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Abstract. Despite the huge amount of high quality information avail-
able in socio-technical sites, it is still challenging to filter out relevant
piece of information to a specific task in hand. Textual content classifica-
tion has been used to retrieve only relevant information to solve specific
problems. However, those classifiers tend to present poor performance
when the target classes have similar content. We aim at developing a
Named Entity Recognizer (NER) model to recognize entities related to
technical elements, and to improve textual classifiers for Android frag-
mentation posts from Stack Overflow using the obtained NER model.
The proposed NER model was trained for the entities API version, de-
vice, hardware, API element, technology and feature. The proposed clas-
sifiers were trained using the recognized entities as attributes. To evaluate
the performances of these classifiers, we compared them with other three
textual classifiers. The obtained results show that the constructed NER
model can recognize entities efficiently, as well as discover new entities
that were not present in the training data. The classifiers constructed
using the NER model produced better results than the other baseline
classifiers. We suggest that NER-based classifiers should be considered
as a better alternative to classify technical textual context compared to
generic textual classifiers.

Keywords: Q&A · NER · Textual classification · Android fragmenta-
tion.

1 Introduction

Social-technical sites have been extensively used during developer daily routine
to search for problem solutions given the rich available content related to soft-
ware development. Stack Overflow is a major socio-technical site which relies on
questions and answers (Q&A) to drive the collaboration among the global com-
munity of developers. Despite the possibility of asking new questions in Stack
Overflow, there is already a huge number of answered questions that provides
technical content that serves as solutions to recurrent problems. Surprisingly, a
challenge faced by developers with a programming problem in hand is finding
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the desired content from the huge amount of information. Stack Overflow has
almost 16 million questions, and each question can have multiple answers. In
order to assist developers finding the desired piece of information, the content
is organized using tags. However, there may be still a lot of information to be
searched in specific tagged content. For instance, there are more than one million
questions related to Android tag.

In general, previous work [2][13][15][16][17] uses some type of textual classifier
to filter information targeting at specialized content for the generated documen-
tation. A limitation of those classifiers arises when the textual content of the
different classes to be classified are similar. In that case, classifiers struggle to
produce correct classification. Our hypothesis is that these classifiers could be
improved using specialized techniques related to natural language processing
(NLP) to capture text semantics. One of those techniques that has been used
in many areas is the Named Entity Recognizer (NER) that aims to locate and
classify named entities from text into predefined categories, such as names of
persons, locations, organizations, movies, bands, etc.

In this work, we aim at developing a NER model to recognize entities occur-
ring in Stack Overflow posts to improve their classification. We focus on entities
related to fragmentation problems of mobile applications, which emerge from the
large variability of devices with different features, and also from the evolvability
of the main APIs with different versions with possible incompatibility between
them.

The contributions of this work are: 1) the construction of a NER model to
recognize entities related to some problems of software engineering. This model
can be used for various purposes, for example, to identify duplicate posts in
question and answer sites by comparing entities present in these posts; and 2)
the development of improved textual classifiers using entities recognized by the
proposed NER model.

Section 2 presents the methodology to construct the proposed NER models
and how this model is used to construct textual classifiers. Section 3 presents
the results. Section 4 presents the related work and finally Section 6 presents
the conclusion.

2 Study Setting

In this section, we describe the two studies to answer how accurate can be a NER
model to recognize entities related to technical elements in natural language text
of Q&A sites; and to answer how much can the proposed NER model improve a
textual classifier for Android fragmentation posts, benefiting from the recognized
entities.

2.1 A NER model for technical Q&A posts

In order to train the proposed NER model, we used a suite of tools from the
Stanford Natural Language Processing Group [7] to achieve a NER model able
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to recognize the new entities. In this work, we target specifically the identifi-
cation and filtering of Android fragmentation posts, so the entities recognized
by the proposed NER model are chosen in such a way to be further used to
improve the classification of posts into two different classes: those posts related
and not related to Android fragmentation. We trained this model to recognize
the following entities: device name, Android API version, API element, device
hardware, technology and feature.

To build the training dataset of the proposed NER model, we had to select
Stack Overflow posts related to Android fragmentation. In order to construct
that set, we used search engine queries to capture posts related to Android
problems/bugs in Stack Overflow, and manually analyzed the retrieved posts,
filtering those related to Android fragmentation. In total, 708 Stack Overflow
threads were sequentially analyzed until we have accounted for 100 threads re-
lated to Android fragmentation.

After selecting the 100 threads for the training corpus, the next step was to
conduct the established steps to train the NER model. The first required step
is to label each token present in the training corpus. To get the tokens from the
100 training threads, we applied a tokenizing function that receives the textual
content of these training threads and returns a list of tokens. A total of 26807
tokens were returned, and we manually labeled them with the entity names that
the NER model will learn to identify. We consider the following entity names for
training:

– API VERSION - this entity represents an API along with its versions, for
example, Android 6, Android version 5.1.1, KitKat, etc.

– DEVICE - this entity represents a device, for example, Samsung Galaxy
S7 Edge, Motorola Moto G, Sony Xperia, etc.

– HARDWARE - this entity represents hardware components of devices, for
example, camera, SD card, bluetooth, wifi, etc.

– ELEM API - this entity represents elements of the API, i.e., methods,
classes, interfaces, etc., for example, FaceDetector.isOperational(), ListView,
getMinBufferSize().

– TECH - this entity represents technology elements, for example, JAVA,
XML, HTML, LTE, etc.

– FEATURE - this entity represents operating system features or device
features, for example, portrait mode, external storage, buffer size, among
others.

– O - it represents the class of everything that does not belong to the classes
of the other entities.

To evaluate the proposed NER model, we used the metrics: precision, recall
and F-Measure.

2.2 A NER-based Classifier for Android Fragmentation

The proposed NER model could be applied in several different tasks. In this work,
we apply that model aiming at improving the performance of textual classifiers
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for Stack Overflow posts. To achieve that goal, we defined an approach where we
combine the NER model with classifiers. To evaluate the performance of NER-
based classifiers, we investigate the problem of classification of posts related to
Android fragmentation, characterized a binary classification problem. In this
section, we will show how we build and evaluate the NER-based classifiers.

The NER-based classifiers are defined as follows:

– The NER recognizer runs on each document to be classified, recognizing the
following entities: API VERSION, DEVICE, HARDWARE, API ELEM,
TECH, and FEATURE, accounting the number of entities in each class.

– For each document, a set of attributes is defined by the number of occur-
rences of the recognized entities: API VERSION, DEVICE, HARDWARE,
and API ELEM.

– The classifiers are trained with the attributes generated in the previous step,
where instances are labeled as Android fragmentation or not.

We do not consider TECH and FEATURE entities classes as attributes for
the NER-based classifiers because these two classes are not related to the problem
of Android fragmentation. For the classification of other types of posts, they
could be considered.

We report on results for the implementations of the NER-based classifiers
using Näıve Bayes, J48, and Random Forest decision trees of the WEKA.

To evaluate the NER-based classifiers, we use textual classifiers available in
Mallet1 as baselines. Those classifiers are based on Näıve Bayes, Maximum En-
tropy and Decision Tree. The textual documents given as inputs are transformed
into feature vectors. For each document, a corresponding vector stores the fre-
quencies of their respective words. Classifiers use these feature vectors to derive
their internal parameters in the training phase. In the test phase, the classifiers
use their internal parameters to classify the documents given as input.

We collected 300 debug-type Stack Overflow threads related to Android.
Debug-type threads are those that the intent of the question is to get help to
debug a specific issue [3, 6]. Out of those 300 threads, 150 are related to Android
fragmentation and 150 are not. In order to assess the effect of the training set
size, we created five different data groups, containing training sets of sizes 50,
100, 150, 200, and 250. For each of these data groups, we randomly sampled 20
different data sets of the respective size, from the original 300 threads, observing
that half of the threads were related to Android fragmentation, and the other
half not. This sampling strategy would assess the effect of the variability of the
content of threads in the outcome of the classifier.

We assessed the classifiers using 10-fold cross validation on each data group.
We calculated and compared the precision, recall and accuracy mean from all
classifiers.

1 http://mallet.cs.umass.edu
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3 Results and Discussion

We first present the results obtained from the evaluation of the proposed NER
model, and then we present the results from the comparison between the classi-
fiers that use the proposed NER model and classifiers that do not use.

3.1 The proposed NER model for technical Q&A posts

The trained NER model was tested using a gold set of 10 threads of Stack
Overflow that were not present in the set of 100 threads used in the training
phase. These 10 threads have a total of 289 entities, used to calculate precision
and recall. We will show the result for all entities considered together and also
the results of each separate entity.

In order to assess if the size of input data used for the training the NER
model was adequate to produce a realistic recognizer, we calculated precision,
recall, and F-Measure varying the size of input data. We started calculating
precision, recall and F-measure for a model trained with 2,000 input tokens, and
then we successively added more 2,000 tokens, calculated again, and so on.

As we can see in Figure 1 (All Entities), precision is already very high and
does not vary significantly as the number of training tokens increases. This is
an indication that the NER model is very precise even with few training data.
Interestingly, we can also observe that precision may decay smoothly when the
size of training corpus increases. A possible explanation for that phenomenon is
that when new entities are included in the model, it becomes more complex and
the model may try to identify new instances, and then may incorrectly identify
those new elements.

Recall, differently from precision, is highly affected by a small training set. It
increases as the number of training tokens increases, especially when the training
set is still small. In the interval of 2,000 to 10,000 tokens, we have a substantial
increase of 40.5% in the recall. The graph indicates that after 18,000 tokens the
recall begins to converge, with a small increase in every 2,000 tokens added. F-
Measure behaves like recall, because the precision does not vary too significantly.
The number of tokens used in training (26807 tokens) can be considered adequate
to recognize a reasonable number of entities correctly (83.4% of all entities) with
a precision of 96.4%. The small increase in recall even after the NER model
begins to converge from 18,000 tokens will be explained later when we analyze
the generated graphs for each separate entity.

We now analyze each different entity in order to better understand their
impact in the overall result of precision, recall and F-Measure.

Considering only the DEVICE entity, the precision for the DEVICE entity
does not vary much over different training set sizes. The recall and F-Measure
converge fast to a saturation point of 8,000 training tokens. This indicates that
the NER model is very efficient to recognize DEVICE entities (the model trained
with 26807 tokens achieved a precision of 98.6%, recall of 94.5% and F-measure
of 96.5%). We can also observe that the NER model had better results for the
separate DEVICE entity than considering all entities.
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Fig. 1: Precision, recall and F-measure varying the number of training tokens

For the API VERSION entity, precision is already high even for the smaller
training sets, and that recall and F-measure also converge fast. A relevant obser-
vation is that the NER model was able to find all the entities present in the test
threads in 26,000 training tokens as well as 26,807 tokens. We could find with re-
spect to API VERSION entities a pattern where the API name (or discriminant
term) is usually followed by the version, for example, Android 6, Android 4.4.1,
API level 19 and so on. As there are few different names for the Android API



Improving the Classification of Q&A Content using NER 7

(but there are many versions), the NER model can recognize the name followed
by the version efficiently. This model also recognizes names given to Android
versions, such as KitKat, Lollipop, among others.

For the ELEM API entity, precision is already high for small training sets,
and recall and F-measure start at low rates with 2,000 tokens, but gradually
converge as the number of input tokens increases. A relevant observation is that
with 18,000 tokens, the NER model can recognize all API elements (100% recall).
From 22,000 tokens recall begins to decrease, and then stabilizes at 26,000 tokens
(about 92% of F-Measure). A possible explanation for the decrease is some noise
that may have been introduced with some new tokens.

For the HARDWARE entity, recall does not increase in a similar way as the
previous entities. With 20,000 tokens we still have recall just a little above 40%
and maximum recall is below 65%. Interestingly, precision starts at 100% and
continues stabilized. With respect to recall, from 6,000 tokens up to 20,000 to-
kens the model recognizes the same number of entities, that is, 22,000 tokens
were necessary to recognize new HARDWARE entities. This can be explained
through an analysis of the training and test data, which contains few examples of
HARDWARE entities in the threads related to the Android fragmentation prob-
lem. To better understand this issue it is necessary to further study the threads
related to the Android fragmentation problem, and to analyze the prevalence of
fragmentation problems caused by a hardware component of devices. However,
that study is beyond the scope of this work. Regarding the precision, NER model
is very efficient, hitting all the entities along the increase of the training set size.

For the TECH entity, we can observe a pattern similar to the HARDWARE
entity. Only with 8,000 tokens we have recognized entities. Interestingly, precision
starts at 100% with this number of tokens and continues stabilized. With respect
to recall, from 10,000 tokens up to 14,000 tokens the model recognizes the same
number of entities, that is, it needed 16,000 tokens to recognize new TECH
entities. There are few entities of this type in the training and test data.

For the FEATURE entity, recall and F-measure increases almost linearly as
the number of training tokens increases. We observed in the training data that
the FEATURE entity has a wide variety of names (related to the resources of
the operating system or device), so it is expected a large number of training
tokens to recognize this entity type more efficiently. This entity has the highest
impact on the overall result because it is more prevalent than the other in the
test data.

New learned vocabulary. We verified if the built NER model has the
ability to learn new terms that are not present in the training set. We run our
NER model trained with the entities ELEM API, DEVICE, API VERSION and
HARDWARE on 7 Stack Overflow threads. A total of 50 words were recognized
by the NER, and out of these 50 words, 20 were present in the training data,
i.e., the built NER model recognized 30 new words (60% of the total recognized
words). From those 50 recognized entities:

– 22 are ELEM API (19 new (86.4%) and 3 in the training data (13.6%);
– 20 are DEVICE - 8 new (40.0%) and 12 in the training data (60.0%);
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– 7 are API VERSION - 3 new (42.9%) and 4 in the training data (57.1%);
– 1 is HARDWARE, which was in the training data.

3.2 NER-based Classifiers for Android Fragmentation

We present the assessment of the proposed NER-based classifiers compared to
other baseline classifiers. The boxplots in Figure 2 show the results of the accu-
racy of the classifier running on the 20 sampled datasets previously defined.

For example, DT 50 represents the results obtained by applying the Deci-
sion Tree classifier in the 20 data sets, constructed with 50 randomly sampled
threads from the 300 threads obtained manually, as we discussed in subsection
2.2. ME 50, NB 50, NE+NER 50, DT RF+NER 50 e DT J48+NER 50 rep-
resents, respectively, the results obtained by applying the Maximum Entropy,
Näıve Bayes, Näıve Bayes + NER, Random Forest(Decision Tree) + NER e
J48(Decision Tree) + NER classifiers in the same 20 data sets.

We can analyze the results from two perspectives: size of training set and
different classification methods.
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Fig. 2: Accuracy of classifiers for different size of training sets.

The first perspective is related to the performance of the classifiers with re-
spect to the number of training threads given as input to these classifiers. For
non-NER classifiers, the use of sets of size 50 produce lower accuracy classifiers.
Kruskal-Wallis tests on the accuracy results showed significant difference for DT,
ME and NB classifiers (p-value < 0.05). In post-hoc analysis of multiple com-
parisons, there was a significant difference for the 50-threads training sets where
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they were significantly smaller. For the NER-based classifiers, no significant dif-
ference could be observed (p-value > 0.05), indicating that NER classifiers are
not significantly sensitive on the size of the training set. However, we can observe
that the variability in the results in each data group decreases as the number
of training threads increases. In order words, the greater the amount of training
data, the greater the chance of the classifiers converge to a certain result. A
good example is the results in DT J48+NER 250, where we can observe that
the results converge to around 0.95.

The second perspective is related to the comparison of the classifiers with
each other. In Figure 2, we can divide the classifiers into two groups. The first
group contains the classifiers Decision Tree, Maximum Entropy and Näıve Bayes,
and the second group contains the classifiers Random Forest(Decision Tree) +
NER and J48(Decision Tree) + NER. The Näıve Bayes + NER classifier could be
defined to be in between the two groups, except for the 50 threads training group
where it is similar to the other NER classifiers. The classifiers of the second group
that use the NER model with decision trees produced better results compared to
the ones in the first group that are text classifiers, showed by a Kruskall-Wallis
post-hoc analysis of multiple comparisons, at α=0.05.

Figure 3 shows the precision and recall for 250 training threads. The precision
of Decision Tree Classifier (red boxplots) is higher than the recall, so it is cor-
rectly classifying more threads related to the Android fragmentation class than
threads unrelated to the Android fragmentation class. The boxplots medians of
precision and recall for the Maximum Entropy classifier (purple boxplots) are
very close, which indicates that the classifier is classifying the two classes in a
balanced way. The median recall of the Näıve Bayes classifier (yellow boxplots)
is higher than the median of the precision, which indicates that this classifier
is classifying more correctly threads unrelated to Android fragmentation. This
is a problem for applications that aim to get only threads related to Android
fragmentation. As we can see in Figure 3, Decision Trees classifiers that use the
NER model have better results for precision and recall than the other classifiers.

Threats to Validity. For external validity, our results are limited for im-
proving classification of Android fragmentation content. For internal validity, the
definition of the training set may be subject to human misclassification. We mit-
igated that threat by the authors discussing the cases that would be more likely
to have some disagreement. Another threat is the effect that different training
sets have on NER models and classifiers. For NER models, we mitigate that
threat including in the study, the influence of the size of the training set in the
model, in order to understand the significance of the threat. For the classifiers,
we mitigate that threat, bootstrapping 20 different samples to understand the
effect that different random samples would have in the result of the classifier.

4 Related Work

Some approaches to improve the use of socio-technical information would also
benefit from specialized and accurate classifiers to filter the textual content.
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Fig. 3: Comparing precision and recall of the classifiers.

Robillard and Chhetri [12] proposed to detect and recommend fragments of
documentation potentially important for a developer who is using a given API
element. Head et al. [9] proposed language-specific routines that automatically
generate context-relevant, on-demand micro-explanations of code. These rou-
tines detect explainable code in a web page, parse it, and generate in-situ natural
language explanations and demonstrations of code. Zhong and Su [21] combined
natural language processing and code analysis techniques to detect and report
inconsistencies in API documentation. Souza et al. [15] and Rocha and Maia [13]
proposed methodologies for automated generation of tutorials and cookbooks for
APIs from the contents of the Stack Overflow filtering content using classifiers
to separate how-to-do posts. Dagenais and Robillard [4] proposed a technique
that automatically discovers documentation patterns.

Named Entity Recognition has been applied in several areas, corroborating
with our technical choice. Liu et al. [10] proposed a technique for recognizing
entities from tweets. Yoshida and Tsujii [20] investigated improvement of auto-
matic biomedical named-entity recognition by applying a re-ranking method to
the COLING 2004 JNLPBA shared task of bioentity recognition. Danger et al. [5]
applied NER to recognize entity types relevant to the context of Protein-Protein
Interactions. Bhasuran et al. [1] implemented an ensemble approach combined
with fuzzy matching for biomedical named entity recognition of disease names.
Yao and Sun [19] proposed a method to recognize and normalize mobile phone
names from domain-specific Internet forums. Shabat, Omar and Rahem [14] de-
veloped a crime named entity recognition based on machine learning approaches
that extract nationalities, weapons, and crime locations in online crime docu-
ments. Quimbaya et al. [11], the authors extracted information from narrative
text contained within electronic health records.
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Some authors [8, 18] have tried to understand, or even minimize, the problems
caused by Android fragmentation. Wei et al. [18] built a model to check whether
the use of the Android API causes issues in certain contexts (versions of Android
and device models). Finding those specific threads in Stack Overflow using our
classifiers to build a body of knowledge on this problem would be useful to
mitigate the impact of fragmentation.

5 Conclusion and Future Work

The social-technical sites offer a lot of quality information to software devel-
opers. However, it is challenging to filter out this information due to the large
amount of content available in these sites. Several works have been proposed to
create alternative filters, in order to obtain only the necessary information to
solve the desired problem. In this work, we proposed an alternative technique
that improved the results of textual classifiers that are frequently applied in the
creation of filters applied in social-technical sites.

We used NER to recognize entities related to software development technical
elements in socio-technical sites. We combined this NER model with Näıve Bayes
and two decision tree classifiers (Random Forest and J48). We show that decision
tree classifiers obtained better results in comparison with three other raw text
classifiers (Decision Tree, Maximum Entropy and Näıve Bayes).

In addition to improving the results of the textual classifiers, the NER model
could also be used for other purposes. For example, we could apply this model to
identify duplicate posts by recognizing entities on social-technical sites, such as
Stack Overflow. This model could also be used to recognize posts that are related
to problems involving new types of device models, since a major advantage of
NER is to discover new entities that are not present in the training data used
to train the model.

As future work, more entities related to software engineering would be in-
cluded to help solving a wider range of problems in this area. New classifiers
based on these models to assist solve other problems could also be developed.
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