi

ld
C

la
ss

C
la

ss
G

lo
ba

l
V

ar
ia

bl
e

C
la

ss
O

ne
M

et
ho

d
Fi

el
d

Pr
iv

at
e

H
as

C
hi

ld
re

n
M

an
y

A
tt

ri
bu

te
s

M
et

ho
d

N
o

Pa
ra

m
et

er
M

ul
ti

pl
e

In
te

rf
ac

e
N

o
In

he
ri

ta
nc

e
N

o
Po

ly
m

or
ph

is
m

N
ot

A
bs

tr
ac

t
N

ot
C

om
pl

ex
O

ne
C

hi
ld

C
la

ss
Pa

re
nt

C
la

ss
Pr

ov
id

es
Pr

ot
ec

te
d

R
ar

e
O

ve
rr

id
in

g
Tw

o
In

he
ri

ta
nc

e
In

co
m

pl
et

e
Li

br
ar

y
C

la
ss

C
om

m
en

ts
Si

m
ul

at
io

n
of

M
ul

ti
pl

e
In

he
ri

ta
nc

e
U

se
le

ss
Fi

el
d

U
se

le
ss

M
et

ho
d

U
se

le
ss

C
la

ss
Em

pt
y

C
at

ch
B

lo
ck

s
B

as
eC

la
ss

K
no

w
sD

er
iv

ed
C

la
ss

B
as

eC
la

ss
Sh

ou
ld

B
eA

bs
tr

ac
t

M
an

yF
ie

ld
A

tt
ri

bu
te

sB
ut

N
ot

C
om

pl
ex

Ju
nk

M
at

er
ia

l
B

or
ro

w
ed

Po
in

tc
ut

V
ar

io
us

C
on

ce
rn

s
A

bs
tr

ac
t

M
et

ho
d

In
tr

od
uc

ti
on

G
od

Pa
ck

ag
e

Ex
tr

an
eo

us
A

dj
ac

en
t

C
on

ne
ct

or
U

nu
se

d
In

te
rf

ac
e

Pr
om

is
cu

ou
s

Pa
ck

ag
e

D
is

to
rt

ed
H

ie
ra

rc
hy

Sm
el

ls
in

M
V

C
A

rq
.(

Sp
ec

ifi
c)

Sm
el

ls
in

C
SS

(S
pe

ci
fic

-
1
D

SL
)

Sm
el

ls
in

Ja
va

Sc
ri

pt
(S

pe
ci

fic
-

1
D

SL
)

O
bs

ol
et

e
Pa

ra
m

et
er

A
nn

ot
at

io
n

B
un

dl
e

Sm
el

ls
in

Pu
pp

et
(S

pe
ci

fic
-

1
D

SL
)

#

[311]◦ X X X X X X X X X X X X X X X X X X X X X X X X X X X X X 29
[312]◦ X X X X X X X X X X X X X X X X X X X X X X X 23
[313]◦ X X X X X X X X X X X X X X X X X X X 19
[314]◦ X X X X X X X X X X X X X X X X X 17
[315]• X X X X X X X X X X X X X X X X 16
[299]◦ X X X X X X X X X X X X X X X 15
[316]• X X X X X X X X X X X X X X 14
[317]◦ X X X X X X X X X X X X X 13
[318]◦ X X X X X X X X X X X X X 13
[319]• X X X X X X X X X X X X X 13
[320]• X X X X X X X X X X X X X 13
[321]◦ X X X X X X X X X X X X X 13
[322]◦ X X X X X X X X X X X X 12
[323]◦ X X X X X X X X X X X X 12
[324]• X X X X X X X X X X X X 12
[325]◦ X X X X X X X X X X X X 12
[326]◦ X X X X X X X X X X X X 12
[327]• X X X X X X X X X X X X 12
[328]• X X X X X X X X X X X X 12
[329]• X X X X X X X X X X X X 12
[330]◦ X X X X X X X X X X X X 12
[331]◦ X X X X X X X X X X X 11
[294]• X X X X X X X X X X X 11
[332]◦ X X X X X X X X X X X 11
[308]◦ X X X X X X X X X X X 11
[333]◦ X X X X X X X X X X X 11
[334]◦ X X X X X X X X X X 10
[335]• X X X X X X X X X X 10
[336]◦ X X X X X X X X X X 10
[337]◦ X X X X X X X X X X 10
[338]◦ X X X X X X X X X X 10
[339]◦ X X X X X X X X X 9
[296]• X X X X X X X X X 9
[340]◦ X X X X X X X X 8
[341]◦ X X X X X X X X 8
[342]◦ X X X X X X X X 8
[343]◦ X X X X X X X 7
[344]◦ X X X X X X X 7
[345]◦ X X X X X X X 7
[346]• X X X X X X X 7
[347]◦ X X X X X X X 7
[348]◦ X X X X X X 6
[349]• X X X X X X 6
[350]◦ X X X X X X 6
[351]• X X X X X X 6
[352]◦ X X X X X X 6
[353]◦ X X X X X X 6
[354]◦ X X X X X 5
[355]◦ X X X X X 5
[356]◦ X X X X X 5
[357]• X X X X X 5
[358]◦ X X X X X 5
[359]◦ X X X X X 5
[360]◦ X X X X X 5
[361]◦ X X X X X 5
[306]◦ X X X X X 5
[295]◦ X X X X X 5
[362]◦ X X X X X 5
[363]◦ X X X X X 5
[364]◦ X X X X 4
[365]• X X X X 4
[366]• X X X X 4

continued on next page



IE
E

E
TR

A
N

S
A

C
TIO

N
S

O
N

S
O

FTW
A

R
E

E
N

G
IN

E
E

R
IN

G
41

continued from previous page
Pa

pe
r

ID

La
rg

e
C

la
ss

(B
lo

b
cl

as
s,

G
od

C
la

ss
)

Fe
at

ur
e

En
vy

Lo
ng

M
et

ho
d

(G
od

M
et

ho
d)

D
at

a
C

la
ss

Sh
ot

gu
n

Su
rg

er
y

R
ef

us
ed

B
eq

ue
st

Lo
ng

Pa
ra

m
et

er
Li

st
Sp

ag
he

tt
i

C
od

e
D

up
li

ca
te

d
C

od
e

M
es

sa
ge

C
ha

in
s

C
la

ss
Fe

w
M

et
ho

ds
(L

az
y

C
la

ss
,S

m
al

l
C

la
ss

)
A

bs
tr

ac
t

C
la

ss
(S

pe
cu

la
ti

ve
G

en
er

al
it

y)
Fu

nc
ti

on
C

la
ss

(F
un

c.
D

ec
om

po
si

ti
on

)
D

at
a

C
lu

m
ps

C
om

pl
ex

C
la

ss
O

nl
y

Sw
is

s
A

rm
y

K
ni

fe
Fi

el
d

Pu
bl

ic
(C

D
SB

P)
D

iv
er

ge
nt

C
ha

ng
e

M
is

pl
ac

ed
C

la
ss

Te
m

po
ra

ry
V

ar
ia

bl
e,

Se
ve

ra
l

Pu
rp

os
es

B
ra

in
M

et
ho

d
In

te
ns

iv
e

C
ou

pl
in

g
D

is
pe

rs
ed

(E
xt

en
si

ve
)

C
ou

pl
in

g
In

te
rf

ac
e

Se
gr

eg
at

io
n

Pr
in

ci
pl

e
V

io
la

ti
on

Sw
it

ch
St

at
em

en
ts

U
ni

t
Te

st
Sm

el
ls

A
nt

iS
in

gl
et

on
Tr

ad
it

io
n

B
re

ak
er

La
rg

e
C

la
ss

O
nl

y
D

up
li

ca
te

d
C

od
e

in
C

on
di

ti
on

al
B

ra
nc

he
s

U
se

In
te

rf
ac

e
In

st
ea

d
of

Im
pl

em
en

ta
ti

on
Sc

hi
zo

ph
re

ni
c

C
la

ss
B

ra
in

C
la

ss
M

id
dl

e
M

an
Pa

ra
ll

el
In

he
ri

ta
nc

e
H

ie
ra

rc
hi

es
In

ap
pr

op
ri

at
e

In
ti

m
ac

y
A

m
bi

gu
ou

s
In

te
rf

ac
e

Pr
im

it
iv

e
O

bs
es

si
on

Le
xi

co
n

B
ad

Sm
el

ls
Ty

pe
C

he
ck

(S
ta

te
C

he
ck

)
D

up
li

ca
te

Po
in

tc
ut

G
od

Po
in

tc
ut

R
ed

un
da

nt
Po

in
tc

ut
C

on
ne

ct
or

En
vy

C
om

po
ne

nt
C

on
ce

rn
O

ve
rl

oa
d

Sc
at

te
re

d
Pa

ra
si

ti
c

Fu
nc

ti
on

al
it

y
Sm

el
ls

in
A

nd
ro

id
(S

pe
ci

fic
)

C
on

tr
ol

le
r

C
la

ss
Lo

w
C

oh
es

io
n

O
nl

y
C

la
ss

es
w

it
h

D
if

fe
re

nt
In

te
rf

ac
es

W
id

e
Su

bs
ys

te
m

In
te

rf
ac

e
In

st
an

ce
of

Ty
pe

ca
st

s
G

od
A

sp
ec

t
C

om
po

si
ti

on
B

lo
at

Fo
rc

ed
Jo

in
Po

in
t

La
zy

A
sp

ec
t

Li
ng

ui
st

ic
A

nt
ip

at
te

rn
s

A
no

ny
m

ou
s

Po
in

tc
ut

La
va

Fl
ow

(D
ea

d
C

od
e)

Ex
tr

an
eo

us
C

on
ne

ct
or

C
yc

li
c

D
ep

en
de

nc
y

Id
le

Po
in

tc
ut

C
hi

ld
C

la
ss

C
la

ss
G

lo
ba

l
V

ar
ia

bl
e

C
la

ss
O

ne
M

et
ho

d
Fi

el
d

Pr
iv

at
e

H
as

C
hi

ld
re

n
M

an
y

A
tt

ri
bu

te
s

M
et

ho
d

N
o

Pa
ra

m
et

er
M

ul
ti

pl
e

In
te

rf
ac

e
N

o
In

he
ri

ta
nc

e
N

o
Po

ly
m

or
ph

is
m

N
ot

A
bs

tr
ac

t
N

ot
C

om
pl

ex
O

ne
C

hi
ld

C
la

ss
Pa

re
nt

C
la

ss
Pr

ov
id

es
Pr

ot
ec

te
d

R
ar

e
O

ve
rr

id
in

g
Tw

o
In

he
ri

ta
nc

e
In

co
m

pl
et

e
Li

br
ar

y
C

la
ss

C
om

m
en

ts
Si

m
ul

at
io

n
of

M
ul

ti
pl

e
In

he
ri

ta
nc

e
U

se
le

ss
Fi

el
d

U
se

le
ss

M
et

ho
d

U
se

le
ss

C
la

ss
Em

pt
y

C
at

ch
B

lo
ck

s
B

as
eC

la
ss

K
no

w
sD

er
iv

ed
C

la
ss

B
as

eC
la

ss
Sh

ou
ld

B
eA

bs
tr

ac
t

M
an

yF
ie

ld
A

tt
ri

bu
te

sB
ut

N
ot

C
om

pl
ex

Ju
nk

M
at

er
ia

l
B

or
ro

w
ed

Po
in

tc
ut

V
ar

io
us

C
on

ce
rn

s
A

bs
tr

ac
t

M
et

ho
d

In
tr

od
uc

ti
on

G
od

Pa
ck

ag
e

Ex
tr

an
eo

us
A

dj
ac

en
t

C
on

ne
ct

or
U

nu
se

d
In

te
rf

ac
e

Pr
om

is
cu

ou
s

Pa
ck

ag
e

D
is

to
rt

ed
H

ie
ra

rc
hy

Sm
el

ls
in

M
V

C
A

rq
.(

Sp
ec

ifi
c)

Sm
el

ls
in

C
SS

(S
pe

ci
fic

-
1
D

SL
)

Sm
el

ls
in

Ja
va

Sc
ri

pt
(S

pe
ci

fic
-

1
D

SL
)

O
bs

ol
et

e
Pa

ra
m

et
er

A
nn

ot
at

io
n

B
un

dl
e

Sm
el

ls
in

Pu
pp

et
(S

pe
ci

fic
-

1
D

SL
)

#

[367]◦ X X X X 4
[309]◦ X X X X 4
[368]◦ X X X X 4
[297]◦ X X X X 4
[310]◦ X X X X 4
[298]◦ X X X X 4
[369]◦ X X X X 4
[370]◦ X X X X 4
[371]◦ X X X 3
[372]◦ X X X 3
[373]◦ X X X 3
[300]◦ X X X 3
[374]◦ X X X 3
[375]• X X X 3
[376]◦ X X X 3
[301]◦ X X X 3
[377]◦ X X X 3
[302]◦ X X X 3
[303]◦ X X X 3
[378]◦ X X 2
[379]◦ X X 2
[380]◦ X X 2
[381]◦ X X 2
[382]• X X 2
[383]◦ X X 2
[384]◦ X X 2
[304]◦ X X 2
[385]◦ X X 2
[305]◦ X X 2
[307]◦ X X 2
[386]◦ X X 2
[387] X 1
[388] X 1
[389] X 1
[390] X 1
[391] X 1
[392] X 1
[393] X 1
[394] X 1
[395] X 1
[396] X 1
[397] X 1
[398] X 1
[399] X 1
[400] X 1
[401] X 1
[402] X 1
[403] X 1
[404] X 1
[405] X 1
[406] X 1
[407] X 1
[408] X 1
[409] X 1
[410] X 1
[411] X 1
[412] X 1
[413] X 1
[414] X 1
[415] X 1
[416] X 1
[417]

87 49 48 37 32 30 26 23 18 18 17 16 16 15 14 14 13 12 12 9 9 8 8 7 7 7 7 7 6 6 6 6 5 5 4 4 4 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1Domain Specific Language - DSL.
◦Co-occurrence of smells; •Co-study of smells (it is a subset of co-occurrence).



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 42

REFERENCES

[1] X. S. Dexun Jiang, Peijun Ma and T. Wang, “Distance
metric based divergent change bad smell detection and
refactoring scheme analysis,” International Journal of
Innovative Computing, Information and Control, vol. 10,
no. 4, pp. 1519–1531, 2014.

[2] C. Seaman and Y. Guo, “Chapter 2 - measuring and
monitoring technical debt,” ser. Advances in Comput-
ers, M. V. Zelkowitz, Ed. Elsevier, 2011, vol. 82, pp. 25
– 46.

[3] J. V. Gurp and J. Bosch, “Design erosion: problems and
causes,” Journal of Systems and Software, vol. 61, no. 2,
pp. 105 – 119, 2002.

[4] G. Suryanarayana, G. Samarthyam, and T. Sharma,
Refactoring for Software Design Smells: Managing Techni-
cal Debt. Elsevier Science, 2014.

[5] A. Bandi, B. Williams, and E. Allen, “Empirical evi-
dence of code decay: A systematic mapping study,” in
Reverse Engineering (WCRE), 2013 20th Working Confer-
ence on, Oct 2013, pp. 341–350.

[6] J. R. Pate, R. Tairas, and N. A. Kraft, “Clone evolution:
a systematic review,” Journal of Software: Evolution and
Process, vol. 25, no. 3, pp. 261–283, 2013.

[7] M. Zhang, T. Hall, and N. Baddoo, “Code bad smells:
a review of current knowledge,” Journal of Software
Maintenance and Evolution: Research and Practice, vol. 23,
no. 3, pp. 179–202, 2011.

[8] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk,
and A. De Lucia, “Identifying method friendships to
remove the feature envy bad smell,” in Proceeding of
the 33rd international conference on Software engineering
- ICSE ’11. New York, New York, USA: ACM Press,
2011, p. 820.

[9] M. Fowler and K. Beck, Refactoring: Improving the De-
sign of Existing Code, ser. Object Technology Series.
Addison-Wesley, 1999.

[10] W. J. Brown, R. C. Malveau, H. W. McCormick, III,
and T. J. Mowbray, AntiPatterns: Refactoring Software,
Architectures, and Projects in Crisis. New York, NY,
USA: John Wiley & Sons, Inc., 1998.

[11] B. L. Sousa, M. A. S. Bigonha, and K. A. M. Ferreira, “A
systematic literature mapping on the relationship be-
tween design patterns and bad smells,” in Proceedings of
the 33rd Annual ACM Symposium on Applied Computing,
ser. SAC ’18. New York, NY, USA: ACM, 2018, pp.
1528–1535.

[12] E. Fernandes, J. Oliveira, G. Vale, T. Paiva, and
E. Figueiredo, “A review-based comparative study of
bad smell detection tools,” in Proceedings of the 20th
International Conference on Evaluation and Assessment in
Software Engineering, ser. EASE ’16. New York, NY,
USA: ACM, 2016, pp. 18:1–18:12.

[13] G. Vale, E. Figueiredo, R. Abílio, and H. Costa, “Bad
smells in software product lines: A systematic review,”
in 2014 Eighth Brazilian Symposium on Software Compo-
nents, Architectures and Reuse, Sept 2014, pp. 84–94.

[14] J. Siegmund, N. Siegmund, and S. Apel, “Views on
internal and external validity in empirical software
engineering,” in Proceedings of the 37th International
Conference on Software Engineering - Volume 1, ser. ICSE

’15. Piscataway, NJ, USA: IEEE Press, 2015, pp. 9–19.
[15] B. A. Kitchenham, D. Budgen, and O. Pearl Brereton,

“Using mapping studies as the basis for further re-
search - a participant-observer case study,” Inf. Softw.
Technol., vol. 53, no. 6, pp. 638–651, Jun. 2011.

[16] B. Kitchenham and S. Charters, “Guidelines for per-
forming systematic literature reviews in software engi-
neering,” School of Computer Science andMathemat-
ics, Keele University and Department of Computer Sci-
ence, University of Durham, Tech. Rep. EBSE Technical
Report EBSE-2007-01, 2007.

[17] F. Christos and O. D. W., “A survey of information
retrieval and filtering methods,” Univ. of Maryland In-
stitute for Advanced Computer Studies Report, College
Park, MD, USA, Tech. Rep. CS-TR-3514, 1995.

[18] T.-H. Chen, S. W. Thomas, and A. E. Hassan, “A survey
on the use of topic models when mining software
repositories,” Empirical Software Engineering, pp. 1–77,
2015.

[19] J. Ratzinger, T. Sigmund, P. Vorburger, and H. Gall,
“Mining Software Evolution to Predict Refactoring,” in
Empirical Software Engineering and Measurement, 2007.
ESEM 2007. First International Symposium on, 2007, pp.
354–363.

[20] J. Altidor and Y. Smaragdakis, “Refactoring Java Gener-
ics by Inferring Wildcards, in Practice,” in Proceedings
of the 2014 ACM International Conference on Object Ori-
ented Programming Systems Languages & Applications,
ser. OOPSLA ’14. New York, NY, USA: ACM, 2014,
pp. 271–290.

[21] N. Tsantalis and A. Chatzigeorgiou, “Identification of
extract method refactoring opportunities for the de-
composition of methods,” Journal of Systems and Soft-
ware, vol. 84, no. 10, pp. 1757–1782, oct 2011.

[22] G. Bavota, A. Lucia, A. Marcus, and R. Oliveto,
“Automating Extract Class Refactoring: An Improved
Method and Its Evaluation,” Empirical Softw. Engg.,
vol. 19, no. 6, pp. 1617–1664, 2014.

[23] W. F. Opdyke and R. E. Johnson, “Refactoring: An
aid in designing application frameworks and evolving
object-oriented systems,” in Proceedings of SOOPPA’90:
Symposium on Object-Oriented Programming Emphasizing
Practical Applications. New York, New York, USA:
ACM Press, 1990.

[24] W. F. Opdyke, “Refactoring object-oriented frame-
works,” Ph.D. dissertation, Champaign, IL, USA, 1992,
uMI Order No. GAX93-05645.

[25] J. Cohen, “A coefficient of agreement for nomi-
nal scales,” Educational and Psychological Measurement,
vol. 20, no. 1, pp. 37–46, 1960.

[26] J. R. Landis and G. G. Koch, “The measurement of
observer agreement for categorical data,” Biometrics,
vol. 33, no. 1, pp. 159–174, 1977.

[27] S. Kimura, Y. Higo, H. Igaki, and S. Kusumoto, “Move
code refactoring with dynamic analysis,” in 2012 28th
IEEE International Conference on Software Maintenance
(ICSM). IEEE, sep 2012, pp. 575–578.

[28] M. Gawade, K. Ravikanth, and S. Aggarwal, “Con-
stantine: configurable static analysis tool in Eclipse,”
Software: Practice and Experience, vol. 44, no. 5, pp. 537–
563, 2014.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 43

[29] K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto, “CRat: A
refactoring support tool for Form Template Method,”
in 2012 20th IEEE International Conference on Program
Comprehension (ICPC). IEEE, jun 2012, pp. 250–252.

[30] R. Mahouachi, M. Kessentini, and K. Ghedira, “A
New Design Defects Classification: Marrying Detection
and Correction,” in Fundamental Approaches to Software
Engineering, ser. Lecture Notes in Computer Science,
J. de Lara and A. Zisman, Eds. Springer Berlin
Heidelberg, 2012, vol. 7212, pp. 455–470.

[31] M. Lanza and R. Marinescu, Object-Oriented Metrics in
Practice: Using Software Metrics to Characterize, Evalu-
ate, and Improve the Design of Object-Oriented Systems.
Springer Berlin Heidelberg, 2006.

[32] T. McCabe, “A complexity measure,” Software Engineer-
ing, IEEE Transactions on, vol. SE-2, no. 4, pp. 308–320,
Dec 1976.

[33] M. Kim, T. Zimmermann, and N. Nagappan, “An em-
pirical study of refactoring challenges and benefits at
microsoft,” IEEE Transactions on Software Engineering,
vol. 40, no. 7, July 2014.

[34] A. V. Deursen, L. Moonen, A. Bergh, and G. Kok,
“Refactoring test code,” in Proceedings of the 2nd Inter-
national Conference on Extreme Programming and Flexible
Processes in Software Engineering (XP2001), 2001, pp. 92–
95.

[35] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object Ori-
ented Reengineering Patterns. San Francisco, CA, USA:
Morgan Kaufmann Publishers Inc., 2002.

[36] J. Hannemann and G. Kiczales, “Design pattern im-
plementation in java and aspectj,” in Proceedings of
the 17th ACM SIGPLAN Conference on Object-oriented
Programming, Systems, Languages, and Applications, ser.
OOPSLA ’02. New York, NY, USA: ACM, 2002, pp.
161–173.

[37] R. Marinescu, “Measurement and quality in object-
oriented design,” Ph.D. dissertation, "Politehnica" Uni-
versity of Timisoara, Department of Computer Science,
2002.

[38] R. C. Martin, Agile Software Development: Principles,
Patterns, and Practices. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 2003.

[39] M. P. Monteiro and J. a. M. Fernandes, “Towards a
catalog of aspect-oriented refactorings,” in Proceedings
of the 4th International Conference on Aspect-oriented Soft-
ware Development, ser. AOSD ’05. New York, NY, USA:
ACM, 2005, pp. 111–122.

[40] E. K. Piveta, M. Hecht, M. S. Pimenta, and R. T. Price,
“Detecting bad smells in aspectj,” Journal of Universal
Computer Science, 2006.

[41] K. Srivisut and P. Muenchaisri, “Bad-smell metrics for
aspect-oriented software,” in Computer and Information
Science, 2007. ICIS 2007. 6th IEEE/ACIS International
Conference on, July 2007, pp. 1060–1065.

[42] A. Trifu and U. Reupke, “Towards automated restruc-
turing of object oriented systems,” in Software Mainte-
nance and Reengineering, 2007. CSMR ’07. 11th European
Conference on, March 2007, pp. 39–48.

[43] S. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “Lex-
icon bad smells in software,” in Reverse Engineering,
2009. WCRE ’09. 16th Working Conference on, Oct 2009,

pp. 95–99.
[44] J. Garcia, D. Popescu, G. Edwards, and N. Medvidovic,

“Identifying Architectural Bad Smells,” in 2009 13th
European Conference on Software Maintenance and Reengi-
neering. IEEE, 2009, pp. 255–258.

[45] F. A. Fontana, J. Dietrich, B. Walter, A. Yamashita,
and M. Zanoni, “Antipattern and code smell false
positives: Preliminary conceptualization and classifi-
cation,” in 2016 IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering (SANER),
vol. 1, March 2016, pp. 609–613.

[46] M. Fowler, Domain Specific Languages, 1st ed. Addison-
Wesley Professional, 2010.

[47] D. S. Cruzes and T. Dyba, “Recommended steps for
thematic synthesis in software engineering,” in 2011 In-
ternational Symposium on Empirical Software Engineering
and Measurement, Sept 2011, pp. 275–284.

[48] J. Tian, Software Quality Engineering: Testing, Quality
Assurance, and Quantifiable Improvement, ser. Wiley -
IEEE. Wiley, 2005.

[49] A. Potdar and E. Shihab, “An exploratory study on
self-admitted technical debt,” in 2014 IEEE International
Conference on Software Maintenance and Evolution, Sept
2014, pp. 91–100.

[50] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzi-
georgiou, “Jdeodorant: identification and application
of extract class refactorings,” in 2011 33rd International
Conference on Software Engineering (ICSE), May 2011, pp.
1037–1039.

[51] B. F. dos Santos Neto, M. Ribeiro, V. T. da Silva,
C. Braga, C. J. P. de Lucena, and E. de Barros Costa,
“Autorefactoring: A platform to build refactoring
agents,” Expert Systems with Applications, vol. 42, no. 3,
pp. 1652 – 1664, 2015.

[52] E. Ligu, A. Chatzigeorgiou, T. Chaikalis, and
N. Ygeionomakis, “Identification of refused bequest
code smells,” in Software Maintenance (ICSM), 2013 29th
IEEE International Conference on, Sept 2013, pp. 392–395.

[53] N. Moha, A. M. Rouane Hacene, P. Valtchev, and Y.-
G. Guéhéneuc, Formal Concept Analysis: 6th International
Conference, ICFCA 2008, Montreal, Canada, February 25-
28, 2008. Proceedings. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2008, ch. Refactorings of Design
Defects Using Relational Concept Analysis, pp. 289–
304.

[54] I. Macia, R. Arcoverde, E. Cirilo, A. Garcia, and A. von
Staa, “Supporting the identification of architecturally-
relevant code anomalies,” in 2012 28th IEEE Interna-
tional Conference on Software Maintenance (ICSM), Sept
2012, pp. 662–665.

[55] D. Mazinanian, N. Tsantalis, R. Stein, and Z. Valenta,
“Jdeodorant: Clone refactoring,” in 2016 IEEE/ACM
38th International Conference on Software Engineering
Companion (ICSE-C), May 2016, pp. 613–616.

[56] D. R. Farine, C. J. Garroway, and B. C. Sheldon, “Social
network analysis of mixed-species flocks: exploring
the structure and evolution of interspecific social be-
haviour,” Animal Behaviour, vol. 84, no. 5, pp. 1271 –
1277, 2012.

[57] M. Oliveira and J. Gama, “An overview of social
network analysis,” Wiley Interdisciplinary Reviews: Data



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 44

Mining and Knowledge Discovery, vol. 2, no. 2, pp. 99–
115, 2012.

[58] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An
open source software for exploring and manipulating
networks,” 2009.

[59] A. Field, Discovering Statistics Using SPSS, ser. Intro-
ducing Statistical Methods Series. SAGE Publications,
2007.

[60] Q. K. Telesford, K. E. Joyce, S. Hayasaka, J. H. Burdette,
and P. J. Laurienti, “The ubiquity of small-world net-
works,” Brain Connectivity, vol. 1, no. 5, pp. 367–375,
2011.

[61] M. Tufano, F. Palomba, G. Bavota, R. Oliveto, M. D.
Penta, A. D. Lucia, and D. Poshyvanyk, “When and
why your code starts to smell bad (and whether the
smells go away),” IEEE Transactions on Software Engi-
neering, vol. PP, no. to appear, pp. 1–1, 2017.

[62] F. Palomba, D. D. Nucci, M. Tufano, G. Bavota,
R. Oliveto, D. Poshyvanyk, and A. D. Lucia, “Landfill:
An open dataset of code smells with public evalua-
tion,” in 2015 IEEE/ACM 12th Working Conference on
Mining Software Repositories, May 2015, pp. 482–485.

[63] D. Distefano and I. Filipović, Memory Leaks Detection
in Java by Bi-abductive Inference. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2010, pp. 278–292.

[64] M. Mäntylä, J. Vanhanen, and C. Lassenius, “A tax-
onomy and an initial empirical study of bad smells
in code,” in Software Maintenance, 2003. ICSM 2003.
Proceedings. International Conference on, Sept 2003, pp.
381–384.

[65] W. C. Wake, Refactoring Workbook, 1st ed. Boston, MA,
USA: Addison-Wesley Longman Publishing Co., Inc.,
2003.

[66] M. Usman, R. Britto, J. Börstler, and E. Mendes,
“Taxonomies in software engineering: A systematic
mapping study and a revised taxonomy development
method,” Information and Software Technology, vol. 85,
pp. 43 – 59, 2017.

DUPLICATE CODE GROUP (DCG)

[67] C. Kapser and M. Godfrey, “Improved tool support for
the investigation of duplication in software,” in 21st
IEEE International Conference on Software Maintenance
(ICSM’05). IEEE, 2005, pp. 305–314.

[68] Y. Bian, G. Koru, X. Su, and P. Ma, “SPAPE: A
semantic-preserving amorphous procedure extraction
method for near-miss clones,” Journal of Systems and
Software, vol. 86, no. 8, pp. 2077–2093, aug 2013.

[69] H. A. Basit and S. Jarzabek, “Detecting Higher-level
Similarity Patterns in Programs,” SIGSOFT Softw. Eng.
Notes, vol. 30, no. 5, pp. 156–165, 2005.

[70] E. Duala-Ekoko and M. P. Robillard, “Clone Region
Descriptors: Representing and Tracking Duplication
in Source Code,” ACM Trans. Softw. Eng. Methodol.,
vol. 20, no. 1, pp. 3:1—-3:31, 2010.

[71] Y. Higo and S. Kusumoto, “How Should We Measure
Functional Sameness from Program Source Code? An
Exploratory Study on Java Methods,” in Proceedings
of the 22Nd ACM SIGSOFT International Symposium

on Foundations of Software Engineering, ser. FSE 2014.
New York, NY, USA: ACM, 2014, pp. 294–305.

[72] M. Balint, R. Marinescu, and T. Girba, “How Devel-
opers Copy,” in 14th IEEE International Conference on
Program Comprehension (ICPC’06). IEEE, 2006, pp. 56–
68.

[73] S. Burrows, S. M. M. Tahaghoghi, and J. Zobel, “Effi-
cient plagiarism detection for large code repositories,”
Software: Practice and Experience, vol. 37, no. 2, pp. 151–
175, 2007.

[74] G. Zhang, X. Peng, Z. Xing, and W. Zhao, “Towards
contextual and on-demand code clone management
by continuous monitoring,” in 2013 28th IEEE/ACM
International Conference on Automated Software Engi-
neering (ASE). IEEE, nov 2013, pp. 497–507.

[75] M. Gabel, L. Jiang, and Z. Su, “Scalable detection of
semantic clones,” in Proceedings of the 13th international
conference on Software engineering - ICSE ’08. New
York, New York, USA: ACM Press, 2008, p. 321.

[76] J. Ossher, H. Sajnani, and C. Lopes, “File cloning in
open source Java projects: The good, the bad, and
the ugly,” in 2011 27th IEEE International Conference
on Software Maintenance (ICSM). IEEE, sep 2011, pp.
283–292.

[77] C. Roy and J. Cordy, “Scenario-Based Comparison of
Clone Detection Techniques,” in 2008 16th IEEE Inter-
national Conference on Program Comprehension. IEEE,
jun 2008, pp. 153–162.

[78] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner:
finding copy-paste and related bugs in large-scale
software code,” IEEE Transactions on Software Engineer-
ing, vol. 32, no. 3, pp. 176–192, mar 2006.

[79] M. Mondal, C. K. Roy, and K. A. Schneider, “In-
sight into a method co-change pattern to identify
highly coupled methods: An empirical study,” in 2013
21st International Conference on Program Comprehension
(ICPC). IEEE, may 2013, pp. 103–112.

[80] W. Wang and M. W. Godfrey, “Recommending Clones
for Refactoring Using Design, Context, and History,”
in 2014 IEEE International Conference on Software Main-
tenance and Evolution. IEEE, sep 2014, pp. 331–340.

[81] H. Kim, Y. Jung, S. Kim, and K. Yi, “MeCC: memory
comparison-based clone detector,” in Proceeding of the
33rd international conference on Software engineering -
ICSE ’11. New York, New York, USA: ACM Press,
2011, p. 301.

[82] D. Lo, L. Jiang, and A. Budi, “Active refinement
of clone anomaly reports,” in 2012 34th International
Conference on Software Engineering (ICSE). IEEE, jun
2012, pp. 397–407.

[83] C. Roy and J. Cordy, “NICAD: Accurate Detection of
Near-Miss Intentional Clones Using Flexible Pretty-
Printing and Code Normalization,” in 2008 16th
IEEE International Conference on Program Comprehen-
sion. IEEE, jun 2008, pp. 172–181.

[84] S. Lee, G. Bae, H. S. Chae, D.-H. Bae, and Y. R. Kwon,
“Automated scheduling for clone-based refactoring
using a competent GA,” Software: Practice and Expe-
rience, vol. 41, no. 5, pp. 521–550, 2011.

[85] C. Kapser and M. Godfrey, “"Cloning Considered
Harmful" Considered Harmful,” in 2006 13th Working



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 45

Conference on Reverse Engineering. IEEE, 2006, pp. 19–
28.

[86] H. Basit and S. Jarzabek, “A Data Mining Approach
for Detecting Higher-Level Clones in Software,” IEEE
Transactions on Software Engineering, vol. 35, no. 4, pp.
497–514, jul 2009.

[87] H. A. Basit, U. Ali, S. Haque, and S. Jarzabek, “Things
structural clones tell that simple clones don’t,” in 2012
28th IEEE International Conference on Software Mainte-
nance (ICSM). IEEE, sep 2012, pp. 275–284.

[88] P. Jablonski and D. Hou, “Aiding Software Main-
tenance with Copy-and-Paste Clone-Awareness,” in
2010 IEEE 18th International Conference on Program
Comprehension. IEEE, jun 2010, pp. 170–179.

[89] B. Hummel, E. Juergens, L. Heinemann, and M. Con-
radt, “Index-based code clone detection: incremental,
distributed, scalable,” in 2010 IEEE International Con-
ference on Software Maintenance. IEEE, sep 2010, pp.
1–9.

[90] H. A. Basit, S. Jarzabek, D. Anh, and M. Low, “Query-
based filtering and graphical view generation for
clone analysis,” in 2008 IEEE International Conference
on Software Maintenance. IEEE, sep 2008, pp. 376–385.

[91] M. Rieger, S. Ducasse, and M. Lanza, “Insights into
system-wide code duplication,” in 11th Working Con-
ference on Reverse Engineering. IEEE Comput. Soc,
2004, pp. 100–109.

[92] J. Svajlenko and C. K. Roy, “Evaluating Modern Clone
Detection Tools,” in 2014 IEEE International Conference
on Software Maintenance and Evolution. IEEE, sep 2014,
pp. 321–330.

[93] L. Jiang, G. Misherghi, Z. Su, and S. Glondu,
“DECKARD: Scalable and Accurate Tree-Based Detec-
tion of Code Clones,” in 29th International Conference
on Software Engineering (ICSE’07). IEEE, may 2007,
pp. 96–105.

[94] T. Mende, R. Koschke, and F. Beckwermert, “An eval-
uation of code similarity identification for the grow-
and-prune model,” Journal of Software Maintenance and
Evolution: Research and Practice, vol. 21, no. 2, pp. 143–
169, 2009.

[95] J. Krinke, “A Study of Consistent and Inconsistent
Changes to Code Clones,” in 14th Working Conference
on Reverse Engineering (WCRE 2007). IEEE, oct 2007,
pp. 170–178.

[96] M. Bruntink, A. van Deursen, R. van Engelen, and
T. Tourwe, “On the use of clone detection for identi-
fying crosscutting concern code,” IEEE Transactions on
Software Engineering, vol. 31, no. 10, pp. 804–818, oct
2005.

[97] Z. Xing, Y. Xue, and S. Jarzabek, “Distilling useful
clones by contextual differencing,” in 2013 20th Work-
ing Conference on Reverse Engineering (WCRE). IEEE,
oct 2013, pp. 102–111.

[98] D. Chatterji, J. C. Carver, N. A. Kraft, and J. Harder,
“Effects of cloned code on software maintainability:
A replicated developer study,” in 2013 20th Working
Conference on Reverse Engineering (WCRE). IEEE, oct
2013, pp. 112–121.

[99] X. Wang, Y. Dang, L. Zhang, D. Zhang, E. Lan, and
H. Mei, “Can I clone this piece of code here?” in Pro-

ceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering - ASE 2012. New
York, New York, USA: ACM Press, 2012, p. 170.

[100] J. Mayrand, C. Leblanc, and E. Merlo, “Experiment
on the automatic detection of function clones in a
software system using metrics,” in Proceedings of Inter-
national Conference on Software Maintenance ICSM-96.
IEEE, 1996, pp. 244–253.

[101] G. M. Selim, K. C. Foo, and Y. Zou, “Enhancing
Source-Based Clone Detection Using Intermediate
Representation,” in 2010 17th Working Conference on
Reverse Engineering. IEEE, oct 2010, pp. 227–236.

[102] d. M. Wit, A. Zaidman, and A. van Deursen, “Manag-
ing code clones using dynamic change tracking and
resolution,” in 2009 IEEE International Conference on
Software Maintenance. IEEE, sep 2009, pp. 169–178.

[103] E. Duala-Ekoko and M. P. Robillard, “Tracking Code
Clones in Evolving Software,” in 29th International
Conference on Software Engineering (ICSE’07). IEEE,
may 2007, pp. 158–167.

[104] Y. Lin, Z. Xing, X. Peng, Y. Liu, J. Sun, W. Zhao,
and J. Dong, “Clonepedia: Summarizing Code Clones
by Common Syntactic Context for Software Mainte-
nance,” in 2014 IEEE International Conference on Soft-
ware Maintenance and Evolution. IEEE, sep 2014, pp.
341–350.

[105] E. Juergens, F. Deissenboeck, B. Hummel, and S. Wag-
ner, “Do code clones matter?” in 2009 IEEE 31st In-
ternational Conference on Software Engineering. IEEE,
2009, pp. 485–495.

[106] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and
S. Kusumoto, “Gapped code clone detection with
lightweight source code analysis,” in 2013 21st Inter-
national Conference on Program Comprehension (ICPC).
IEEE, may 2013, pp. 93–102.

[107] G. M. Selim, L. Barbour, W. Shang, B. Adams, A. E.
Hassan, and Y. Zou, “Studying the Impact of Clones
on Software Defects,” in 2010 17th Working Conference
on Reverse Engineering. IEEE, oct 2010, pp. 13–21.

[108] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis, “Partial redesign of Java software
systems based on clone analysis,” in Sixth Working
Conference on Reverse Engineering (Cat. No.PR00303).
IEEE Comput. Soc, 1999, pp. 326–336.

[109] N. Göde and R. Koschke, “Frequency and risks of
changes to clones,” in Proceeding of the 33rd inter-
national conference on Software engineering - ICSE ’11.
New York, New York, USA: ACM Press, 2011, p. 311.

[110] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis, “Advanced clone-analysis to sup-
port object-oriented system refactoring,” in Proceed-
ings Seventh Working Conference on Reverse Engineering.
IEEE Comput. Soc, 2000, pp. 98–107.

[111] J. Harder and N. Göde, “Cloned code: stable code,”
Journal of Software: Evolution and Process, vol. 25, no. 10,
pp. 1063–1088, 2013.

[112] S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and
E. Merlo, “Comparison and Evaluation of Clone De-
tection Tools,” IEEE Transactions on Software Engineer-
ing, vol. 33, no. 9, pp. 577–591, sep 2007.

[113] D. Cai and M. Kim, “An Empirical Study of Long-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 46

Lived Code Clones,” in Fundamental Approaches to Soft-
ware Engineering, ser. Lecture Notes in Computer Sci-
ence, D. Giannakopoulou and F. Orejas, Eds. Springer
Berlin Heidelberg, 2011, vol. 6603, pp. 432–446.

[114] C. J. Kapser and M. W. Godfrey, “Supporting the
analysis of clones in software systems,” Journal of Soft-
ware Maintenance and Evolution: Research and Practice,
vol. 18, no. 2, pp. 61–82, 2006.

[115] Y. Higo, U. Yasushi, M. Nishino, and S. Kusumoto,
“Incremental Code Clone Detection: A PDG-based
Approach,” in 2011 18th Working Conference on Reverse
Engineering. IEEE, oct 2011, pp. 3–12.

[116] W. S. Evans, C. W. Fraser, and F. Ma, “Clone Detection
via Structural Abstraction,” in 14th Working Conference
on Reverse Engineering (WCRE 2007). IEEE, oct 2007,
pp. 150–159.

[117] H. A. Nguyen, T. T. Nguyen, N. H. Pham, J. Al-Kofahi,
and T. N. Nguyen, “Clone Management for Evolving
Software,” IEEE Transactions on Software Engineering,
vol. 38, no. 5, pp. 1008–1026, sep 2012.

[118] M. Mondal, C. K. Roy, and K. A. Schneider, “A Fine-
Grained Analysis on the Evolutionary Coupling of
Cloned Code,” in 2014 IEEE International Conference on
Software Maintenance and Evolution. IEEE, sep 2014,
pp. 51–60.

[119] T. T. Nguyen, H. A. Nguyen, N. H. Pham, J. M. Al-
Kofahi, and T. N. Nguyen, “Clone-Aware Configu-
ration Management,” in 2009 IEEE/ACM International
Conference on Automated Software Engineering. IEEE,
nov 2009, pp. 123–134.

[120] R. K. Saha, C. K. Roy, K. A. Schneider, and D. E. Perry,
“Understanding the evolution of Type-3 clones: An
exploratory study,” in 2013 10th Working Conference on
Mining Software Repositories (MSR). IEEE, may 2013,
pp. 139–148.

[121] M. F. Zibran and C. K. Roy, “Conflict-Aware Optimal
Scheduling of Code Clone Refactoring: A Constraint
Programming Approach,” in 2011 IEEE 19th Interna-
tional Conference on Program Comprehension. IEEE, jun
2011, pp. 266–269.

[122] C. K. Roy and J. R. Cordy, “An Empirical Study of
Function Clones in Open Source Software,” in 2008
15th Working Conference on Reverse Engineering. IEEE,
oct 2008, pp. 81–90.

[123] A. Walenstein, N. Jyoti, and A. Lakhotia, “Problems
creating task-relevant clone detection reference data,”
in 10th Working Conference on Reverse Engineering, 2003.
WCRE 2003. Proceedings. IEEE, 2003, pp. 285–294.

[124] S. Livieri, Y. Higo, M. Matushita, and K. Inoue, “Very-
Large Scale Code Clone Analysis and Visualization of
Open Source Programs Using Distributed CCFinder:
D-CCFinder,” in 29th International Conference on Soft-
ware Engineering (ICSE’07). IEEE, may 2007, pp. 106–
115.

[125] C. K. Roy and J. R. Cordy, “Near-miss function clones
in open source software: an empirical study,” Journal
of Software Maintenance and Evolution: Research and
Practice, vol. 22, no. 3, pp. 165–189, 2010.

[126] J. Harder and R. Tiarks, “A controlled experiment
on software clones,” in 2012 20th IEEE International
Conference on Program Comprehension (ICPC). IEEE,

jun 2012, pp. 219–228.
[127] B. S. Baker, “Finding Clones with Dup: Analysis of an

Experiment,” IEEE Transactions on Software Engineer-
ing, vol. 33, no. 9, pp. 608–621, sep 2007.

[128] R. Geiger, B. Fluri, H. C. Gall, and M. Pinzger, “Re-
lation of Code Clones and Change Couplings,” in
Proceedings of the 9th International Conference on Funda-
mental Approaches to Software Engineering, ser. FASE’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 411–425.

[129] R. Koschke, R. Falke, and P. Frenzel, “Clone Detection
Using Abstract Syntax Suffix Trees,” in 2006 13th
Working Conference on Reverse Engineering. IEEE, 2006,
pp. 253–262.

[130] N. H. Pham, H. A. Nguyen, T. T. Nguyen, J. M. Al-
Kofahi, and T. N. Nguyen, “Complete and accurate
clone detection in graph-based models,” in 2009 IEEE
31st International Conference on Software Engineering.
IEEE, 2009, pp. 276–286.

[131] T. Bakota, R. Ferenc, and T. Gyimothy, “Clone Smells
in Software Evolution,” in 2007 IEEE International
Conference on Software Maintenance. IEEE, oct 2007,
pp. 24–33.

[132] L. Jiang, Z. Su, and E. Chiu, “Context-based Detec-
tion of Clone-related Bugs,” in Proceedings of the the
6th Joint Meeting of the European Software Engineering
Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ser. ESEC-FSE ’07.
New York, NY, USA: ACM, 2007, pp. 55–64.

[133] W. Qian, X. Peng, Z. Xing, S. Jarzabek, and W. Zhao,
“Mining Logical Clones in Software: Revealing High-
Level Business and Programming Rules,” in 2013 IEEE
International Conference on Software Maintenance. IEEE,
sep 2013, pp. 40–49.

[134] F. Rahman, C. Bird, and P. Devanbu, “Clones: What
is that smell?” in Mining Software Repositories (MSR),
2010 7th IEEE Working Conference on, May 2010, pp.
72–81.

[135] F. Al-Omari, I. Keivanloo, C. K. Roy, and J. Rilling,
“Detecting Clones Across Microsoft .NET Program-
ming Languages,” in 2012 19th Working Conference on
Reverse Engineering. IEEE, oct 2012, pp. 405–414.

[136] J. Guo and Y. Zou, “Detecting Clones in Business Ap-
plications,” in 2008 15th Working Conference on Reverse
Engineering. IEEE, oct 2008, pp. 91–100.

[137] J. R. Cordy, “Exploring Large-Scale System Similarity
Using Incremental Clone Detection and Live Scatter-
plots,” in 2011 IEEE 19th International Conference on
Program Comprehension. IEEE, jun 2011, pp. 151–160.

[138] E. Lan, “Predicting Consistency-Maintenance Re-
quirement of Code Clonesat Copy-and-Paste Time,”
IEEE Transactions on Software Engineering, vol. 40, no. 8,
pp. 773–794, aug 2014.

[139] G. Zhang, X. Peng, Z. Xing, and W. Zhao, “Cloning
practices: Why developers clone and what can be
changed,” in 2012 28th IEEE International Conference
on Software Maintenance (ICSM). IEEE, sep 2012, pp.
285–294.

[140] S. Ducasse, M. Rieger, and S. Demeyer, “A language
independent approach for detecting duplicated code,”
in Proceedings IEEE International Conference on Software
Maintenance - 1999 (ICSM’99). ’Software Maintenance for



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 47

Business Change’ (Cat. No.99CB36360). IEEE, 1999, pp.
109–118.

[141] M. S. Uddin, C. K. Roy, K. A. Schneider, and A. Hin-
dle, “On the Effectiveness of Simhash for Detecting
Near-Miss Clones in Large Scale Software Systems,”
in 2011 18th Working Conference on Reverse Engineering.
IEEE, oct 2011, pp. 13–22.

[142] S. Xie, F. Khomh, and Y. Zou, “An empirical study
of the fault-proneness of clone mutation and clone
migration,” in Proceedings of the 10th Working Con-
ference on Mining Software Repositories, ser. MSR ’13.
Piscataway, NJ, USA: IEEE Press, 2013, pp. 149–158.

[143] D. M. German, M. Di Penta, Y.-G. Gueheneuc, and
G. Antoniol, “Code siblings: Technical and legal im-
plications of copying code between applications,” in
2009 6th IEEE International Working Conference on Min-
ing Software Repositories. IEEE, may 2009, pp. 81–90.

[144] H. Li and S. Thompson, “Incremental Clone Detection
and Elimination for Erlang Programs,” in Fundamental
Approaches to Software Engineering, ser. Lecture Notes
in Computer Science, D. Giannakopoulou and F. Ore-
jas, Eds. Springer Berlin Heidelberg, 2011, vol. 6603,
pp. 356–370.

[145] C.-H. Wang and F.-J. Wang, “Detecting artifact anoma-
lies in business process specifications with a formal
model,” Journal of Systems and Software, vol. 82, no. 10,
pp. 1600–1619, oct 2009.

[146] S. Bazrafshan and R. Koschke, “An Empirical Study of
Clone Removals,” in 2013 IEEE International Conference
on Software Maintenance. IEEE, sep 2013, pp. 50–59.

[147] J. Krinke, “Identifying similar code with program
dependence graphs,” in Proceedings Eighth Working
Conference on Reverse Engineering. IEEE Comput. Soc,
2001, pp. 301–309.

[148] B. Hauptmann, M. Junker, S. Eder, E. Juergens, and
R. Vaas, “Can clone detection support test compre-
hension?” in 2012 20th IEEE International Conference on
Program Comprehension (ICPC). IEEE, jun 2012, pp.
209–218.

[149] M. Bruntink, A. van Deursen, T. Tourwe, and R. van
Engelen, “An evaluation of clone detection techniques
for identifying crosscutting concerns,” in 20th IEEE
International Conference on Software Maintenance, 2004.
Proceedings. IEEE, 2004, pp. 200–209.

[150] A. Lozano and M. Wermelinger, “Assessing the effect
of clones on changeability,” in 2008 IEEE International
Conference on Software Maintenance. IEEE, sep 2008,
pp. 227–236.

[151] H. Nguyen, T. Nguyen, N. Pham, J. Al-Kofahi, and
T. Nguyen, “Accurate and Efficient Structural Char-
acteristic Feature Extraction for Clone Detection,” in
Fundamental Approaches to Software Engineering, ser.
Lecture Notes in Computer Science, M. Chechik and
M. Wirsing, Eds. Springer Berlin Heidelberg, 2009,
vol. 5503, pp. 440–455.

[152] I. Baxter, A. Yahin, L. Moura, M. Sant’Anna, and
L. Bier, “Clone detection using abstract syntax trees,”
in Proceedings. International Conference on Software
Maintenance (Cat. No. 98CB36272). IEEE Comput. Soc,
1998, pp. 368–377.

[153] R. Fanta and V. Rajlich, “Removing clones from the

code,” Journal of Software Maintenance: Research and
Practice, vol. 11, no. 4, pp. 223–243, 1999.

[154] S. Ducasse, O. Nierstrasz, and M. Rieger, “On the
effectiveness of clone detection by string matching,”
Journal of Software Maintenance and Evolution: Research
and Practice, vol. 18, no. 1, pp. 37–58, 2006.

[155] T. Kamiya, S. Kusumoto, and K. Inoue, “CCFinder:
a multilinguistic token-based code clone detection
system for large scale source code,” IEEE Transactions
on Software Engineering, vol. 28, no. 7, pp. 654–670, jul
2002.

[156] L. Barbour, F. Khomh, and Y. Zou, “Late propagation
in software clones,” in 2011 27th IEEE International
Conference on Software Maintenance (ICSM). IEEE, sep
2011, pp. 273–282.

[157] J. Harder, “How Multiple Developers Affect the Evo-
lution of Code Clones,” in 2013 IEEE International
Conference on Software Maintenance. IEEE, sep 2013,
pp. 30–39.

[158] K. Inoue, Y. Sasaki, P. Xia, and Y. Manabe, “Where
does this code come from and where does it go? —
Integrated code history tracker for open source sys-
tems,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, jun 2012, pp. 331–341.

[159] J. Li and M. D. Ernst, “CBCD: Cloned buggy code de-
tector,” in 2012 34th International Conference on Software
Engineering (ICSE). IEEE, jun 2012, pp. 310–320.

[160] R. K. Saha, C. K. Roy, and K. A. Schneider, “An
automatic framework for extracting and classifying
near-miss clone genealogies,” in 2011 27th IEEE In-
ternational Conference on Software Maintenance (ICSM).
IEEE, sep 2011, pp. 293–302.

[161] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams,
Y. Zou, and A. E. Hassan, “An Empirical Study on In-
consistent Changes to Code Clones at Release Level,”
in 2009 16th Working Conference on Reverse Engineering.
IEEE, 2009, pp. 85–94.

[162] Y. Dubinsky, J. Rubin, T. Berger, S. Duszynski,
M. Becker, and K. Czarnecki, “An Exploratory Study
of Cloning in Industrial Software Product Lines,” in
2013 17th European Conference on Software Maintenance
and Reengineering. IEEE, mar 2013, pp. 25–34.

[163] R. Koschke, “Large-Scale Inter-System Clone Detec-
tion Using Suffix Trees,” in 2012 16th European Confer-
ence on Software Maintenance and Reengineering. IEEE,
mar 2012, pp. 309–318.

[164] F. Deissenboeck, L. Heinemann, B. Hummel, and
S. Wagner, “Challenges of the Dynamic Detection
of Functionally Similar Code Fragments,” in 2012
16th European Conference on Software Maintenance and
Reengineering. IEEE, mar 2012, pp. 299–308.

[165] Y. Higo and S. Kusumoto, “Code Clone Detection on
Specialized PDGs with Heuristics,” in 2011 15th Eu-
ropean Conference on Software Maintenance and Reengi-
neering. IEEE, mar 2011, pp. 75–84.

[166] N. Gode and J. Harder, “Clone Stability,” in 2011
15th European Conference on Software Maintenance and
Reengineering. IEEE, mar 2011, pp. 65–74.

[167] E. Juergens, F. Deissenboeck, and B. Hummel, “Code
Similarities Beyond Copy & Paste,” in 2010 14th Eu-
ropean Conference on Software Maintenance and Reengi-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 48

neering. IEEE, mar 2010, pp. 78–87.
[168] N. Göde and R. Koschke, “Incremental Clone De-

tection,” in 2009 13th European Conference on Software
Maintenance and Reengineering. IEEE, 2009, pp. 219–
228.

[169] T. Mende, F. Beckwermert, R. Koschke, and G. Meier,
“Supporting the Grow-and-Prune Model in Software
Product Lines Evolution Using Clone Detection,” in
2008 12th European Conference on Software Maintenance
and Reengineering. IEEE, apr 2008, pp. 163–172.

[170] L. Aversano, L. Cerulo, and M. Di Penta, “How Clones
are Maintained: An Empirical Study,” in 11th European
Conference on Software Maintenance and Reengineering
(CSMR’07). IEEE, 2007, pp. 81–90.

[171] H. Sajnani, V. Saini, and C. V. Lopes, “A Comparative
Study of Bug Patterns in Java Cloned and Non-cloned
Code,” in 2014 IEEE 14th International Working Confer-
ence on Source Code Analysis and Manipulation. IEEE,
sep 2014, pp. 21–30.

[172] M. Mondal, C. K. Roy, and K. A. Schneider, “Auto-
matic Identification of Important Clones for Refac-
toring and Tracking,” in 2014 IEEE 14th International
Working Conference on Source Code Analysis and Manip-
ulation. IEEE, sep 2014, pp. 11–20.

[173] S. Bazrafshan and R. Koschke, “Effect of Clone In-
formation on the Performance of Developers Fixing
Cloned Bugs,” in 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation.
IEEE, sep 2014, pp. 1–10.

[174] M. S. Rahman and C. K. Roy, “A Change-Type Based
Empirical Study on the Stability of Cloned Code,”
in 2014 IEEE 14th International Working Conference on
Source Code Analysis and Manipulation. IEEE, sep 2014,
pp. 31–40.

[175] N. Kawamitsu, T. Ishio, T. Kanda, R. G. Kula, C. De
Roover, and K. Inoue, “Identifying Source Code Reuse
across Repositories Using LCS-Based Source Code
Similarity,” in 2014 IEEE 14th International Working
Conference on Source Code Analysis and Manipulation.
IEEE, sep 2014, pp. 305–314.

[176] H. Murakami, K. Hotta, Y. Higo, H. Igaki, and
S. Kusumoto, “Folding Repeated Instructions for Im-
proving Token-Based Code Clone Detection,” in 2012
IEEE 12th International Working Conference on Source
Code Analysis and Manipulation. IEEE, sep 2012, pp.
64–73.

[177] S. Bazrafshan, “Evolution of Near-Miss Clones,” in
2012 IEEE 12th International Working Conference on
Source Code Analysis and Manipulation. IEEE, sep 2012,
pp. 74–83.

[178] W. Wang and M. W. Godfrey, “A Study of Cloning in
the Linux SCSI Drivers,” in 2011 IEEE 11th Interna-
tional Working Conference on Source Code Analysis and
Manipulation. IEEE, sep 2011, pp. 95–104.

[179] S. Schulze, E. Jurgens, and J. Feigenspan, “Analyz-
ing the Effect of Preprocessor Annotations on Code
Clones,” in 2011 IEEE 11th International Working Con-
ference on Source Code Analysis and Manipulation. IEEE,
sep 2011, pp. 115–124.

[180] M. F. Zibran and C. K. Roy, “A Constraint Program-
ming Approach to Conflict-Aware Optimal Schedul-

ing of Prioritized Code Clone Refactoring,” in 2011
IEEE 11th International Working Conference on Source
Code Analysis and Manipulation. IEEE, sep 2011, pp.
105–114.

[181] R. K. Saha, M. Asaduzzaman, M. F. Zibran, C. K.
Roy, and K. A. Schneider, “Evaluating Code Clone
Genealogies at Release Level: An Empirical Study,”
in 2010 10th IEEE Working Conference on Source Code
Analysis and Manipulation. IEEE, sep 2010, pp. 87–96.

[182] R. Brixtel, M. Fontaine, B. Lesner, C. Bazin, and
R. Robbes, “Language-Independent Clone Detection
Applied to Plagiarism Detection,” in 2010 10th IEEE
Working Conference on Source Code Analysis and Manip-
ulation. IEEE, sep 2010, pp. 77–86.

[183] R. Tiarks, R. Koschke, and R. Falke, “An Assess-
ment of Type-3 Clones as Detected by State-of-the-
Art Tools,” in 2009 Ninth IEEE International Working
Conference on Source Code Analysis and Manipulation.
IEEE, 2009, pp. 67–76.

[184] N. Göde, “Evolution of Type-1 Clones,” in 2009 Ninth
IEEE International Working Conference on Source Code
Analysis and Manipulation. IEEE, 2009, pp. 77–86.

[185] J. Krinke, “Is Cloned Code More Stable than Non-
cloned Code?” in 2008 Eighth IEEE International Work-
ing Conference on Source Code Analysis and Manipula-
tion. IEEE, sep 2008, pp. 57–66.

[186] Z. M. Jiang and A. E. Hassan, “A Framework for
Studying Clones In Large Software Systems,” in Sev-
enth IEEE International Working Conference on Source
Code Analysis and Manipulation (SCAM 2007). IEEE,
sep 2007, pp. 203–212.

[187] M. Linares-Vásquez, A. Holtzhauer, C. Bernal-
Cárdenas, and D. Poshyvanyk, “Revisiting Android
Reuse Studies in the Context of Code Obfuscation
and Library Usages,” in Proceedings of the 11th Working
Conference on Mining Software Repositories, ser. MSR
2014. New York, NY, USA: ACM, 2014, pp. 242–251.

[188] D. Chatterji, J. C. Carver, B. Massengil, J. Oslin, and
N. A. Kraft, “Measuring the Efficacy of Code Clone
Information in a Bug Localization Task: An Empirical
Study,” in Empirical Software Engineering and Measure-
ment (ESEM), 2011 International Symposium on, 2011,
pp. 20–29.

[189] M. Shomrat and Y. Feldman, “Detecting Refac-
tored Clones,” in ECOOP 2013 – Object-Oriented Pro-
gramming, ser. Lecture Notes in Computer Science,
G. Castagna, Ed. Springer Berlin Heidelberg, 2013,
vol. 7920, pp. 502–526.

[190] M. Gabel, J. Yang, Y. Yu, M. Goldszmidt, and Z. Su,
“Scalable and Systematic Detection of Buggy Inconsis-
tencies in Source Code,” SIGPLAN Not., vol. 45, no. 10,
pp. 175–190, 2010.

[191] E. R. Murphy-Hill, P. J. Quitslund, and A. P. Black,
“Removing Duplication from Java.Io: A Case Study
Using Traits,” in Companion to the 20th Annual ACM
SIGPLAN Conference on Object-oriented Programming,
Systems, Languages, and Applications, ser. OOPSLA ’05.
New York, NY, USA: ACM, 2005, pp. 282–291.

[192] F. Rahman, C. Bird, and P. Devanbu, “Clones: what is
that smell?” Empirical Software Engineering, vol. 17, no.
4-5, pp. 503–530, 2012.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 49

[193] C. J. Kapser and M. W. Godfrey, ““Cloning considered
harmful” considered harmful: patterns of cloning in
software,” Empirical Software Engineering, vol. 13, no. 6,
pp. 645–692, jul 2008.

[194] C. Parnin, C. Bird, and E. Murphy-Hill, “Adoption
and use of Java generics,” Empirical Software Engineer-
ing, vol. 18, no. 6, pp. 1047–1089, 2013.

[195] R. Tairas and J. Gray, “An information retrieval pro-
cess to aid in the analysis of code clones,” Empirical
Software Engineering, vol. 14, no. 1, pp. 33–56, 2009.

[196] R. Falke, P. Frenzel, and R. Koschke, “Empirical eval-
uation of clone detection using syntax suffix trees,”
Empirical Software Engineering, vol. 13, no. 6, pp. 601–
643, jul 2008.

[197] S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di
Penta, “An empirical study on the maintenance of
source code clones,” Empirical Software Engineering,
vol. 15, no. 1, pp. 1–34, 2010.

[198] Y. Lin, Z. Xing, Y. Xue, Y. Liu, X. Peng, J. Sun, and
W. Zhao, “Detecting Differences Across Multiple In-
stances of Code Clones,” in Proceedings of the 36th
International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: ACM, 2014, pp.
164–174.

[199] K. Chen, P. Liu, and Y. Zhang, “Achieving Accuracy
and Scalability Simultaneously in Detecting Applica-
tion Clones on Android Markets,” in Proceedings of the
36th International Conference on Software Engineering,
ser. ICSE 2014. New York, NY, USA: ACM, 2014,
pp. 175–186.

[200] M. Mondal, C. K. Roy, and K. A. Schneider, “An
Empirical Study on Clone Stability,” SIGAPP Appl.
Comput. Rev., vol. 12, no. 3, pp. 20–36, 2012.

[201] Y. Dang, D. Zhang, S. Ge, C. Chu, Y. Qiu, and T. Xie,
“XIAO: Tuning Code Clones at Hands of Engineers
in Practice,” in Proceedings of the 28th Annual Computer
Security Applications Conference, ser. ACSAC ’12. New
York, NY, USA: ACM, 2012, pp. 369–378.

[202] C. Arwin and S. M. M. Tahaghoghi, “Plagiarism De-
tection Across Programming Languages,” in Proceed-
ings of the 29th Australasian Computer Science Conference
- Volume 48, ser. ACSC ’06. Darlinghurst, Australia,
Australia: Australian Computer Society, Inc., 2006, pp.
277–286.

[203] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue, “On
detection of gapped code clones using gap locations,”
in Software Engineering Conference, 2002. Ninth Asia-
Pacific, 2002, pp. 327–336.

[204] A. Lozano, M. Wermelinger, and B. Nuseibeh, “Evalu-
ating the relation between changeability decay and the
characteristics of clones and methods,” in Automated
Software Engineering - Workshops, 2008. ASE Workshops
2008. 23rd IEEE/ACM International Conference on, 2008,
pp. 100–109.

[205] K. A. Kontogiannis, R. Demori, E. Merlo, M. Galler,
and M. Bernstein, “Pattern matching for clone and
concept detection,” Journal Automated Software Engi-
neering, vol. 3, no. 1-2, pp. 77–108, 1996.

[206] J. R. Cordy, T. R. Dean, and N. Synytskyy, “Prac-
tical Language-independent Detection of Near-miss
Clones,” in Proceedings of the 2004 Conference of the

Centre for Advanced Studies on Collaborative Research,
ser. CASCON ’04. IBM Press, 2004, pp. 1–12.

[207] S. Xie, F. Khomh, Y. Zou, and I. Keivanloo, “An
empirical study on the fault-proneness of clone mi-
gration in clone genealogies,” in Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE),
2014 Software Evolution Week - IEEE Conference on, 2014,
pp. 94–103.

[208] M. Mandal, C. K. Roy, and K. A. Schneider, “Auto-
matic ranking of clones for refactoring through min-
ing association rules,” in Software Maintenance, Reengi-
neering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week - IEEE Conference on, 2014, pp.
114–123.

[209] G. P. Krishnan and N. Tsantalis, “Unification and
refactoring of clones,” in Software Maintenance, Reengi-
neering and Reverse Engineering (CSMR-WCRE), 2014
Software Evolution Week - IEEE Conference on, 2014, pp.
104–113.

[210] C. K. Roy, M. F. Zibran, and R. Koschke, “The vi-
sion of software clone management: Past, present,
and future (Keynote paper),” in Software Maintenance,
Reengineering and Reverse Engineering (CSMR-WCRE),
2014 Software Evolution Week - IEEE Conference on, 2014,
pp. 18–33.

[211] B. S. Baker, “A program for identifying duplicated
code,” Computing Science and Statistics, pp. 49–49, 1993.

[212] E. Merlo, “Detection of Plagiarism in University
Projects Using Metrics-based Spectral Similarity,”
in Duplication, Redundancy, and Similarity in Soft-
ware, ser. Dagstuhl Seminar Proceedings, R. Koschke,
E. Merlo, and A. Walenstein, Eds., no. 06301.
Dagstuhl, Germany: Internationales Begegnungs- und
Forschungszentrum f{ü}r Informatik (IBFI), Schloss
Dagstuhl, Germany, 2007.

[213] S. Giesecke, “Generic modelling of code clones,”
in Duplication, Redundancy, and Similarity in Soft-
ware, ser. Dagstuhl Seminar Proceedings, R. Koschke,
E. Merlo, and A. Walenstein, Eds., no. 06301.
Dagstuhl, Germany: Internationales Begegnungs- und
Forschungszentrum f{ü}r Informatik (IBFI), Schloss
Dagstuhl, Germany, 2006.

[214] R. Koschke, “Survey of research on software clones,”
Dublication, Redundancy, and Similarity in Software -
Dagstuhl Seminar #06301, p. 24, 2007.

[215] T. R. Dean, J. Chen, and M. H. Alalfi, “Clone Detection
in Matlab Stateflow Models,” ECEASST, vol. 63, 2014.

[216] H. Störrle, “Towards Clone Detection in UML Domain
Models,” in Proceedings of the Fourth European Confer-
ence on Software Architecture: Companion Volume, ser.
ECSA ’10. New York, NY, USA: ACM, 2010, pp. 285–
293.

[217] C. Kapser and M. W. Godfrey, “Toward a taxonomy
of clones in source code: A case study,” in Proceedings
of the Conference on Evolution of Large Scale Industrial
Software Architectures (ELISA’03), 2003, pp. 67–78.

[218] R. Koschke, “Frontiers of software clone manage-
ment,” in Frontiers of Software Maintenance, 2008. FoSM
2008., 2008, pp. 119–128.

[219] M. Kim, V. Sazawal, D. Notkin, and G. Murphy, “An
Empirical Study of Code Clone Genealogies,” SIG-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 50

SOFT Softw. Eng. Notes, vol. 30, no. 5, pp. 187–196,
2005.

[220] M.-W. Lee, J.-W. Roh, S.-w. Hwang, and S. Kim,
“Instant Code Clone Search,” in Proceedings of the
Eighteenth ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ser. FSE ’10. New
York, NY, USA: ACM, 2010, pp. 167–176.

[221] M. F. Zibran, R. K. Saha, M. Asaduzzaman, and C. K.
Roy, “Analyzing and Forecasting Near-Miss Clones in
Evolving Software: An Empirical Study,” in Engineer-
ing of Complex Computer Systems (ICECCS), 2011 16th
IEEE International Conference on, 2011, pp. 295–304.

[222] H. Basit, D. Rajapakse, and S. Jarzabek, “Beyond
templates: a study of clones in the STL and some
general implications,” in Proceedings. 27th International
Conference on Software Engineering, 2005. ICSE 2005.
IEEe, 2005, pp. 451–459.

[223] F. Deissenboeck, B. Hummel, E. Jürgens, B. Schätz,
S. Wagner, J.-F. Girard, and S. Teuchert, “Clone de-
tection in automotive model-based development,” in
Proceedings of the 13th international conference on Soft-
ware engineering - ICSE ’08. New York, New York,
USA: ACM Press, 2008, p. 603.

[224] D. C. Rajapakse and S. Jarzabek, “Using Server Pages
to Unify Clones in Web Applications: A Trade-Off
Analysis,” in 29th International Conference on Software
Engineering (ICSE’07). IEEE, may 2007, pp. 116–126.

[225] Y. Lin, Z. Xing, Y. Xue, Y. Liu, X. Peng, J. Sun, and
W. Zhao, “Detecting Differences Across Multiple In-
stances of Code Clones,” in Proceedings of the 36th
International Conference on Software Engineering, ser.
ICSE 2014. New York, NY, USA: ACM, 2014, pp.
164–174.

[226] M. H. Alalfi, J. R. Cordy, T. R. Dean, M. Stephan,
and A. Stevenson, “Models are code too: Near-miss
clone detection for Simulink models,” in 2012 28th
IEEE International Conference on Software Maintenance
(ICSM). IEEE, sep 2012, pp. 295–304.

[227] C. K. Roy and J. R. Cordy, “A Mutation/Injection-
Based Automatic Framework for Evaluating Code
Clone Detection Tools,” in Software Testing, Verification
and Validation Workshops, 2009. ICSTW ’09. International
Conference on, 2009, pp. 157–166.

[228] C. K. Roy, “Conflict-aware optimal scheduling of pri-
oritised code clone refactoring,” IET Software, vol. 7,
no. 3, pp. 167–186(19), 2013.

[229] M. Kim, L. Bergman, T. Lau, and D. Notkin, “An
ethnographic study of copy and paste programming
practices in OOPL,” in Empirical Software Engineering,
2004. ISESE ’04. Proceedings. 2004 International Sympo-
sium on, 2004, pp. 83–92.

[230] R. Al-Ekram, C. Kapser, R. Holt, and M. Godfrey,
“Cloning by accident: an empirical study of source
code cloning across software systems,” in Empirical
Software Engineering, 2005. 2005 International Sympo-
sium on, nov 2005, pp. 10 pp.–.

[231] A. Sæbjørnsen, J. Willcock, T. Panas, D. Quinlan, and
Z. Su, “Detecting Code Clones in Binary Executables,”
in Proceedings of the Eighteenth International Symposium
on Software Testing and Analysis, ser. ISSTA ’09. New
York, NY, USA: ACM, 2009, pp. 117–128.

[232] G. Antoniol, U. Villano, E. Merlo, and M. D. Penta,
“Analyzing cloning evolution in the Linux kernel,”
Information and Software Technology, vol. 44, no. 13, pp.
755–765, 2002.

[233] R. Tairas and J. Gray, “Increasing Clone Maintenance
Support by Unifying Clone Detection and Refactoring
Activities,” Inf. Softw. Technol., vol. 54, no. 12, pp. 1297–
1307, 2012.

[234] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue,
“Method and Implementation for Investigating Code
Clones in a Software System,” Inf. Softw. Technol.,
vol. 49, no. 9-10, pp. 985–998, 2007.

[235] D. Rattan, R. Bhatia, and M. Singh, “Software clone
detection: A systematic review,” Information and Soft-
ware Technology, vol. 55, no. 7, pp. 1165–1199, 2013.

[236] R. Tiarks, R. Koschke, and R. Falke, “An extended
assessment of type-3 clones as detected by state-of-
the-art tools,” Software Quality Journal, vol. 19, no. 2,
pp. 295–331, 2011.

[237] J. Svajlenko, I. Keivanloo, and C. K. Roy, “Big
data clone detection using classical detectors: an ex-
ploratory study,” Journal of Software: Evolution and
Process, vol. 27, no. 6, pp. 430–464, 2015.

[238] J.-w. Park, M.-W. Lee, J.-W. Roh, S.-w. Hwang, and
S. Kim, “Surfacing code in the dark: an instant clone
search approach,” Knowledge and Information Systems,
vol. 41, no. 3, pp. 727–759, 2014.

[239] Y. Higo, S. Kusumoto, and K. Inoue, “A Metric-based
Approach to Identifying Refactoring Opportunities
for Merging Code Clones in a Java Software System,”
J. Softw. Maint. Evol., vol. 20, no. 6, pp. 435–461, 2008.

[240] L. Barbour, F. Khomh, and Y. Zou, “An empirical
study of faults in late propagation clone genealogies,”
Journal of Software: Evolution and Process, vol. 25, no. 11,
pp. 1139–1165, 2013.

[241] S. Jarzabek and S. Li, “Unifying clones with a gener-
ative programming technique: a case study,” Journal
of Software Maintenance and Evolution: Research and
Practice, vol. 18, no. 4, pp. 267–292, 2006.

[242] C. K. Roy, J. R. Cordy, and R. Koschke, “Comparison
and evaluation of code clone detection techniques and
tools: A qualitative approach,” Science of Computer
Programming, vol. 74, no. 7, pp. 470–495, 2009.

[243] Y. Higo, S. Kusumoto, and K. Inoue, “Identifying
refactoring opportunities for removing code clones
with a metrics-based approach,” Java in Academia and
Research, pp. 57–82, 2011.

[244] R. Koschke, “Identifying and Removing Software
Clones,” in Software Evolution. Springer Berlin Hei-
delberg, 2008, pp. 15–36.

[245] F. Calefato, F. Lanubile, and T. Mallardo, “Function
Clone Detection in Web Applications: A Semiauto-
mated Approach,” J. Web Eng., vol. 3, no. 1, pp. 3–21,
2004.

[246] I. Keivanloo, C. K. Roy, and J. Rilling, “SeByte: Scal-
able clone and similarity search for bytecode,” Science
of Computer Programming, vol. 95, Part 4, pp. 426–444,
2014.

[247] N. Davey, P. C. Barson, S. D. H. Field, R. J. Frank,
and D. S. W. Tansley, “The Development of a Software
Clone Detector,” 1995.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 51

[248] R. Komondoor and S. Horwitz, “Using Slicing to Iden-
tify Duplication in Source Code,” in Static Analysis,
ser. Lecture Notes in Computer Science, P. Cousot, Ed.
Springer Berlin Heidelberg, 2001, vol. 2126, pp. 40–56.

[249] N. Bettenburg, W. Shang, W. Ibrahim, B. Adams,
Y. Zou, and A. E. Hassan, “An Empirical Study on In-
consistent Changes to Code Clones at Release Level,”
in 2009 16th Working Conference on Reverse Engineering.
IEEE, 2009, pp. 85–94.

[250] H. Li and S. Thompson, “Similar Code Detection and
Elimination for Erlang Programs,” in Proceedings of
the 12th International Conference on Practical Aspects of
Declarative Languages, ser. PADL’10. Berlin, Heidel-
berg: Springer-Verlag, 2010, pp. 104–118.

[251] B. Al-Batran, B. Schätz, and B. Hummel, “Semantic
Clone Detection for Model-based Development of
Embedded Systems,” in Proceedings of the 14th Interna-
tional Conference on Model Driven Engineering Languages
and Systems, ser. MODELS’11. Berlin, Heidelberg:
Springer-Verlag, 2011, pp. 258–272.

[252] H. A. Basit, D. C. Rajapakse, and S. Jarzabek, “An
Empirical Study on Limits of Clone Unification Using
Generics,” in In Proceedings of the 17th International
Conference on Software Engineering and Knowledge En-
gineering (SEKE’05, 2005, pp. 109–114.

[253] Y. Higo, T. Kamiya, S. Kusumoto, and K. Inoue,
“Refactoring Support Based on Code Clone Analysis,”
in Product Focused Software Process Improvement, ser.
Lecture Notes in Computer Science, F. Bomarius and
H. Iida, Eds. Springer Berlin Heidelberg, 2004, vol.
3009, pp. 220–233.

[254] Z. Li, S. Lu, S. Myagmar, and Y. Zhou, “CP-Miner:
A Tool for Finding Copy-paste and Related Bugs in
Operating System Code,” in Proceedings of the 6th
Conference on Symposium on Opearting Systems Design
& Implementation - Volume 6, ser. OSDI’04. Berkeley,
CA, USA: USENIX Association, 2004, p. 20.

[255] Y. Higo, Y. Ueda, T. Kamiya, S. Kusumoto, and K. In-
oue, “On Software Maintenance Process Improvement
Based on Code Clone Analysis,” in Proceedings of the
4th International Conference on Product Focused Software
Process Improvement, ser. PROFES ’02. London, UK,
UK: Springer-Verlag, 2002, pp. 185–197.

[256] M. Balazinska, E. Merlo, M. Dagenais, B. Lague, and
K. Kontogiannis, “Measuring clone based reengineer-
ing opportunities,” in Software Metrics Symposium,
1999. Proceedings. Sixth International, 1999, pp. 292–303.

[257] S. Uchida, A. Monden, N. Ohsugi, T. Kamiya, K. Mat-
sumoto, and H. Kudo, “Software analysis by code
clones in open source software,” Journal of Computer
Information Systems, vol. 45, no. 3, pp. 1–11, 2005.

[258] A. De Lucia, R. Francese, G. Scanniello, and G. Tor-
tora, “Reengineering web applications based on
cloned pattern analysis,” in Proceedings. 12th IEEE
International Workshop on Program Comprehension, 2004.
IEEE, 2004, pp. 132–141.

[259] C. Kapser and M. W. Godfrey, “Aiding Comprehen-
sion of Cloning Through Categorization,” in Proceed-
ings of the Principles of Software Evolution, 7th Interna-
tional Workshop, ser. IWPSE ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 85–94.

[260] K. Hotta, Y. Sano, Y. Higo, and S. Kusumoto, “Is
Duplicate Code More Frequently Modified Than Non-
duplicate Code in Software Evolution?: An Empirical
Study on Open Source Software,” in Proceedings of the
Joint ERCIM Workshop on Software Evolution (EVOL)
and International Workshop on Principles of Software Evo-
lution (IWPSE), ser. IWPSE-EVOL ’10. New York, NY,
USA: ACM, 2010, pp. 73–82.

[261] C. Brown and S. Thompson, “Clone Detection and
Elimination for Haskell,” in Proceedings of the 2010
ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation, ser. PEPM ’10. New York, NY,
USA: ACM, 2010, pp. 111–120.

[262] E. Juergens and F. Deissenboeck, “How much is a
clone,” in Proceedings of the 4th International Workshop
on Software Quality and Maintainability, 2010.

[263] Y. Ueda, T. Kamiya, S. Kusumoto, and K. Inoue,
“Gemini: maintenance support environment based on
code clone analysis,” in Software Metrics, 2002. Proceed-
ings. Eighth IEEE Symposium on, 2002, pp. 67–76.

[264] N. Yoshida, Y. Higo, T. Kamiya, S. Kusumoto, and
K. Inoue, “On refactoring support based on code clone
dependency relation,” in Software Metrics, 2005. 11th
IEEE International Symposium, 2005, pp. 10 pp.–16.

[265] B. Baker, “On finding duplication and near-
duplication in large software systems,” in Proceedings
of 2nd Working Conference on Reverse Engineering. IEEE
Comput. Soc. Press, 1995, pp. 86–95.

[266] A. Hemel and R. Koschke, “Reverse Engineering
Variability in Source Code Using Clone Detection: A
Case Study for Linux Variants of Consumer Electronic
Devices,” in 2012 19th Working Conference on Reverse
Engineering. IEEE, oct 2012, pp. 357–366.

[267] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient
Similarity Joins for Near Duplicate Detection,” in Pro-
ceedings of the 17th International Conference on World
Wide Web, ser. WWW ’08. New York, NY, USA: ACM,
2008, pp. 131–140.

[268] D. Chatterji, J. C. Carver, and N. A. Kraft, “Code
clones and developer behavior: results of two surveys
of the clone research community,” Empirical Software
Engineering, vol. 21, no. 4, pp. 1476–1508, 2016.

[269] I. Keivanloo, F. Zhang, and Y. Zou, “Threshold-free
code clone detection for a large-scale heterogeneous
Java repository,” in 2015 IEEE 22nd International Con-
ference on Software Analysis, Evolution, and Reengineer-
ing (SANER). IEEE, mar 2015, pp. 201–210.

[270] M. White, M. Tufano, C. Vendome, and D. Poshy-
vanyk, “Deep learning code fragments for code clone
detection,” in Proceedings of the 31st IEEE/ACM Inter-
national Conference on Automated Software Engineering,
ser. ASE 2016. New York, NY, USA: ACM, 2016, pp.
87–98.

[271] J. Yang, K. Hotta, Y. Higo, H. Igaki, and S. Kusumoto,
“Classification model for code clones based on ma-
chine learning,” Empirical Software Engineering, vol. 20,
no. 4, pp. 1095–1125, 2015.

[272] W. T. Cheung, S. Ryu, and S. Kim, “Development
nature matters: An empirical study of code clones in
javascript applications,” Empirical Software Engineer-
ing, vol. 21, no. 2, pp. 517–564, 2016.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 52

[273] T. Wang, M. Harman, Y. Jia, and J. Krinke, “Searching
for better configurations: A rigorous approach to clone
evaluation,” in Proceedings of the 2013 9th Joint Meeting
on Foundations of Software Engineering, ser. ESEC/FSE
2013. New York, NY, USA: ACM, 2013, pp. 455–465.

[274] Y. Lin, X. Peng, Z. Xing, D. Zheng, and W. Zhao,
“Clone-based and interactive recommendation for
modifying pasted code,” in Proceedings of the 2015 10th
Joint Meeting on Foundations of Software Engineering, ser.
ESEC/FSE 2015. New York, NY, USA: ACM, 2015,
pp. 520–531.

[275] F.-H. Su, J. Bell, G. Kaiser, and S. Sethumadhavan,
“Identifying functionally similar code in complex
codebases,” in 2016 IEEE 24th International Conference
on Program Comprehension (ICPC), May 2016, pp. 1–10.

[276] X. Cheng, H. Zhong, Y. Chen, Z. Hu, and J. Zhao,
“Rule-directed code clone synchronization,” in 2016
IEEE 24th International Conference on Program Compre-
hension (ICPC), May 2016, pp. 1–10.

[277] H. Sajnani, V. Saini, J. Svajlenko, C. K. Roy, and C. V.
Lopes, “Sourcerercc: Scaling code clone detection to
big-code,” in Proceedings of the 38th International Con-
ference on Software Engineering, ser. ICSE ’16. New
York, NY, USA: ACM, 2016, pp. 1157–1168.

[278] J. Svajlenko and C. K. Roy, “Evaluating clone detection
tools with bigclonebench,” in 2015 IEEE International
Conference on Software Maintenance and Evolution (IC-
SME), Sept 2015, pp. 131–140.

[279] M. Mondal, C. K. Roy, and K. A. Schneider, “A com-
parative study on the bug-proneness of different types
of code clones,” in 2015 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Sept
2015, pp. 91–100.

[280] V. Saini, H. Sajnani, and C. Lopes, “Comparing quality
metrics for cloned and non cloned java methods: A
large scale empirical study,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (IC-
SME), Oct 2016, pp. 256–266.

[281] H. Sajnani, V. Saini, and C. Lopes, “A parallel and effi-
cient approach to large scale clone detection,” Journal
of Software: Evolution and Process, vol. 27, no. 6, pp.
402–429, 2015, jSME-13-0129.R2.

[282] R. Ettinger, S. Tyszberowicz, and S. Menaia, “Effi-
cient method extraction for automatic elimination of
type-3 clones,” in 2017 IEEE 24th International Confer-
ence on Software Analysis, Evolution and Reengineering
(SANER), Feb 2017, pp. 327–337.

[283] M. S. Uddin, V. Gaur, C. Gutwin, and C. K. Roy, “On
the comprehension of code clone visualizations: A
controlled study using eye tracking,” in 2015 IEEE
15th International Working Conference on Source Code
Analysis and Manipulation (SCAM), Sept 2015, pp. 161–
170.

[284] C. Ragkhitwetsagul, J. Krinke, and D. Clark, “Sim-
ilarity of source code in the presence of pervasive
modifications,” in 2016 IEEE 16th International Working
Conference on Source Code Analysis and Manipulation
(SCAM), Oct 2016, pp. 117–126.

[285] N. Tsantalis, D. Mazinanian, and G. P. Krishnan, “As-
sessing the refactorability of software clones,” IEEE
Transactions on Software Engineering, vol. 41, no. 11, pp.

1055–1090, Nov 2015.
[286] D. Mazinanian, N. Tsantalis, and A. Mesbah, “Dis-

covering refactoring opportunities in cascading style
sheets,” in Proceedings of the 22Nd ACM SIGSOFT
International Symposium on Foundations of Software En-
gineering, ser. FSE 2014. New York, NY, USA: ACM,
2014, pp. 496–506.

[287] M. Mondal, C. K. Roy, and K. A. Schneider, “Predic-
tion and ranking of co-change candidates for clones,”
in Proceedings of the 11th Working Conference on Mining
Software Repositories, ser. MSR 2014. New York, NY,
USA: ACM, 2014, pp. 32–41.

[288] T. M. Ahmed, W. Shang, and A. E. Hassan, “An
empirical study of the copy and paste behavior during
development,” in Proceedings of the 12th Working Con-
ference on Mining Software Repositories, ser. MSR ’15.
Piscataway, NJ, USA: IEEE Press, 2015, pp. 99–110.

[289] N. Göde and R. Koschke, “Studying clone evolution
using incremental clone detection,” Journal of Software:
Evolution and Process, vol. 25, no. 2, pp. 165–192, 2013.

[290] A. Charpentier, J.-R. Falleri, D. Lo, and L. Réveillère,
“An empirical assessment of bellon’s clone bench-
mark,” in Proceedings of the 19th International Conference
on Evaluation and Assessment in Software Engineering,
ser. EASE ’15. New York, NY, USA: ACM, 2015, pp.
20:1–20:10.

[291] M. Mondal, C. K. Roy, and K. A. Schneider, “An
insight into the dispersion of changes in cloned and
non-cloned code: A genealogy based empirical study,”
Science of Computer Programming, vol. 95, Part 4, pp.
445 – 468, 2014, special Issue on Software Clones
(IWSC’12).

[292] J. F. Islam, M. Mondal, and C. K. Roy, “Bug replication
in code clones: An empirical study,” in 2016 IEEE 23rd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1, March 2016, pp. 68–
78.

[293] S. Wagner, A. Abdulkhaleq, K. Kaya, and A. Paar,
“On the relationship of inconsistent software clones
and faults: An empirical study,” in 2016 IEEE 23rd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1, March 2016, pp. 79–
89.

OTHER BAD SMELLS GROUP (OBSG)

[294] I. Macia Bertran, A. Garcia, and A. von Staa, “An
Exploratory Study of Code Smells in Evolving Aspect-
oriented Systems,” in Proceedings of the Tenth Inter-
national Conference on Aspect-oriented Software Develop-
ment, ser. AOSD ’11. New York, NY, USA: ACM,
2011, pp. 203–214.

[295] M. D’Ambros, A. Bacchelli, and M. Lanza, “On the
impact of design flaws on software defects,” in 2010
10th International Conference on Quality Software, July
2010, pp. 23–31.

[296] H. Liu, Z. Ma, W. Shao, and Z. Niu, “Schedule of
Bad Smell Detection and Resolution: A New Way to
Save Effort,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 220–235, jan 2012.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 53

[297] N. Sae-Lim, S. Hayashi, and M. Saeki, “Context-based
code smells prioritization for prefactoring,” in 2016
IEEE 24th International Conference on Program Compre-
hension (ICPC), May 2016, pp. 1–10.

[298] G. Bavota and B. Russo, “A large-scale empirical study
on self-admitted technical debt,” in Proceedings of the
13th International Conference on Mining Software Reposi-
tories, ser. MSR ’16. New York, NY, USA: ACM, 2016,
pp. 315–326.

[299] F. A. Fontana, V. Ferme, A. Marino, B. Walter, and
P. Martenka, “Investigating the Impact of Code Smells
on System’s Quality: An Empirical Study on Systems
of Different Application Domains,” in 2013 IEEE In-
ternational Conference on Software Maintenance. IEEE,
sep 2013, pp. 260–269.

[300] M. Kessentini, W. Kessentini, H. Sahraoui,
M. Boukadoum, and A. Ouni, “Design Defects
Detection and Correction by Example,” in 2011 IEEE
19th International Conference on Program Comprehension.
IEEE, jun 2011, pp. 81–90.

[301] S. Fu and B. Shen, “Code bad smell detection through
evolutionary data mining,” in 2015 ACM/IEEE Interna-
tional Symposium on Empirical Software Engineering and
Measurement (ESEM), Oct 2015, pp. 1–9.

[302] M. Boussaa, W. Kessentini, M. Kessentini, S. Bechikh,
and S. Ben Chikha, “Competitive coevolutionary
code-smells detection,” in Proceedings of the 5th Interna-
tional Symposium on Search Based Software Engineering -
Volume 8084, ser. SSBSE 2013. New York, NY, USA:
Springer-Verlag New York, Inc., 2013, pp. 50–65.

[303] A. Ouni, M. Kessentini, H. Sahraoui, and
M. Boukadoum, “Maintainability defects detection
and correction: a multi-objective approach,” Journal
Automated Software Engineering, vol. 20, no. 1, pp.
47–79, 2013.

[304] F. Hermans and E. Aivaloglou, “Do code smells ham-
per novice programming? a controlled experiment on
scratch programs,” in 2016 IEEE 24th International Con-
ference on Program Comprehension (ICPC), May 2016,
pp. 1–10.

[305] P. F. Mihancea and R. Marinescu, “Towards the op-
timization of automatic detection of design flaws in
object-oriented software systems,” in Ninth European
Conference on Software Maintenance and Reengineering,
March 2005, pp. 92–101.

[306] M. Salehie, S. Li, and L. Tahvildari, “A metric-based
heuristic framework to detect object-oriented design
flaws,” in 14th IEEE International Conference on Program
Comprehension (ICPC’06), 2006, pp. 159–168.

[307] T. Tourwe and T. Mens, “Identifying refactoring op-
portunities using logic meta programming,” in Sev-
enth European Conference onSoftware Maintenance and
Reengineering, 2003. Proceedings., March 2003, pp. 91–
100.

[308] G. Bavota, A. D. Lucia, M. D. Penta, R. Oliveto, and
F. Palomba, “An experimental investigation on the
innate relationship between quality and refactoring,”
Journal of Systems and Software, vol. 107, pp. 1 – 14,
2015.

[309] F. Arcelli Fontana, M. V. Mäntylä, M. Zanoni, and
A. Marino, “Comparing and experimenting machine

learning techniques for code smell detection,” Empir-
ical Software Engineering, vol. 21, no. 3, pp. 1143–1191,
2016.

[310] H. Liu, Q. Liu, Z. Niu, and Y. Liu, “Dynamic and
automatic feedback-based threshold adaptation for
code smell detection,” IEEE Transactions on Software
Engineering, vol. 42, no. 6, pp. 544–558, June 2016.

[311] F. Khomh, M. Di Penta, and Y.-G. Gueheneuc, “An
Exploratory Study of the Impact of Code Smells on
Software Change-proneness,” in 2009 16th Working
Conference on Reverse Engineering. IEEE, 2009, pp. 75–
84.

[312] M. V. Mäntylä and C. Lassenius, “Subjective eval-
uation of software evolvability using code smells:
An empirical study,” Empirical Software Engineering,
vol. 11, no. 3, pp. 395–431, may 2006.

[313] A. Yamashita and L. Moonen, “Do code smells re-
flect important maintainability aspects?” in 2012 28th
IEEE International Conference on Software Maintenance
(ICSM). IEEE, sep 2012, pp. 306–315.

[314] M. Linares-Vásquez, S. Klock, C. McMillan, A. Sa-
bané, D. Poshyvanyk, and Y.-G. Guéhéneuc, “Domain
Matters: Bringing Further Evidence of the Relation-
ships Among Anti-patterns, Application Domains,
and Quality-related Metrics in Java Mobile Apps,”
in Proceedings of the 22Nd International Conference on
Program Comprehension, ser. ICPC 2014. New York,
NY, USA: ACM, 2014, pp. 232–243.

[315] I. Macia, J. Garcia, D. Popescu, A. Garcia, N. Medvi-
dovic, and A. von Staa, “Are Automatically-detected
Code Anomalies Relevant to Architectural Modular-
ity?: An Exploratory Analysis of Evolving Systems,”
in Proceedings of the 11th Annual International Conference
on Aspect-oriented Software Development, ser. AOSD ’12.
New York, NY, USA: ACM, 2012, pp. 167–178.

[316] I. Macia, A. Garcia, A. von Staa, J. Garcia, and N. Med-
vidovic, “On the Impact of Aspect-Oriented Code
Smells on Architecture Modularity: An Exploratory
Study,” in Software Components, Architectures and Reuse
(SBCARS), 2011 Fifth Brazilian Symposium on, 2011, pp.
41–50.

[317] S. E. S. Taba, F. Khomh, Y. Zou, A. E. Hassan, and
M. Nagappan, “Predicting Bugs Using Antipatterns,”
in 2013 IEEE International Conference on Software Main-
tenance. IEEE, sep 2013, pp. 270–279.

[318] I. Macia, R. Arcoverde, A. Garcia, C. Chavez, and
A. von Staa, “On the Relevance of Code Anomalies for
Identifying Architecture Degradation Symptoms,” in
2012 16th European Conference on Software Maintenance
and Reengineering. IEEE, mar 2012, pp. 277–286.

[319] F. Khomh, M. D. Penta, Y.-G. Gu’eh’eneuc, and G. An-
toniol, “An Exploratory Study of the Impact of An-
tipatterns on Class Change- and Fault-proneness,”
Empirical Softw. Engg., vol. 17, no. 3, pp. 243–275, 2012.

[320] W. Oizumi, A. Garcia, M. Ferreira, A. von Staa, and
T. E. Colanzi, “When Code-Anomaly Agglomerations
Represent Architectural Problems? An Exploratory
Study,” in Software Engineering (SBES), 2014 Brazilian
Symposium on, 2014, pp. 91–100.

[321] I. Ahmed, U. A. Mannan, R. Gopinath, and C. Jensen,
“An empirical study of design degradation: How soft-



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 54

ware projects get worse over time,” in 2015 ACM/IEEE
International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM), Oct 2015, pp. 1–10.

[322] A. Yamashita and S. Counsell, “Code smells as
system-level indicators of maintainability: An empir-
ical study,” Journal of Systems and Software, vol. 86,
no. 10, pp. 2639–2653, oct 2013.

[323] D. I. Sjoberg, A. Yamashita, B. C. Anda, A. Mockus,
and T. Dyba, “Quantifying the Effect of Code Smells
on Maintenance Effort,” IEEE Transactions on Software
Engineering, vol. 39, no. 8, pp. 1144–1156, aug 2013.

[324] A. Yamashita, “Assessing the Capability of Code
Smells to Explain Maintenance Problems: An Empir-
ical Study Combining Quantitative and Qualitative
Data,” Empirical Softw. Engg., vol. 19, no. 4, pp. 1111–
1143, 2014.

[325] D. Romano, P. Raila, M. Pinzger, and F. Khomh,
“Analyzing the Impact of Antipatterns on Change-
Proneness Using Fine-Grained Source Code
Changes,” in 2012 19th Working Conference on
Reverse Engineering. IEEE, oct 2012, pp. 437–446.

[326] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto, and
A. D. Lucia, “Do They Really Smell Bad? A Study on
Developers’ Perception of Bad Code Smells,” in 2014
IEEE International Conference on Software Maintenance
and Evolution. IEEE, sep 2014, pp. 101–110.

[327] A. Yamashita and L. Moonen, “Exploring the impact
of inter-smell relations on software maintainability:
An empirical study,” in 2013 35th International Confer-
ence on Software Engineering (ICSE). IEEE, may 2013,
pp. 682–691.

[328] Y. Aiko and M. Leon, “To What Extent Can Main-
tenance Problems Be Predicted by Code Smell De-
tection? - An Empirical Study,” Inf. Softw. Technol.,
vol. 55, no. 12, pp. 2223–2242, 2013.

[329] A. Yamashita, M. Zanoni, F. A. Fontana, and B. Walter,
“Inter-smell relations in industrial and open source
systems: A replication and comparative analysis,” in
2015 IEEE International Conference on Software Mainte-
nance and Evolution (ICSME), Sept 2015, pp. 121–130.

[330] Z. Soh, A. Yamashita, F. Khomh, and Y. G. Guéhéneuc,
“Do code smells impact the effort of different main-
tenance programming activities?” in 2016 IEEE 23rd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER), vol. 1, March 2016, pp.
393–402.

[331] F. Jaafar, Y.-G. Gueheneuc, S. Hamel, and F. Khomh,
“Mining the relationship between anti-patterns de-
pendencies and fault-proneness,” in 2013 20th Working
Conference on Reverse Engineering (WCRE). IEEE, oct
2013, pp. 351–360.

[332] F. Jaafar, Y.-g. Guéhéneuc, S. Hamel, and K. Foutse,
“Analysing Anti-patterns Static Relationships with
Design Patterns,” Electronic Communications of the
EASST (ECEASST), 2013.

[333] F. Palomba, A. D. Lucia, G. Bavota, and R. Oliveto,
“Anti-pattern detection: Methods, challenges, and
open issues.” Advances in Computers, vol. 95, pp. 201–
238, 2015.

[334] F. Jaafar, Y.-G. Guéhéneuc, S. Hamel, F. Khomh, and
M. Zulkernine, “Evaluating the impact of design pat-

tern and anti-pattern dependencies on changes and
faults,” Empirical Software Engineering, vol. 21, no. 3,
pp. 896–931, 2016.

[335] N. Moha, Y.-G. Guéhéneuc, A.-F. Meur, L. Duchien,
and A. Tiberghien, “From a domain analysis to
the specification and detection of code and design
smells,” Formal Aspects of Computing, vol. 22, no. 3-4,
pp. 345–361, 2010.

[336] C. Parnin, C. Görg, and O. Nnadi, “A Catalogue of
Lightweight Visualizations to Support Code Smell
Inspection,” in Proceedings of the 4th ACM Symposium
on Software Visualization, ser. SoftVis ’08. New York,
NY, USA: ACM, 2008, pp. 77–86.

[337] N. Zazworka, A. Vetro’, C. Izurieta, S. Wong, Y. Cai,
C. Seaman, and F. Shull, “Comparing four approaches
for technical debt identification,” Software Quality Jour-
nal, vol. 22, no. 3, pp. 403–426, 2014.

[338] S. A. Vidal, C. Marcos, and J. A. Díaz-Pace, “An
approach to prioritize code smells for refactoring,”
Journal Automated Software Engineering, vol. 23, no. 3,
pp. 501–532, 2016.

[339] R. Marinescu, “Detection strategies: metrics-based
rules for detecting design flaws,” in 20th IEEE In-
ternational Conference on Software Maintenance, 2004.
Proceedings. IEEE, 2004, pp. 350–359.

[340] W. Kessentini, M. Kessentini, H. Sahraoui, S. Bechikh,
and A. Ouni, “A Cooperative Parallel Search-Based
Software Engineering Approach for Code-Smells De-
tection,” IEEE Transactions on Software Engineering,
vol. 40, no. 9, pp. 841–861, sep 2014.

[341] R. Marinescu, “Assessing technical debt by identify-
ing design flaws in software systems,” IBM Journal of
Research and Development, vol. 56, no. 5, pp. 9:1–9:13,
Sept 2012.

[342] E. Murphy-Hill and A. P. Black, “An interactive ambi-
ent visualization for code smells,” in Proceedings of the
5th International Symposium on Software Visualization,
ser. SOFTVIS ’10. New York, NY, USA: ACM, 2010,
pp. 5–14.

[343] H. Liu, X. Guo, and W. Shao, “Monitor-Based Instant
Software Refactoring,” IEEE Transactions on Software
Engineering, vol. 39, no. 8, pp. 1112–1126, aug 2013.

[344] R. Morales, S. McIntosh, and F. Khomh, “Do code
review practices impact design quality? a case study
of the qt, vtk, and itk projects,” in 2015 IEEE 22nd
International Conference on Software Analysis, Evolution,
and Reengineering (SANER), March 2015, pp. 171–180.

[345] I. Macia, A. Garcia, C. Chavez, and A. von Staa,
“Enhancing the Detection of Code Anomalies with
Architecture-Sensitive Strategies,” in 2013 17th Euro-
pean Conference on Software Maintenance and Reengineer-
ing. IEEE, mar 2013, pp. 177–186.

[346] W. Oizumi, A. Garcia, L. da Silva Sousa, B. Cafeo,
and Y. Zhao, “Code anomalies flock together: Explor-
ing code anomaly agglomerations for locating design
problems,” in Proceedings of the 38th International Con-
ference on Software Engineering, ser. ICSE ’16. New
York, NY, USA: ACM, 2016, pp. 440–451.

[347] D. Sahin, M. Kessentini, S. Bechikh, and K. Deb,
“Code-smell detection as a bilevel problem,” ACM
Trans. Softw. Eng. Methodol., vol. 24, no. 1, pp. 6:1–6:44,



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 55

Oct. 2014.
[348] W. Li and R. Shatnawi, “An empirical study of the bad

smells and class error probability in the post-release
object-oriented system evolution,” Journal of Systems
and Software, vol. 80, no. 7, pp. 1120–1128, jul 2007.

[349] W. N. Oizumi, A. F. Garcia, T. E. Colanzi, M. Ferreira,
and A. V. Staa, “On the relationship of code-anomaly
agglomerations and architectural problems,” Journal of
Software Engineering Research and Development, vol. 3,
no. 1, p. 11, 2015.

[350] F. A. Fontana, P. Braione, and M. Zanoni, “Automatic
detection of bad smells in code: An experimental
assessment.” Journal of Object Technology, vol. 11, no. 2,
pp. 1–5, 2012.

[351] M. Tufano, F. Palomba, G. Bavota, M. Di Penta,
R. Oliveto, A. De Lucia, and D. Poshyvanyk, “An
empirical investigation into the nature of test smells,”
in Proceedings of the 31st IEEE/ACM International Con-
ference on Automated Software Engineering, ser. ASE
2016. New York, NY, USA: ACM, 2016, pp. 4–15.

[352] F. Palomba, M. Zanoni, F. A. Fontana, A. D. Lucia,
and R. Oliveto, “Smells like teen spirit: Improving
bug prediction performance using the intensity of
code smells,” in 2016 IEEE International Conference on
Software Maintenance and Evolution (ICSME), Oct 2016,
pp. 244–255.

[353] F. A. Fontana, V. Ferme, M. Zanoni, and R. Roveda,
“Towards a prioritization of code debt: A code smell
intensity index,” in 2015 IEEE 7th International Work-
shop on Managing Technical Debt (MTD), Oct 2015, pp.
16–24.

[354] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De
Lucia, and D. Poshyvanyk, “Detecting bad smells in
source code using change history information,” in
2013 28th IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE). IEEE, nov 2013, pp.
268–278.

[355] A. M. Fard and A. Mesbah, “JSNOSE: Detecting
JavaScript Code Smells,” in 2013 IEEE 13th Interna-
tional Working Conference on Source Code Analysis and
Manipulation (SCAM). IEEE, sep 2013, pp. 116–125.

[356] R. Fourati, N. Bouassida, and H. Abdallah, “A Metric-
Based Approach for Anti-pattern Detection in UML
Designs,” in Computer and Information Science 2011,
ser. Studies in Computational Intelligence, R. Lee, Ed.
Springer Berlin Heidelberg, 2011, vol. 364, pp. 17–33.

[357] T. Hall, M. Zhang, D. Bowes, and Y. Sun, “Some Code
Smells Have a Significant but Small Effect on Faults,”
ACM Trans. Softw. Eng. Methodol., vol. 23, no. 4, pp.
33:1—-33:39, 2014.

[358] S. Peldszus, G. Kulcsár, M. Lochau, and S. Schulze,
“Continuous detection of design flaws in evolving
object-oriented programs using incremental multi-
pattern matching,” in 2016 31st IEEE/ACM Interna-
tional Conference on Automated Software Engineering
(ASE), Sept 2016, pp. 578–589.

[359] F. Palomba, A. Panichella, A. D. Lucia, R. Oliveto,
and A. Zaidman, “A textual-based technique for smell
detection,” in 2016 IEEE 24th International Conference
on Program Comprehension (ICPC), May 2016, pp. 1–10.

[360] M. Tufano, F. Palomba, G. Bavota, R. Oliveto,

M. Di Penta, A. De Lucia, and D. Poshyvanyk, “When
and why your code starts to smell bad,” in Proceedings
of the 37th International Conference on Software Engineer-
ing - Volume 1, ser. ICSE ’15. Piscataway, NJ, USA:
IEEE Press, 2015, pp. 403–414.

[361] F. Palomba, G. Bavota, M. D. Penta, R. Oliveto,
D. Poshyvanyk, and A. D. Lucia, “Mining version
histories for detecting code smells,” IEEE Transactions
on Software Engineering, vol. 41, no. 5, pp. 462–489,
May 2015.

[362] F. A. Fontana, V. Ferme, M. Zanoni, and A. Yamashita,
“Automatic metric thresholds derivation for code
smell detection,” in Proceedings of the Sixth International
Workshop on Emerging Trends in Software Metrics, ser.
WETSoM ’15. Piscataway, NJ, USA: IEEE Press, 2015,
pp. 44–53.

[363] R. Morales, A. Sabane, P. Musavi, F. Khomh, F. Chi-
cano, and G. Antoniol, “Finding the best compro-
mise between design quality and testing effort during
refactoring,” in 2016 IEEE 23rd International Confer-
ence on Software Analysis, Evolution, and Reengineering
(SANER), vol. 1, March 2016, pp. 24–35.

[364] A. Maiga, N. Ali, N. Bhattacharya, A. Sabane, Y.-
G. Gueheneuc, and E. Aimeur, “SMURF: A SVM-
based Incremental Anti-pattern Detection Approach,”
in 2012 19th Working Conference on Reverse Engineering.
IEEE, oct 2012, pp. 466–475.

[365] N. Moha, Y.-G. Gu’eh’eneuc, A.-F. Le Meur, and
L. Duchien, “A Domain Analysis to Specify Design
Defects and Generate Detection Algorithms,” in Pro-
ceedings of the Theory and Practice of Software, 11th
International Conference on Fundamental Approaches to
Software Engineering, ser. FASE’08/ETAPS’08. Berlin,
Heidelberg: Springer-Verlag, 2008, pp. 276–291.

[366] N. Moha, Y.-G. Gueheneuc, L. Duchien, and A.-F. Le
Meur, “DECOR: A Method for the Specification and
Detection of Code and Design Smells,” IEEE Transac-
tions on Software Engineering, vol. 36, no. 1, pp. 20–36,
jan 2010.

[367] R. Marinescu and C. Marinescu, “Are the Clients of
Flawed Classes (Also) Defect Prone?” in 2011 IEEE
11th International Working Conference on Source Code
Analysis and Manipulation. IEEE, sep 2011, pp. 65–
74.

[368] G. Hecht, O. Benomar, R. Rouvoy, N. Moha, and
L. Duchien, “Tracking the software quality of android
applications along their evolution (t),” in Proceedings
of the 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE), ser. ASE ’15.
Washington, DC, USA: IEEE Computer Society, 2015,
pp. 236–247.

[369] A. Chatzigeorgiou and A. Manakos, “Investigating
the evolution of code smells in object-oriented sys-
tems,” Innovations in Systems and Software Engineering,
vol. 10, no. 1, pp. 3–18, 2014.

[370] B. Karasneh, M. R. V. Chaudron, F. Khomh, and
Y. G. Gueheneuc, “Studying the relation between anti-
patterns in design models and in source code,” in 2016
IEEE 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), vol. 1, March
2016, pp. 36–45.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 56

[371] M. Mäntylä, J. Vanhanen, and C. Lassenius, “Bad
smells -humans as code critics,” in 20th IEEE In-
ternational Conference on Software Maintenance, 2004.
Proceedings. IEEE, 2004, pp. 399–408.

[372] A. Yamashita and L. Moonen, “Do developers care
about code smells? An exploratory survey,” in
2013 20th Working Conference on Reverse Engineering
(WCRE). IEEE, oct 2013, pp. 242–251.

[373] F. Khomh, S. Vaucher, Y.-G. Guéhéneuc, and
H. Sahraoui, “BDTEX: A GQM-based Bayesian ap-
proach for the detection of antipatterns,” Journal of
Systems and Software, vol. 84, no. 4, pp. 559–572, apr
2011.

[374] N. Tsantalis and A. Chatzigeorgiou, “Ranking Refac-
toring Suggestions Based on Historical Volatility,” in
2011 15th European Conference on Software Maintenance
and Reengineering. IEEE, mar 2011, pp. 25–34.

[375] B. Pietrzak and B. Walter, “Leveraging Code Smell
Detection with Inter-smell Relations,” in Proceedings of
the 7th International Conference on Extreme Programming
and Agile Processes in Software Engineering, ser. XP’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 75–84.

[376] A. Chatzigeorgiou and A. Manakos, “Investigating
the Evolution of Bad Smells in Object-Oriented Code,”
in Quality of Information and Communications Technology
(QUATIC), 2010 Seventh International Conference on the,
2010, pp. 106–115.

[377] G. d. F. Carneiro, M. Silva, L. Mara, E. Figueiredo,
C. Sant’Anna, A. Garcia, and M. Mendonca, “Iden-
tifying code smells with multiple concern views,” in
2010 Brazilian Symposium on Software Engineering, Sept
2010, pp. 128–137.

[378] S. M. Olbrich, D. S. Cruzes, and D. I. Sjoberg, “Are
all code smells harmful? A study of God Classes and
Brain Classes in the evolution of three open source
systems,” in 2010 IEEE International Conference on Soft-
ware Maintenance. IEEE, sep 2010, pp. 1–10.

[379] E. van Emden and L. Moonen, “Java quality assurance
by detecting code smells,” in Ninth Working Conference
on Reverse Engineering, 2002. Proceedings. IEEE Com-
put. Soc, 2002, pp. 97–106.

[380] S. Olbrich, D. S. Cruzes, V. Basili, and N. Zazworka,
“The Evolution and Impact of Code Smells: A Case
Study of Two Open Source Systems,” in Proceedings
of the 2009 3rd International Symposium on Empirical
Software Engineering and Measurement, ser. ESEM ’09.
Washington, DC, USA: IEEE Computer Society, 2009,
pp. 390–400.

[381] D. Steidl and S. Eder, “Prioritizing Maintainability
Defects Based on Refactoring Recommendations,” in
Proceedings of the 22Nd International Conference on Pro-
gram Comprehension, ser. ICPC 2014. New York, NY,
USA: ACM, 2014, pp. 168–176.

[382] M. Abbes, F. Khomh, Y.-G. Gueheneuc, and G. An-
toniol, “An Empirical Study of the Impact of Two
Antipatterns, Blob and Spaghetti Code, on Program
Comprehension,” in 2011 15th European Conference on
Software Maintenance and Reengineering. IEEE, mar
2011, pp. 181–190.

[383] V. Ferme, A. Marino, and F. A. Fontana, “Is it a Real
Code Smell to be Removed or not?” in International

Workshop on Refactoring & Testing (RefTest), co-located
event with XP 2013 Conference, 2013.

[384] M. J. Munro, “Product Metrics for Automatic Identifi-
cation of "Bad Smell" Design Problems in Java Source-
Code,” in Software Metrics, 2005. 11th IEEE Interna-
tional Symposium, 2005, p. 15.

[385] D. Rapu, S. Ducasse, T. Girba, and R. Marinescu,
“Using history information to improve design flaws
detection,” in Eighth European Conference on Software
Maintenance and Reengineering, 2004. CSMR 2004. Pro-
ceedings., March 2004, pp. 223–232.

[386] J. Kreimer, “Adaptive detection of design flaws,” Elec-
tronic Notes in Theoretical Computer Science, vol. 141,
no. 4, pp. 117 – 136, 2005.

[387] S. Vaucher, F. Khomh, N. Moha, and Y.-G. Gueheneuc,
“Tracking Design Smells: Lessons from a Study of God
Classes,” in 2009 16th Working Conference on Reverse
Engineering. IEEE, 2009, pp. 145–154.

[388] H. C. Jiau and J. C. Chen, “OBEY: Optimal Batched
Refactoring Plan Execution for Class Responsibility
Redistribution,” IEEE Transactions on Software Engi-
neering, vol. 39, no. 9, pp. 1245–1263, sep 2013.

[389] A. De Lucia, R. Oliveto, and L. Vorraro, “Using struc-
tural and semantic metrics to improve class cohesion,”
in 2008 IEEE International Conference on Software Main-
tenance. IEEE, sep 2008, pp. 27–36.

[390] M. Fokaefs, N. Tsantalis, E. Stroulia, and A. Chatzi-
georgiou, “Identification and application of Extract
Class refactorings in object-oriented systems,” Journal
of Systems and Software, vol. 85, no. 10, pp. 2241–2260,
oct 2012.

[391] G. Bavota, R. Oliveto, M. Gethers, D. Poshyvanyk, and
A. De Lucia, “Methodbook: Recommending Move
Method Refactorings via Relational Topic Models,”
IEEE Transactions on Software Engineering, vol. 40, no. 7,
pp. 671–694, jul 2014.

[392] V. Sales, R. Terra, L. F. Miranda, and M. T. Valente,
“Recommending Move Method refactorings using de-
pendency sets,” in 2013 20th Working Conference on
Reverse Engineering (WCRE). IEEE, oct 2013, pp. 232–
241.

[393] N. Tsantalis and A. Chatzigeorgiou, “Identification
of Move Method Refactoring Opportunities,” IEEE
Transactions on Software Engineering, vol. 35, no. 3, pp.
347–367, may 2009.

[394] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and
D. Binkley, “An empirical analysis of the distribution
of unit test smells and their impact on software main-
tenance,” in 2012 28th IEEE International Conference on
Software Maintenance (ICSM). IEEE, sep 2012, pp. 56–
65.

[395] S. L. Abebe, V. Arnaoudova, P. Tonella, G. Antoniol,
and Y.-G. Gueheneuc, “Can Lexicon Bad Smells Im-
prove Fault Prediction?” in 2012 19th Working Confer-
ence on Reverse Engineering. IEEE, oct 2012, pp. 235–
244.

[396] G. Bavota, A. De Lucia, and R. Oliveto, “Identifying
Extract Class refactoring opportunities using struc-
tural and semantic cohesion measures,” Journal of
Systems and Software, vol. 84, no. 3, pp. 397–414, mar
2011.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 57

[397] B. Van Rompaey, B. Du Bois, S. Demeyer, and
M. Rieger, “On The Detection of Test Smells: A
Metrics-Based Approach for General Fixture and Ea-
ger Test,” IEEE Transactions on Software Engineering,
vol. 33, no. 12, pp. 800–817, dec 2007.

[398] V. Arnaoudova, M. Di Penta, G. Antoniol, and Y.-
G. Gueheneuc, “A New Family of Software Anti-
patterns: Linguistic Anti-patterns,” in 2013 17th Eu-
ropean Conference on Software Maintenance and Reengi-
neering. IEEE, mar 2013, pp. 187–196.

[399] S. L. Abebe, S. Haiduc, P. Tonella, and A. Marcus, “The
Effect of Lexicon Bad Smells on Concept Location in
Source Code,” in 2011 IEEE 11th International Working
Conference on Source Code Analysis and Manipulation.
IEEE, sep 2011, pp. 125–134.

[400] J. Schumacher, N. Zazworka, F. Shull, C. Seaman, and
M. Shaw, “Building Empirical Support for Automated
Code Smell Detection,” in Proceedings of the 2010 ACM-
IEEE International Symposium on Empirical Software En-
gineering and Measurement, ser. ESEM ’10. New York,
NY, USA: ACM, 2010, pp. 8:1—-8:10.

[401] V. Arnaoudova, M. Di Penta, and G. Antoniol, “Lin-
guistic antipatterns: what they are and how devel-
opers perceive them,” Empirical Software Engineering,
vol. 21, no. 1, pp. 104–158, 2016.

[402] G. Bavota, A. Qusef, R. Oliveto, A. De Lucia, and
D. Binkley, “Are test smells really harmful? an em-
pirical study,” Empirical Software Engineering, vol. 20,
no. 4, pp. 1052–1094, 2015.

[403] D. Kirk, M. Roper, and N. Walkinshaw, “Using At-
tribute Slicing to Refactor Large Classes,” in Be-
yond Program Slicing, ser. Dagstuhl Seminar Proceed-
ings, D. W. Binkley, M. Harman, and J. Krinke,
Eds., no. 05451. Dagstuhl, Germany: Internationales
Begegnungs- und Forschungszentrum f{ü}r Infor-
matik (IBFI), Schloss Dagstuhl, Germany, 2006.

[404] B. Du Bois, S. Demeyer, J. Verelst, T. Mens, and
M. Temmerman, “Does god class decomposition af-
fect comprehensibility?” in IASTED Conf. on Software
Engineering, 2006, pp. 346–355.

[405] M. Greiler, A. Van Deursen, and M.-A. Storey, “Au-
tomated Detection of Test Fixture Strategies and
Smells,” in Software Testing, Verification and Validation
(ICST), 2013 IEEE Sixth International Conference on,
2013, pp. 322–331.

[406] H. Neukirchen and M. Bisanz, “Utilising Code Smells
to Detect Quality Problems in TTCN-3 Test Suites,”
in Proceedings of the 19th IFIP TC6/WG6.1 Interna-
tional Conference, and 7th International Conference on
Testing of Software and Communicating Systems, ser.
TestCom’07/FATES’07. Berlin, Heidelberg: Springer-
Verlag, 2007, pp. 228–243.

[407] M. Greiler, A. Zaidman, A. van Deursen, and M.-
A. Storey, “Strategies for avoiding text fixture smells
during software evolution,” in 2013 10th Working Con-
ference on Mining Software Repositories (MSR). IEEE,
may 2013, pp. 387–396.

[408] F. Khomh, S. Vaucher, Y.-G. Gueheneuc, and
H. Sahraoui, “A Bayesian Approach for the Detection
of Code and Design Smells,” in Quality Software, 2009.
QSIC ’09. 9th International Conference on, 2009, pp. 305–

314.
[409] M. Aniche, G. Bavota, C. Treude, A. V. Deursen, and

M. A. Gerosa, “A validated set of smells in model-
view-controller architectures,” in 2016 IEEE Interna-
tional Conference on Software Maintenance and Evolution
(ICSME), Oct 2016, pp. 233–243.

[410] L. Punt, S. Visscher, and V. Zaytsev, “The a?b*a pat-
tern: Undoing style in css and refactoring opportuni-
ties it presents,” in 2016 IEEE International Conference
on Software Maintenance and Evolution (ICSME), Oct
2016, pp. 67–77.

[411] A. Carette, M. A. A. Younes, G. Hecht, N. Moha,
and R. Rouvoy, “Investigating the energy impact of
android smells,” in 2017 IEEE 24th International Con-
ference on Software Analysis, Evolution and Reengineering
(SANER), Feb 2017, pp. 115–126.

[412] A. Saboury, P. Musavi, F. Khomh, and G. Antoniol,
“An empirical study of code smells in javascript
projects,” in 2017 IEEE 24th International Confer-
ence on Software Analysis, Evolution and Reengineering
(SANER), Feb 2017, pp. 294–305.

[413] W. Fenske, S. Schulze, D. Meyer, and G. Saake, “When
code smells twice as much: Metric-based detection
of variability-aware code smells,” in 2015 IEEE 15th
International Working Conference on Source Code Analysis
and Manipulation (SCAM), Sept 2015, pp. 171–180.

[414] D. Steidl and F. Deissenboeck, “How do java methods
grow?” in 2015 IEEE 15th International Working Confer-
ence on Source Code Analysis and Manipulation (SCAM),
Sept 2015, pp. 151–160.

[415] T. Sharma, M. Fragkoulis, and D. Spinellis, “Does your
configuration code smell?” in Proceedings of the 13th
International Conference on Mining Software Repositories,
ser. MSR ’16. New York, NY, USA: ACM, 2016, pp.
189–200.

[416] G. Hecht, N. Moha, and R. Rouvoy, “An empirical
study of the performance impacts of android code
smells,” in Proceedings of the International Conference on
Mobile Software Engineering and Systems, ser. MOBILE-
Soft ’16. New York, NY, USA: ACM, 2016, pp. 59–69.

[417] G. Rasool and Z. Arshad, “A review of code smell
mining techniques,” Journal of Software: Evolution and
Process, vol. 27, no. 11, pp. 867–895, 2015.

Elder Vicente received his B.S.(2007) in control
and automation engineering from the Polytech-
nic School of Uberlândia, Brazil. He earned his
M.S.(2012) degree in Computer Science from
the Federal University of Uberlândia. His re-
search interests include software repository min-
ing, software analytics and program comprehen-
sion.



IEEE TRANSACTIONS ON SOFTWARE ENGINEERING 58

Andrea De Lucia received the Laurea degree in
computer science from the University of Salerno,
Italy, in 1991, the MSc degree in computer sci-
ence from the University of Durham, U.K., in
1996, and the PhD degree in electronic engi-
neering and computer science from the Univer-
sity of Naples Federico II, Italy, in 1996. He is
a Full Professor of software engineering at the
Department of Computer Science of the Univer-
sity of Salerno, the Head of the Software Engi-
neering Lab, and the Director of the International

Summer School on Software Engineering. Previously, he was at the
Department of Engineering and the Research Centre on Software Tech-
nology of the University of Sannio, Italy. His research interests include
software maintenance and testing, reverse engineering and reengineer-
ing, source code analysis, code smell detection and refactoring, mining
software repositories, defect prediction, empirical software engineering,
search-based software engineering, traceability management, collabo-
rative development, workflow and document management, and visual
languages. He has published more than 250 papers on these topics
in international journals, books, and conference proceedings and has
edited books and journal special issues. He serves on the editorial
boards of international journals and on the organizing and program
committees of several international conferences in the field of software
engineering. He is a senior member of the IEEE and IEEE Computer
Society and was member-at-large of the executive committee of the
IEEE Technical Council on Software Engineering.

Marcelo Maia is a Full Professor at the Fac-
ulty of Computing of the Federal University of
Uberlândia (UFU), Brazil. He received his B.Sc.
degree in Computer Science from Federal Uni-
versity of Uberlândia, in 1991. He received his
M.Sc. (1994) and Ph.D. (1999) degrees in Com-
puter Science from the Federal University of Mi-
nas Gerais (UFMG), Brazil. His interest area is
Empirical Software Engineering and Program-
ming Languages. He has published more than
80 peer-reviewed papers in journals and con-

ferences. His current research interests include software analytics,
software repository mining, program comprehension, and automated
program repair.


	Introduction
	Background and Related Work
	Background
	Related Work

	Research Questions
	TA1: Bad Smell Types (which)
	TA2: Interest on Smells Over Time (when)
	TA3: Aims, Findings and Settings (what)
	TA4: Researchers (who)
	TA5: Distribution of Papers Among Venues (where)

	Methods
	Data Extraction from Venues
	Limitations of Previous Strategies
	Strategy Adopted in This Paper
	Venues
	Primary Database Construction

	Data Extraction from References
	Conducting the Protocol and Quality Assessment
	Analysis of the Final Database
	Bad Smell Information Field — D1
	Time Field — D2
	Empirical Study Related Fields — D3:D5
	Identification and Place Fields — D6:D9

	Limitations and Threats to Validity

	Results on Bad Smell Types (TA1: which)
	RQ1.1: Are there bad smells more studied than others (number of papers)? If so, is there any specific reason? Are bad smells studied alone or together with other bad smells (co-occurrences)?
	RQ1.2: Has research improved the original catalogs of bad smells? If so, does this improvement occur by the description of unpublished/new bad smells or by the specialization of existing bad smells?

	Results on Interest on Smells Over Time (TA2: when)
	RQ2.1: Has the interest in bad smells evolved over the years?
	RQ2.2: Has the research community interested in bad smells evolved over the years?

	Results on Aims, Findings and Settings (TA3: what)
	RQ3.1: Which are the most commonly targeted aims?
	RQ3.2: What are the main reported findings?
	RQ3.3: Considering the co-occurrence of bad smells in the papers of our dataset, how many of them actually study some relations between bad smells and what are the main findings of these co-studies?
	RQ3.4: Which are the most used tools for handling bad smells in the experimental setup?
	RQ3.5: Which are the most frequent subject projects used in experimental evaluation?

	Results on Researchers (TA4: who)
	RQ4.1: How is the research community grouped around the types of smells? Do researchers study a broad and diverse set of bad smells, or concentrate on one or a few bad smells?
	RQ4.2: Who are the researchers mostly interested (by number of papers) to the area of bad smells? Which were the countries and universities where bad smells studies have been conducted?
	RQ4.3: How are the authors and their research groups interconnected? Does this interconnection impact on publications?

	Results on the Distribution of Papers Among Venues (TA5: where)
	RQ5.1: Are there venues more inclined to publish papers on a particular set of bad smells?

	Discussion & Future Directions
	On the improvement of smell detection with new kind of metrics
	On the use of evolution metrics for smell monitoring
	On the human perception of bad smell
	On the necessity of representative benchmarks
	On the concept of smell lineage
	On the new contexts for bad smells
	Existing taxonomies and their limitations

	Conclusion
	Biographies
	Elder Vicente
	Andrea De Lucia
	Marcelo Maia


