
Co-Change Patterns: A Large Scale Empirical Study

Luciana L. Silvaa,∗, Marco Tulio Valentea, Marcelo de Almeida Maiab

aDepartment of Computer Science, UFMG, Brazil
bFaculty of Computer Science, UFU, Brazil

Abstract

Co-Change Clustering is a modularity assessment technique that reveals how often changes are localized in modules and whether
a change propagation represents design problems. This technique is centered on co-change clusters, which are highly inter-related
source code files considering co-change relations. In this paper, we conduct a series of empirical analysis in a large corpus of 133
popular software projects on GitHub. We describe six co-change patterns by projecting them over the directory structure. We mine
1,802 co-change clusters and 1,719 co-change clusters (95%) are covered by the six co-change patterns. In this study, we aim to
answer two central questions: (i) Are co-change patterns detected in different programming languages? (ii) How do different co-
change patterns relate to rippling, activity density, ownership, and team diversity on clusters? We conclude that Encapsulated and
Well-Confined clusters (Wrapped) implement well-defined and confined concerns. Octopus clusters are proportionally numerous
regarding to other patterns. They relate significantly with ripple effect, activity, ownership, and diversity in development teams.
Although Crosscutting are scattered over directories, they implement well-defined concerns. Despite they present higher activity
compared to Wrapped clusters, it is not necessarily easy to get rid of them, suggesting that support tools may play a crucial role.

Keywords: Modularity, co-change clusters, co-change patterns

1. Introduction

Parnas developed the criteria that “modules should hide de-
cisions or decisions that are likely to change (Parnas, 1972). In
addition, according to Parnas, a module represents a responsi-
bility assignment. However, the initial planned modules may
suffer changes overtime to adapt to their new responsibilities,
otherwise their modularity tends to decay. During software de-
velopment, changes are performed constantly in tasks related
to new features, code refactoring, and bug fixing. In a modular
software, when those tasks are required, they should change
a single module with minimal—if possible none—impact in
other modules (Aggarwal and Singh, 2005). In contrast, im-
proper modularization may cause ripple effects during software
maintenance. For such situation, it would be beneficial whether
the system expert could semi-automatically analyze modularity
by retrieving set of classes that usually change together to com-
pare and contrast co-change clusters with directory structure.

The importance of modular systems has motivated re-
searchers and practitioners to investigate different dimensions
to assess system modularity. Despite modularity being an es-
sential principle in software development, effective approaches
to assess modularity still remain an open problem. Typically,

∗Corresponding author at Departamento de Ciência da Computação, Av.
Antônio Carlos, 6627 - Pampulha CEP: 31270-010, UFMG, Belo Horizonte,
Brazil. Tel.: +55 31 3409-5865.

Email addresses:
luciana.lourdes@gmail.com,luciana.lourdes.silva@ifmg.edu.br

(Luciana L. Silva), mtov@dcc.ufmg.br (Marco Tulio Valente),
marcelo.maia@ufu.br (Marcelo de Almeida Maia)

the standard approach is based on the analysis of structural mea-
sures, e.g., coupling and cohesion (Chidamber and Kemerer,
1991; Stevens et al., 1974). Over the years, several alterna-
tive attempts have been proposed, such as semantic approaches,
which analyze the source code vocabulary using Information
Retrieval techniques (Santos et al., 2014; Maletic and Marcus,
2000), co-change approaches, which mine historical data to de-
tect software artifacts that usually change together (Zimmer-
mann et al., 2007; Alali et al., 2013), or hybrid approaches,
which combine these types of information (Kagdi et al., 2013;
Bavota et al., 2014).

Recently, we proposed the Co-Change Clustering technique
to assess modularity by capturing logical modules from history
of software changes (Silva et al., 2014, 2015a). Co-change clus-
ters consist of source code artifacts that frequently change to-
gether between themselves but not with others artifacts in dif-
ferent clusters. Later, we reported a study with experts of six
object-oriented systems to investigate the developers’ percep-
tion of co-change clusters (Silva et al., 2015b). These clusters
were classified in three patterns to represent common instances
of co-change clusters, regarding their projection over the direc-
tory structure: Encapsulated Clusters (clusters that match the
directory structure, i.e., they dominate all co-change classes in
the directory structures they touch), Crosscutting Clusters (clus-
ters whose co-change classes are scattered across several direc-
tory structures), and Octopus Clusters (most co-change classes
are confined in one directory structure with some arms—or
“tentacles”—in others). Our proposed co-change patterns could
cover 52% of the 102 mined clusters. Although unitary changes
are preferable than co-changes, indeed, those co-change pat-

Preprint submitted to Journal of Systems and Software March 14, 2019

terns with propagation and scattering revealed to have different
perspectives on the impact they may cause in software main-
tenance. In summary, our first results indicate that: (i) Encap-
sulated Clusters tend to be more controllable; (ii) around 50%
of the Crosscutting Clusters were associated to design anoma-
lies; (iii) Octopus Clusters represent expected class distribu-
tions, which are difficult to implement in an encapsulated way.

Nonetheless, we did not evaluate whether programming lan-
guages, application domains, thresholds, and commit density
(number of commits divided by the number of source code files)
impact co-change pattern’s detection. We also did not analyze
whether co-change patterns relate to ripple-effect, activity den-
sity, ownership, and team diversity on clusters.

In this paper, we extend our previous work to answer these
aforementioned open questions in five directions:

1. We conduct a new study in a large corpus of 133 popular
projects hosted in GitHub. We consider projects in differ-
ent languages (C/C++, Java, PHP, Ruby, JavaScript, and
Python) and application domains.

2. We investigate the threshold used to group commits (ap-
plied by the same developer in a period of time during the
data preprocessing) and the process of co-change cluster
extraction. In this analysis, we intend to evaluate the ef-
fectiveness of co-change clusters.

3. We propose three new co-change patterns (Section 3): (i)
Well-Confined Clusters (clusters which touch a single di-
rectory structure but do not dominate it); (ii) Black Sheep
Clusters (similar to Crosscutting, however, they touch very
few code files in each one directory structure); and (iii)
Squid Clusters (similar to Octopus, but they have smaller
bodies and arms). We mine 1,802 co-change clusters from
version histories of such projects, which were then cate-
gorized in six patterns regarding their projection over the
directory structure. From the initially computed clusters,
1,719 co-change clusters (95%) are covered by the pro-
posed co-change patterns.

4. We conduct a series of statistical analysis to evaluate the
categorized co-change clusters on the 133 projects (Sec-
tion 5.4). This study aims to answer two central questions:
(i) Are co-change patterns detected in different program-
ming languages? (ii) How do different co-change patterns
relate to rippling, activity density, ownership, and team di-
versity on clusters?

5. We conduct a qualitative analysis by investigating under-
lying natural language topics in commit messages on clas-
sified co-change clusters. Specifically, we analyze clusters
which have massively changed source code files to under-
stand the rationale behind the proposed co-change patterns
and how they evolve overtime.

The remainder of this paper is organized as follows. First,
we summarize our technique for extracting co-change clusters
(Section 2) and present the co-change patterns used in this pa-
per (Section 3). Then, we describe our study design, including
the research questions that guide this work in Section 4. In Sec-
tion 5 we present and discuss our achieved results. In Section 6

we conduct a qualitative and semantic analysis and Section ??
we discuss our findings. We discuss threats to validity in Sec-
tion 7 and related work in Section 8. Finally, we conclude the
paper in Section 9.

2. Co-Change Clustering

The ultimate goal of our technique is to support develop-
ers on modularity assessment using co-change relations. The
technique relies on historical information to generate co-change
graphs and then mine co-change clusters. As illustrated in Fig-
ure 1, we propose three phases to extract co-change clusters. In
the first phase, we extract commit transactions and apply pre-
processing steps to build co-change graphs. After that, a post-
processing phase is applied on co-change graphs to prune edges
with small weights. Finally, in the last phase, the co-change
graph is clustered several times to selected the best clustering.
A detailed description of this section can be found in previous
work (Silva et al., 2014, 2015a).

2.1. Co-Change Graph

Beyer and Noack (2005) proposed co-change graphs, an ab-
straction to represent commit transactions from version control
system (VCS). Conceptually, a co-change graph is an undi-
rected and weighted graph {V, E}, where V is a set of source
code files and E is a set of edges. If there is an edge between
two vertices (source code files) Fi and F j, then at least one com-
mit in the VCS changes Fi and F j, where i , j. Finally, we
conduct some experiments with relative edge weights to define
the weighting measure. We concluded that co-change modifi-
cations are usually much less frequent than single changes in a
source code file. For example, in our previous work (Silva et al.,
2014, 2015a), we extract co-change clusters for Lucene project1

to present the concept of co-change clustering. We observe that
the maximal edges’ weight is seven and the maximum size is
27. For this reason, we do not adopt a relative edge weights on
co-change graphs. Instead, the edges’ weights represent how
many commits changed the connected source code files simul-
taneously represent.

Before extracting co-change graphs, we perform Phase 1
(Figure 1) to preprocess commits extracted from version his-
tory. This phase consists of the following three steps:

1. We discard commits which do not change source code files,
e.g., documentation and configuration files. In addition, test-
ing files are eliminated because co-changes between testing
files and their respective functional code files do not provide
relevant information from the point of view of modularity
assessment of the functional code. Testing files could be
considered if the goal was overall change impact analysis.

2. We merge commits whose textual descriptions are associ-
ated to the same issue-ID in a single commit. Nonetheless,
there are a significant number of commits not linked to main-
tenance issues (Silva et al., 2014; Couto et al., 2014). For

1http://lucene.apache.org/

2

Figure 1: Phases proposed to extract co-change clusters for modularity assessment.

this reason, we merge commits done by the same developer
under a time frame. Our goal here is to handle cases when
the developer applies sequences of commits associated to the
same maintenance task in a short period of time.

3. We remove commits with highly scattered code changes,
i.e., commits that change an expressive number of code files
in different directories. These commits usually are not re-
lated to recurrent maintenance tasks, e.g., rename methods,
dead code removal, or comment changes on license agree-
ments. Recent research showed that scattering in commits
tends to follow heavy- tailed distributions (Walker et al.,
2012), so massively scattering commits cannot be neglected
due to the very large deviation between the number of
classes changed by them and by the remaining commits in
the system. For instance, in Lucene 1,310 commits (62%)
changed classes in a single package. Despite this fact, the
mean value of this distribution is 51.2, due to the existence of
commits changing for example, more than 10 packages. In
order, to remove highly scattered commits, a threshold of 10
packages, i.e., we discard commits changing classes located
in more than ten packages. We based on the hypothesis that
large transactions typically correspond to noisy data, such
as comments formatting and rename method (Zimmermann
et al., 2005; Adams et al., 2010). We adopted a conserva-
tive approach working at package level because excessive
pruning would remove relevant information, so only a few
outliers are removed.

Finally, we compute co-change graphs and apply a post-
processing step to pruning edges with weights less than a given
support threshold. As our purpose is to generate a co-change
graph that models recurrent maintenance tasks, edges assigning
small weight are not relevant.

2.2. Co-Change Clusters

Co-change clusters are sets of source code artifacts in a co-
change graph that frequently changed together. Co-change
clusters are mined automatically using a graph clustering al-
gorithm designed to handle sparse graphs, as is typically the
case of co-change graphs (Beyer and Noack, 2005; Ball et al.,
1997; Silva et al., 2014). Specifically, we use Chameleon algo-
rithm (Karypis et al., 1999), an agglomerative and hierarchical
clustering algorithm robust to sparse graphs. This algorithm
consists of two phases. In the first phase, the algorithm divides
the vertices into small clusters. After that, the algorithm merges

the clusters retrieved in the first phase. Chameleon maximizes
the internal similarity (IS IM) among vertices into a cluster (
i.e., evaluates how close the objects are in a cluster) and mini-
mizes the external similarity (ESIM) of vertices among clusters.

This algorithm requires an input parameter in the first phase
to define the initial number of clusters M. For this reason, we
run Chameleon several times varying M’s value to mine good
clusters (as illustrated in Figure 1). In addition, after each clus-
tering of the co-change graph, the clusters smaller than a mini-
mum threshold are discarded and the following clustering qual-
ity function is computed:

coefficient(M) =
1
k
∗

k∑
i=1

IS imCi − ES imCi

max(IS imCi , ES imCi)

where k is the number of clusters after pruning the small ones.
The clustering function coefficient(M) combines cluster co-

hesion (dense subgraphs) and cluster separation (clusters ex-
tremely separated among each other). Similarly, Coverage met-
ric Almeida et al. (2011) also combines cohesion and separa-
tion concepts. However, it takes into account number of edges
while Coefficient considers edges’s weight. For this reason, we
decided to use Coefficient metric because it searches for co-
change relation.

This measure searches for group of code files that may be
used as alternative modular views. Therefore, it is not reason-
able to consider clusters with a small number of files. A detailed
description of these measures is out of the scope of this paper
and can be found elsewhere (Silva et al., 2014, 2015a).

3. Co-Change Patterns

In this section, we describe six co-change patterns aiming to
represent common instances of co-change clusters. The pat-
terns are defined by projecting clusters over the directory struc-
ture, using distribution maps (Ducasse et al., 2006).

Distribution map is a visualization technique can be used to
compare two different partitions of entities. In our case, the
entities are files, the first partition D is the directory structure,
and second partition C is composed by the co-change clusters.
Moreover, files are represented as small squares and the parti-
tion D (directory structure) groups such squares into large rect-
angles (directories). In the directory structure, we only con-
sider files that are members of co-change clusters, in order to
improve the maps visualization. Finally, partition C (co-change

3

clusters) is used to color the files (all files in a cluster have the
same color).

In addition to visualization, we quantify the focus of a given
cluster c ∈ C in relation to the partition D (directory structure),
as follows:

focus(c,D) =
∑
di∈D

touch(c, di) ∗ touch(di, c)

where

touch(d, c) =
|d ∩ c|
|c|

For instance, if all co-change files in a directory are touched
by a single cluster, then its focus is one.

There is also a second metric that measures how spread is a
cluster c in D, i.e., the number of directories touched by c.

We rely on focus and spread measures to detect patterns of
co-change clusters which describe different kinds of shapes.
The cluster shapes are intended to have a meaning that can be
mapped to meaningful situations. The first two clear shapes
that we have observed in our semainal study (Silva et al., 2014)
are opposite to each other, representing the best and the worst
possible situations, the Encapsulated and Crosscutting shapes,
respectively. The Encapsulated cluster touches only one direc-
tory, and completely touches it, meaning that changes were re-
ally encapsulated in that module. The opposite situation is the
Crosscutting shape where many packages are slight touched by
the same cluster, meaning that changes in the files of that cluster
typically require changes in several files on different directories,
which seems to be an undesirable modular organization.

However, those two shapes represent just a limited part of
clusters. We proposed the Octopus shape that stay in between
and has an intuitive semantics (Silva et al., 2015b). It is mostly,
well-encapsulated but still have just a few touching points in
other packages. However, with those patterns only 52% of clus-
ters could be classified. So, in this study, we define other shapes
for clusters aiming at categorizing most of them. Following, we
define thresholds to capture shapes that could be clearly distin-
guished between themselves. Obviously, since it is a matter of
design, one could design other set of shapes, or include another
shape in our proposed set. Following we present our proposed
design for patterns of cluster shapes aims at being sufficiently
discriminative, and that those patterns can be mapped to a few
metaphors that covers a significant portion of the found clusters.

Encapsulated: Conceptually, the cluster q dominates entirely
the directories it touches. A co-change cluster q is categorized
as Encapsulated if:

Encapsulated(q), if focus(q) == 1.0

Figure 2 shows two examples of Encapsulated Clusters2. All
classes in cluster yellow are in the same directory and this di-
rectory is only touched by this cluster. Similarly, the cluster
green dominates the directory it touches.

2All examples presented in this section are real instances of co-change clus-
ters, extracted from projects hosted in GitHub used in this paper, see Section 4

Figure 2: Encapsulated clusters (Linux)

Well-Confined: Conceptually, the cluster q touches a single di-
rectory and does not dominate it. A co-change cluster q is cat-
egorized as Well-Confined if:

WellConfined(q), if focus(q) < 1.0 and spread(q) == 1

Figure 3 shows a Well-Confined Cluster, The cluster touches
a single directory and shares the directory it touches with other
clusters. This situation indicates that at least for those classes
in the cluster there is co-changes outside the current module.

Figure 3: Well-Confined cluster (Intellij-Community)

Crosscutting: When a cluster is spread over several directories
but touching few code files in each one, it is classified as Cross-
cutting Cluster. This situation seems to be the worst one since
changes are spread across several directories, which would in-
dicate difficulties during maintenance process. The following
thresholds are set to describe a Crosscutting Cluster:

Crosscutting(q), if spread(q) ≥ 4 ∧ focus(q) ≤ 0.30

Figure 4 shows an example of Crosscutting Cluster. The clus-
ter is spread over five directories but it touches few files in each
one.

Black Sheep: whether a cluster is spread over some directories
but touching very few code files in each one, it is classified
as Black Sheep Cluster. The following thresholds are set to
represent a Black Sheep Cluster:

BlackSheep(q) = if spread(q) > 1 ∧
spread(q) < 4 ∧
focus(q) ≤ 0.10

Figure 5 shows an example of Black Sheep Cluster. The clus-
ter red is spread over three directories and touch very few files
in each one.

We define 3 co-change patterns with similar behavior. Basi-
cally, a cluster q has a body B and a set of arms T. Most code

4

Figure 4: Crosscutting cluster (Active Admin)

Figure 5: Black Sheep cluster (Ruby)

files are confined in the body and the arms have few files, i.e.,
very low focus. The following thresholds are set to represent a
cluster q with these properties:

Octopus(q,B,T) = if touch(B, q) > 0.60 ∧
focus(T) ≤ 0.25 ∧
focus(q) > 0.30

Figure 6 shows an example of Octopus cluster (dark blue).
The body has 13 source code files confined in a single direc-
tory. Furthermore, the cluster has three tentacles. When these
tentacles are considered as different sub-cluster, the tentacle fo-
cus is 0.04. Finally, this cluster has focus 0.72, which avoids
categorized it as Crosscutting or Black Sheep.

Squid(q,B,T) = if touch(B, q) > 0.30 ∧
touch(B, q) ≤ 0.50 ∧
focus(T) ≤ 0.25 ∧
focus(q) > 0.3

Figure 7 shows a Squid cluster (light blue). The body has two
files confined in a single package and the cluster has one tenta-
cle. The touch of the body is 0.5 and the tentacle has focus 0.11.

Figure 6: Octopus cluster (Python)

Figure 7: Squid cluster (Platform Frameworks)

Finally, this cluster has focus 0.31, which avoids categorized it
as Crosscutting or Black Sheep.

We defined f ocus(q) > 0.3 to ensure a cluster does not be
classified as Crosscutting and Octopus, or Squid, simultane-
ously.

4. Study Design

In this section we present the research questions (Section 4.1)
and the criteria followed to select the projects used in this study
(Section 4.2). We also present the criteria used to select the
threshold used for preprocessing commits and extracting co-
change clusters (Section 4.3).

4.1. Research Questions

In this section, our goal is to evaluate whether the proposed
co-change patterns have different impacts on some software en-
gineering output of interest (e.g., co-changeness level, the level
of activity on clusters, the number of developers working on
clusters, and the level of ownership on clusters). Specifically,
we aim to answer four research questions:

RQ #1: How do the different patterns relate to co-change
bursts?

The level of co-change bursts (bursts of commits used to cre-
ate co-change graphs) can be interpreted as the level of ripple
effect. The term ripple effect was first used by (Haney, 1972)
to describe changes in one module that require changes in any
another module. When assessing modularity using co-change
clustering, all clusters emerge due to co-changes, and therefore,
they express ripple effects in the system. Nonetheless, we plan
to investigate in this RQ, if co-change patterns relate differently
to the number of co-change bursts.

RQ #2: How do the different patterns relate to density of activ-
ity on clusters?

The density of activity on clusters may be measured by the
number of commits performed on them controlled by clusters’

5

size or by the number of developers that perform commits in
the clusters’ classes. In other words, the higher the number of
commits performed in a cluster, the higher the density of activ-
ity in this cluster. In this RQ, we plan to investigate whether the
different cluster patterns relate to different activity levels.

RQ #3: How do specific patterns of co-change clusters relate
to the number of developers per cluster?

The number of developers who work on the classes of a clus-
ter may indicate different points, e.g., the heterogeneity of the
team on a piece of the systems or the effort (manpower).

RQ #4. How do specific patterns of clusters relate to different
number of commits of the cluster’s owner?

To answer this RQ, we first compute the clusters’ owners.
The owner of a cluster A is the developer with the highest num-
ber of commits performed on classes in A. Our hypothesis is
that the work of a clusters’ owner may indicate different points.
For example, the clusters with a dominant owner may be more
error-prone for other programmers (Bird et al., 2011).

4.2. Dataset

We describe the projects hosted in GitHub that we collected,
the selection criteria to generate the corpus and the analysis
methods we use to answer our research questions. We conduct
a large scale experiment on systems implemented in six popu-
lar languages as follows: C/C++, Java, JavaScript, Ruby, PHP,
and Python. First, we rank the top-100 most popular projects
in each language concerning their number of stars (a GitHub
feature that allows users to favorite a repository). For each
language, we analyze all the selected systems considering the
first quartile of the distribution according to three measures:
number of commits, number of files, and number of develop-
ers. Second, we choose the systems which are not in any mea-
sures of the first quartiles as presented in Figure 8. The first
quartile of the distributions measures for number of commits
range from 241 (Java systems) to 788 (Ruby systems), num-
ber of files ranges from 39 (Python systems) to 133 (C/C++

systems), and number of developers ranges from 18 (Java sys-
tems) to 72 (Ruby systems). Therefore, our goal in this step
is to select large projects with large number of commits and a
significant number of developers.

We also discard projects migrated to GitHub from a dif-
ferent version control system (VCS). Specifically, we dis-
carded systems whose initial commits (around 20) include
more than 50% of their files. This scenario suggests that
more than half of development life of the system was imple-
mented in another VCS. Finally, all selected systems were in-
spected manually on their respective GitHub page. We ob-
served that raspberrypi/linux project is very similar to
torvalds/linux project. To avoid redundancy, we removed
this project.

We included 133 systems in our dataset. Table 1 presents a
summary of the selected systems after the discarding step de-
scribed previously. In this table, we presented C/C++ projects
separately. For each language, we selected 18 (C/C++), 17
(PHP), 21 (Java), 22 (JavaScript and Python), and 33 (Ruby)
systems. As a result, we considered in our experiment more

than 2 million commit transactions. The overall sizes of the
systems in number of files and line of code are 373K files and
41 MLOC, respectively.

Table 1: Projects in GitHub organized by language. The table describes The
language, number of projects (Proj.), number of commits, number of developers
(Dev.), number of files, and line of codes (LOC).

Language Proj. Commits Dev. Files LOC
C 4 650,953 18,408 69,979 14,448,147
C++ 14 196,914 2,631 37,485 5,467,169
Java 21 418,003 4,499 140,871 10,672,918
JavaScript 22 108,080 5,740 24,688 3,661,722
PHP 17 125,626 3,329 31,221 2,215,972
Python 22 276,174 8,627 35,315 2,237,930
Ruby 33 307,603 19,960 33,556 2,612,503
Total 133 2,083,353 63,194 373,115 41,316,361

Preprocessing files. In our technique we only consider co-
change files that represent the source code. For this reason,
we discard documentation, images, files associated to tests,
and vendored files. We used Linguist tool3 to generate lan-
guage breakdown graphs. Linguist is a tool used by GitHub
to compute the percentage of files by programming language in
a repository. We follow Linguist’s suggestions to remove files
from our dataset. Linguist classified automatically 129,455 files
(34%), including image, xml, c, txt, js, and php files. Fi-
nally, we inspected manually the first two top-level directories
for each system searching for vendored libraries and documen-
tation files not detected by Linguist. In this last step, we dis-
carded 10,450 files (3%).

4.3. Threshold Selection

First, we preprocess the commit transactions of each system
to compute co-change graphs. Table 2 shows the thresholds
considered for this evaluation. We use the same thresholds of
our previous experiences with Co-Change Clustering, where
they were justified (Silva et al., 2014, 2015b). One exception
is the time window threshold to merge commits. This thresh-
old aims to group commits by the same developer that happen
more than once in some period of time. This concept also called
“change bursts” is applied in the literature (Nagappan et al.,
2010). We applied this threshold to reduce the number of uni-
tary commits because they cannot be used to evaluate a system
in terms of co-change relations. Figure 9 shows the reduction
rate of unitary commits after applying the time frame threshold
to merge commits. We range this threshold from five to fifteen
minutes. The figure presents only three thresholds to ease the
analysis. While the threshold set in five minutes, the mean is
0.14 and the median is 0.15, for 10 minutes the mean and me-
dian slightly increase to 0.19 and 0.2, respectively. Moreover,
the threshold set for thirteen and fifteen minutes, we observed
significant reduction rate compared to others, e.g., the reduc-
tion rate ranged from 45% to 60% of unitary commit. Further-
more, in some cases we observed low reduction rate compared

3https://github.com/github/linguist

6

C
/C

+
+

Ja
va

Ja
va

S
cr

ip
t

P
H

P

P
yt

ho
n

0
100
200
300
400
500
600

Number of Developers

C
/C

+
+

Ja
va

Ja
va

S
cr

ip
t

P
H

P

P
yt

ho
n

0

2000

4000

6000

8000

Number of Commits

C
/C

+
+

Ja
va

Ja
va

S
cr

ip
t

P
H

P

P
yt

ho
n

0
1000
2000
3000
4000
5000
6000

Number of Files

Figure 8: The overall number of commits and number of files by language

Table 2: Thresholds setup to extract co-change clusters
Metric Value Description

Maximum Scattering 10 We discard commits impacting more than ten packages
Minimum Weight 2 We remove edges with weight equal to one for not reflecting co-change relation (Beyer

and Noack, 2005)
Minimum Cluster Size 4 After clustering we remove clusters with less than four classes
External Similarity 10−2 We select clusters whose average external similarity tend to zero
Time Frame 10 Time window threshold to merge commits

five and ten minutes. In addition, we also noted an increase
of unitary commit (reduction rate lower than zero) for three
projects and this goes against our focus—reduce the number
of unitary commits but only merging commits associated to the
same task. For the above reasons, in our study we set up the
time frame threshold to ten minutes because it does not cause
great impact. Moreover, we preferred to adopt a conservative
method to not have commit merging of different tasks. Finally,
we randomly selected 100 change sets to check manually log
messages whether the changes concern the same maintenance
task. The first author confirmed that all sets refer to unique pro-
gramming task.

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

Change Burst X Thresholds

Systems

R
ed

uc
tio

n
R

at
e

Minutes

Five
Ten
Fifteen

Figure 9: Commit reduction rate for 5, 10, and 15 minutes

In summary, ten systems do not provide enough commits to
mine co-change clusters and they are discarded, thus, we ex-
tract co-change clusters for 123 projects. Our selection includes
well-known systems, such as ruby/ruby, torvalds/linux,
php/php − src, webscalesql/webscalesql − 5.6, and
rails/rails.

5. Results

5.1. Clustering Quality
In this section, we analyze the quality of the extracted co-

change clusters. In other words, we evaluate the process of co-
change clusters’ extraction. To increase the strength of our ex-
periment, we use a sliding time window of three years for each
of the 123 projects in GitHub. We defined three years because
is too costly conduct the experiment for all projects in shorter
period. Moreover, the projects’ age differ from each other, e.g.,
as commits in torvalds /linux project started in 2002, then
we have time frames like 2002—2004, 2003—2005, 2004—
2006, 2005—2007, ..., 2012-2014, 2013-2014, 2014 (13 time
windows, where each time window contributes with one clus-
tering). Thus, for torvalds/linux project we have 13 cluster-
ings. If we consider all projects, the outcome of this experiment
consists of 600 final clusterings (600 time windows).

The goal in considering the sliding time window is to analyze
whether co-change clusters are stable concerning their commit
densities, i.e., number of commits divided by the number of
source code files. As some projects are older than others, they
do not have all time windows. We considered a range to have
better uniformity, i.e., to consider old and recent projects in the
same way. Thus, we analyzed the four most recent time win-
dows from 2009—2011 to 2012—2014, resulting in 325 out of
600 clusterings. For this range, we extracted 5,229 co-change

7

clusters and only 241 clusters (5%) have not matched any of the
six proposed patterns. Figure 10 shows the evolution of commit
densities per co-change pattern. Note that for all patterns, there
is no significant difference of commit density.

5.1.1. Analysis of the Co-Change Cluster Extraction

In our previous work we proposed the function Coefficient
(Silva et al., 2014) to select the best number of partitions that is
created in the first phase of the Chameleon algorithm. The goal
of this quality function is to find the best clustering, in our case,
combining cohesion and separation. However, selecting an ad-
equate clustering metric to evaluate clusters is a well-known
challenging issue (Almeida et al., 2011). For this reason, in this
section we evaluate the stability of co-change clusters extracted
from the evaluated projects.

We analyze the clustering quality using a sliding time win-
dow of three years for each of the 123 projects—600 time win-
dows (clusterings) for all projects. To conduct this experiment,
we run again the Chameleon algorithm for each system in our
dataset to define the best number of partitions but this time
using another metric, called Coverage metric (Almeida et al.,
2011). Similarly to Coefficient, Coverage values also ranges
from 0 to 1. However, higher values mean that there are more
edges inside the clusters than edges linking distinct clusters.
In summary, the difference between Coefficient and Coverage
measures is that the former takes into account edges’ weight
and the latter number of edges.

We use MoJoFM (Wen and Tzerpos, 2004), a metric based
on MoJo distance, to compare and evaluate the effectiveness of
co-change clusters.4 MoJo distance compares two clusterings
of the same software system as the minimum number of Move
or Join operations needed to transform a clustering A into B
or vice versa. When A and B are very similar, there are few
moves and joins. For instance, if two clusterings are identical,
MoJo yields a quality of 100%. In this study, our clusterings
are obtained from Coefficient and Coverage measures.

Figure 11 shows the MoJoFM values for all 600 clusterings.
As we can observe, 471 clusterings (78.5%) have a match of
100%, i.e., they are identical. Furthermore, 553 clusterings
(92%) have MoJoFM values greater than 90% and 581 (97%)
greater than 80%. The mean value is 98% and the median
value is 100%. This result shows that the co-change clusters
are in most case well-defined sub-graphs in co-change graphs.
In other words, most of co-change clusters are stable ones, i.e.,
their shapes are easily detected by Chameleon because the inter-
clusters edges are minimized. Nonetheless, there are some sys-
tems with clusters’ boundaries difficult to identify. While Coef-
ficient considers the frequency of co-changing, Coverage mea-
sure does not. As we deal with recurrent maintenance task, Co-
efficient is more appropriated because it seeks for set of classes
that frequently change together.

4To calculate MoJoFM, we relied on the MoJo 2.0, http://-

www.cs.yorku.ca/~bil /downloads/.

5.2. Classifying Co-Change Clusters

We classify the extracted co-change clusters into six pat-
terns: Encapsulated, Well-Confined, Crosscutting, Black-
Sheep, Squid, and Octopus Clusters. Table 3 presents the co-
change clusters by pattern. In summary, the six co-change
patterns cover 1,719 out of 1,802 (95%) of the extracted clus-
ters. In contrast, in our previous study (Silva et al., 2015b) we
used three co-change patterns (Encapsulated, Crosscutting, and
Octopus) to categorize the extracted clusters and they covered
around 50% of the clusters. Therefore, we can observe that
the six co-change patterns increased substantially the percent-
age of categorized clusters (95%). By contrast, we could not
assign a specific form to the remaining clusters, given the pro-
posed rules. Typically, these clusters stay between Tentacled
and Scattered clusters for having more sensitive definition con-
cerning the thresholds, opposed to Wrapped clusters which are
more sharply defined. For this reason, we decide to exclude
those 5% of the study as a small consequence on the global
picture that we aim with the statistical analysis.

Table 3: Number and percentage of categorized co-change clusters
Pattern # Systems # Clusters
Encapsulated 76 (61.8%) 464 (25.7%)
Well-Confined 56 (45.5%) 227 (12.6%)
Crosscutting 51 (41.5%) 106 (5.9%)
Black-Sheep 18 (14.6%) 51 (2.8%)
Octopus 114 (92.7%) 805 (44.7%)
Squid 44 (35.8%) 66 (3.7%)
No Pattern 38 (31%) 83 (4.6%)
Total Coverage 1,719 (95.39%)
Total of Extracted Clusters 1,802 (100%)

Table 4: Number and percentage of categorized co-change clusters grouped in
three major patterns

Pattern # Systems # Clusters
Wrapped 95 (77%) 691 (38.35%)
Scattered 57 (46%) 157 (8.71%)
Tentacled 114 (93%) 871 (48.33%)
No Pattern 38 (31%) 83 (4.61%)
Total Coverage 1,719 (95.39%)
Total of Extracted Clusters 1,802 (100%)

To conduct our study, we group the categorized clusters to
ease the analysis, as follows: (i) clusters with localized changes:
Encapsulated and Well-Confined Clusters, (ii) clusters which
present crosscutting behavior: Crosscutting and Black-Sheep
Clusters, (iii) clusters with body and arms: Squid and Octopus
Clusters. Table 4 summarizes the co-change clusters as grouped
in these three major patterns: clusters with confined changes
are named Wrapped (Encapsulated and Well-Confined), clus-
ters with crosscutting behavior as Scattered (Crosscutting and
Black-Sheep), and clusters with body and arms as Tentacled
(Squid and Octopus). As we can observe, instances of Ten-
tacled Clusters are quite common, since they are present on

8

Figure 10: Evolution of commit density (source code files) per co-change pattern

●

●

●

●
●

●
●

●

●
●

●●
●●

●

●●●●
●●

●●
●
●●●

●●●●
●
●●
●
●●●●●

●●
●
●●●●

●●
●
●●

●●
●●●
●●●
●●●●
●●●●●●●●●

●●●●●●●●●●●●
●●●●●●

●●●●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●
●●

1 2 5 10 20 50 100 200 500

60

70

80

90

100

Systems

M
oJ

oF
M

 V
al

ue
s

Figure 11: MoJoFM values for 600 clusterings

114 systems (93%), representing 48.33% of all co-change clus-
ters. Furthermore, 38.35% of the clusters are Wrapped Clusters,
which cover 95 systems (77%). By contrast, Scattered Clusters
are detected in 57 systems (46%) and they represent only 8.71%
of the co-change clusters.

Figure 12 depicts the percentage of co-change clusters by
system in stacked bar plots. The clusters are grouped by pattern
(dashed bars) or pattern absence (solid purple bars). We found
instances of co-change patterns in all 123 systems. Specifically,
all systems have Wrapped or Tentacled Clusters. Tentacled are
present in most systems and the average percentage of such
clusters by system is 57% (dashed red bars). The number of
systems with Wrapped Clusters is smaller than Tentacled but it
is significant, 30% on average (dashed green bars). By contrast,
co-change clusters that present Scattered behavior are relatively
rare (dashed blue bars).

We identify eight systems that have all co-change clusters
categorized as Wrapped (dashed green bars). Furthermore,
all clusters in 10 systems are Tentacled (dashed red bars).
In addition, 85 projects have all co-change clusters catego-
rized and 54 projects have only Wrapped and/or Tentacled Pat-
terns. In contrast, Scattered Clusters do not dominate any
system, e.g., 58% of the systems with clusters categorized as
Scattered have only one cluster and 72% have two clusters.
JetBrains/intellij − community and torvalds/linux
are the top two systems concerning absolute number of Scat-

tered Clusters, with 13 and 29 clusters, respectively. Scattered
Clusters in Intellij − Community represent 9% of extracted
clusters, while in Linux they represent only 8%.
Programming Language. From another perspective, Figure 13
depicts the percentage of co-change clusters by programming
language. As can be observed, the three patterns are detected
independently of implementation language. The results also
show that few clusters match the Scattered Pattern. For in-
stance, PHP and C++ projects have their clusters categorized
as Scattered Clusters, 9% and 12% respectively. Conversely,
Tentacled Pattern is very common. The percentage of Tenta-
cled Clusters is more than 50% on average, with exception for
C projects (28%). Wrapped is also common in all languages,
they represent 36% of the clusters on average. Interestingly, C
systems have the highest proportion of Wrapped clusters. In
general, C systems have simpler organization in terms of fold-
ers, C systems have simpler organization in terms of folders,
and they have proportionally less files per line of code, which
seems to have favored changes to be wrapped.
Application Domain. We adopted the classification proposed
by Borges and Valente (2018) to assign systems to a particu-
lar domain. Then, we manually classified all projects in our
dataset, as follows:

1. Application software. Systems implemented to end-users,
such as browsers, text editors (e.g., drupal/drupal).

2. System software. Systems that provide services and in-
frastructure, such as operating systems and databases (e.g.,
webscalesql/webscalesql − 5.6).

3. Web libraries and frameworks. Systems used to imple-
ment web application interfaces (e.g., django/django).

4. Non-web libraries and frameworks. Systems used to im-
plement components for an application (e.g., scikit −
learn/scikit − learn).

5. Software tools. Systems that support development tasks,
such as IDEs and compilers (e.g., git/git).

Figure 14 shows characterizes the prevalence of clusters
within different domains. All systems were classified into Ap-
plication Software (App), Non-web Libraries and Frameworks
(Lib), System Software (System), Software Tools (Tools), and
Web Libraries and Frameworks (Weblib). We also observe no

9

ac
tiv

ea
dm

in
ac

e
ge

oc
od

er
pl

at
fF

ra
m

ew
or

ks
an

si
bl

e
ca

ss
an

dr
a

at
om

−
sh

el
l

ru
bo

co
p

bi
tc

oi
n

til
ed

bo
to

gl
id

e
bu

nd
le

r
bu

p
ca

ffe
ho

m
eb

re
w

−
ca

sk
ce

le
ry

ce
llu

lo
id

ch
ef

cl
oj

ur
e

co
co

s2
d−

x
C

od
eM

irr
or

co
m

po
se

r
cu

cu
m

be
r

di
as

po
ra

dj
an

go
−

cm
s

dj
an

go
io

ni
c

dr
up

al
el

as
tic

se
ar

ch
lo

gs
ta

sh
em

be
r.j

s
th

or
aj

en
ti

an
dr

oi
da

nn
ot

at
io

ns
os

qu
er

y
pr

es
to fo
g

P
H

P
−

C
S

−
F

ix
er

Fa
ke

r
se

nt
ry gi

t
an

dr
oi

d
gr

ad
le

ha
m

l
ho

m
eb

re
w

io
.js

ip
yt

ho
n

op
en

cv
ja

de
je

ky
ll

in
te

lli
j−

co
m

m
un

ity
ca

py
ba

ra
vo

w
pa

l_
w

ab
bi

t
jo

om
la

−
cm

s
jq

ue
ry

jq
ue

ry
−

ui
fo

rm
ta

st
ic

ki
vy io
n

as
se

tic
Le

af
le

t

No Pattern Tentacled Scattered Wrapped

%
 C

o−
C

ha
ng

e
P

at
te

rn
s

0.0

0.2

0.4

0.6

0.8

1.0
ac

tiv
ea

dm
in

ac
e

ge
oc

od
er

pl
at

fF
ra

m
ew

or
ks

an
si

bl
e

ca
ss

an
dr

a
at

om
−

sh
el

l
ru

bo
co

p
bi

tc
oi

n
til

ed
bo

to
gl

id
e

bu
nd

le
r

bu
p

ca
ffe

ho
m

eb
re

w
−

ca
sk

ce
le

ry
ce

llu
lo

id
ch

ef
cl

oj
ur

e
co

co
s2

d−
x

C
od

eM
irr

or
co

m
po

se
r

cu
cu

m
be

r
di

as
po

ra
dj

an
go

−
cm

s
dj

an
go

io
ni

c
dr

up
al

el
as

tic
se

ar
ch

lo
gs

ta
sh

em
be

r.j
s

th
or

aj
en

ti
an

dr
oi

da
nn

ot
at

io
ns

os
qu

er
y

pr
es

to fo
g

P
H

P
−

C
S

−
F

ix
er

Fa
ke

r
se

nt
ry gi

t
an

dr
oi

d
gr

ad
le

ha
m

l
ho

m
eb

re
w

io
.js

ip
yt

ho
n

op
en

cv
ja

de
je

ky
ll

in
te

lli
j−

co
m

m
un

ity
ca

py
ba

ra
vo

w
pa

l_
w

ab
bi

t
jo

om
la

−
cm

s
jq

ue
ry

jq
ue

ry
−

ui
fo

rm
ta

st
ic

ki
vy io
n

as
se

tic
Le

af
le

t

No Pattern Tentacled Scattered Wrapped

%
 C

o−
C

ha
ng

e
P

at
te

rn
s

0.0

0.2

0.4

0.6

0.8

1.0
le

ss
.js

lib
gd

x
M

ai
lp

ile d3
ba

ck
up

m
et

eo
r

va
gr

an
t

fla
sk

m
on

go
id

pd
f.j

s
th

re
e.

js
na

te
−

F
la

sh
lig

ht
ne

tty
A

nd
E

ng
in

e
od

oo
dj

an
go

−
so

ci
al

op
en

F
ra

m
ew

or
ks

fn
or

dm
et

ric
ph

ab
ric

at
or

ph
p−

sr
c

de
vi

se
po

w
er

lin
e

pr
aw

n
pu

ph
pe

t
pu

pp
et

pa
nd

as
ra

ils
R

at
ch

et
R

xJ
av

a
re

qu
ire

js
re

sq
ue

yo
ut

ub
e−

dl
ru

by sa
lt

be
et

s
sa

nd
st

or
m

−
ca

pn
sa

ss
sc

ik
it−

sc
ik

it−
le

ar
n

ph
pu

ni
t

m
on

ol
og

tw
itt

er
op

en
ag

e
ac

tiv
e_

m
er

ch
an

t
S

ile
x

no
ko

gi
ri

lu
ig

i
sp

rin
g−

fr
am

ew
or

k
sp

ro
ck

et
s

tit
an

T
hi

nk
U

p
fa

ct
or

y_
gi

rl
pa

pe
rc

lip
th

um
bo

r
lin

ux
G

ho
st v8

w
eb

sc
al

es
ql

−
5.

6
W

or
dP

re
ss

w
p−

w
p−

cl
i

je
di

s
yi

i2

%
 C

o−
C

ha
ng

e
P

at
te

rn
s

0.0

0.2

0.4

0.6

0.8

1.0

le
ss

.js
lib

gd
x

M
ai

lp
ile d3

ba
ck

up
m

et
eo

r
va

gr
an

t
fla

sk
m

on
go

id
pd

f.j
s

th
re

e.
js

na
te

−
F

la
sh

lig
ht

ne
tty

A
nd

E
ng

in
e

od
oo

dj
an

go
−

so
ci

al
op

en
F

ra
m

ew
or

ks
fn

or
dm

et
ric

ph
ab

ric
at

or
ph

p−
sr

c
de

vi
se

po
w

er
lin

e
pr

aw
n

pu
ph

pe
t

pu
pp

et
pa

nd
as

ra
ils

R
at

ch
et

R
xJ

av
a

re
qu

ire
js

re
sq

ue
yo

ut
ub

e−
dl

ru
by sa
lt

be
et

s
sa

nd
st

or
m

−
ca

pn
sa

ss
sc

ik
it−

sc
ik

it−
le

ar
n

ph
pu

ni
t

m
on

ol
og

tw
itt

er
op

en
ag

e
ac

tiv
e_

m
er

ch
an

t
S

ile
x

no
ko

gi
ri

lu
ig

i
sp

rin
g−

fr
am

ew
or

k
sp

ro
ck

et
s

tit
an

T
hi

nk
U

p
fa

ct
or

y_
gi

rl
pa

pe
rc

lip
th

um
bo

r
lin

ux
G

ho
st v8

w
eb

sc
al

es
ql

−
5.

6
W

or
dP

re
ss

w
p−

w
p−

cl
i

je
di

s
yi

i2

%
 C

o−
C

ha
ng

e
P

at
te

rn
s

0.0

0.2

0.4

0.6

0.8

1.0

Figure 12: Relative number of identified and classified clusters for each system

major difference on the proportion of co-change patterns for the
distinct domains, except the System Software domain that has
more Wrapped than Tentacled clusters.

5.3. Statistical Methods

We use regression modeling to describe the relationship of
a set of predictors against a response. Regression modeling is
specially recommend in multi-variable analysis to understand
the effect of several variables in only one model. To answer the
research questions proposed in Section 5.4, we model either
the number of co-change commits or the number of commits in
clusters against other factors. We used the R statistical software.
Because this kind of count data is over-dispersed, negative bino-
mial regression (NBR) is used to fit the models, which is a type
of generalized linear model used to model count responses. We
used the function glm.nb function available in package MASS.

PHP Ruby Python C++ C Java JS

No−pattern Tentacled Scattered Wrapped

Language

%
 o

f C
lu

st
er

s
by

 P
at

te
rn

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PHP Ruby Python C++ C Java JS

No−pattern Tentacled Scattered Wrapped

Language

%
 o

f C
lu

st
er

s
by

 P
at

te
rn

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 13: Relative Co-Change Pattern coverage by Programming Language

NBR can also handle over-dispersion (Cohen et al., 2003). For
example, there are cases where the response variance is greater
than the mean. We verify if the main predictor really is a sta-
tistically significant predictor comparing the model with the
predictor and without the predictor using a ANOVA with Chi
Square test to verify whether reduction in the residual sum of
squares are statistically significant or not. Moreover, we use
the deviance table of the fitted models to understand the rela-
tive importance of the studied factors over the control factors,
reporting on the explained variance of the studied factors.

Moreover, we control for several factors that are likely to
influence the outcome. Specifically, NBR models the log of the
expected count as a function of the predictor variables. We can
interpret the NBR coefficient as follows: for a one unit change

App Lib System Tools Weblib

No−Pattern Tentacled Scattered Wrapped

Domain

%
 C

lu
st

er
s

by
 D

om
ai

n

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 14: Relative Co-Change Pattern coverage by Domain

10

in the predictor variable, for a coefficient βi, a one unit change
in βi yields an expected change in the response of eβi , given the
other predictor variables in the model are held constant. We
also measure how much a predictor variable accounts for the
total explained deviance.

Absence of multi-collinearity is one of the assumption of
negative binomial models, i.e., there should be no perfect lin-
ear relationship between two or more of the predictors. So, the
predictor variables should not correlate too highly. To check
whether excessive multi-collinearity is an issue, we compute
the variance inflation factor (VIF) of each dependent variable
in all models. We used the function vif available in the package
car. Although there is no particular value of VIF that is always
considered excessive, our VIF values do not exceed 5 which is
a widely acceptable cut-off (Cohen et al., 2003).

To help the interpretation of the NBR models for a wider au-
dience, we also provide Fox’s effect plots (Fox, 2003), available
in the R package effects. In effect plots, predictors in a term are
allowed to range over their combinations of values, while other
predictors in the model are held to “typical” values, then the
fitted value of the response and standard error of the effects are
computed for each combination of regression values.

5.4. Analysis of the Results
Before analyzing the rationale behind a co-change pattern

classification, we begin with four research questions to inves-
tigate co-change clusters quantitatively.

RQ #1: How do the different patterns relate to co-change
bursts?

To answer this RQ, we analyze the number of categorized
clusters to investigate whether the patterns are associated dif-
ferently to the number of co-change bursts (bursts of commits
that spans several modules). Table 5 shows the NBR model for
number of co-change bursts per system. We include two vari-
ables as controls for factors that influence co-change bursts: 1)
the number of source code files (nFiles) in a project is included
because size may induce a greater number of co-change rela-
tions. 2) the project age (nMonths) may also impact the anal-
ysis because older projects would have more evolutionary data
available. The number of co-change clusters by pattern allows
us to investigate the ripple effect level in each pattern. For in-
stance, torvalds/linux has 65,433 co-change bursts, 48,948
source code files, 161 months of commits, 211 Wrapped, 29
Scattered, and 88 Tentacled Clusters.

Table 6 shows that all variables are significant, with the ex-
ception of Wrapped clusters (nWrapped), i.e., those factors ac-
count for some of the variance in the ripple effect. Although,
there nWrapped is significant as predictor as shown in Table 5,
it is negligible how much it explains deviance. The number
of source code files in a project accounts for the majority ex-
plained deviance (61%), i.e., nFiles divided by the sum of the
Deviance column. In the analysis of this deviance table, we
can also see that the next closest predictor is project age which
accounts for 20%. The number of Tentacled Clusters (nTen-
tacled) accounts for 11% of the total explained deviance, and
the number of Scattered clusters (nScattered) accounts for 7%

Table 5: NBR model for number of co-change bursts per system.
Estimate Std. Error z value Pr(> |z|)

(Intercept) 4.967e+00 1.408e-01 35.286 < 2e-16 ***
nFiles 6.173e-05 1.653e-05 3.734 0.000188 ***
nMonths 1.159e-02 1.784e-03 6.500 8.03e-11 ***
nWrapped -3.549e-02 1.615e-02 -2.197 0.028008 *
nTentacled 1.154e-01 1.587e-02 7.271 3.58e-13 ***
nScattering 1.602e-01 3.523e-02 4.546 5.46e-06 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

Table 6: Deviance table for NBR model on the number of co-change bursts per
system.

Df Deviance Res. Df Res. Dev. Pr(>Chi)
NULL 121 466.55
nFiles 1 204.974 120 261.58 < 2.2e-16 ***
nMonths 1 67.733 119 193.85 < 2.2e-16 ***
nWrapped 1 2.559 118 191.29 0.1097 .
nTentacled 1 37.385 117 153.90 9.698e-10 ***
nScattered 1 23.584 116 130.32 1.195e-06 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

of the deviance. Therefore, these relationships—Tentacled and
Scattered—are statistically significant with an important effect.

The column Estimate in the model presented in Table 5 re-
lates the predictors to the result. The coefficients are compared
among the respective variables to the different co-change pat-
terns. Note that all intercepts are positive, with exception of
nWrapped variable. A significant result is that for each added
Tentacled and Scattered, the increase is 1.12 (e1.154e−01) and
1.17 (e1.602e−01), respectively. This outcome can also be noted
in Figure 15, which presents the effects on co-change bursts for
all variables included in the NBR model.

There is a moderate and significant relationship between
the frequency of a given cluster pattern in the system and
the number of co-change bursts, controlled by system size
and age. An increase in the number of Scattered and
Tentacled Clusters is associated with an increase in the
number of co-change bursts. In contrast, the association
with Wrapped Clusters is not significant. An implication
of these findings is that classes in Wrapped clusters, al-
though co-changing, do not increase co-change bursts in
the system as classes in Scattered and Tentacled clusters.
Therefore, if developers work to decrease the number of
Scattered and Tentacled clusters in the system, co-change
bursts would likely decrease.

RQ #2: How do the different patterns relate to density of activ-
ity on clusters?

To answer this RQ, we analyze clusters with different pat-
terns and their activity levels (number of commits per clus-
ter). Table 7 details the NBR model for number of commits per
cluster—variable of response. The lines in the table represent
clusters and each cluster has a type and its respective factor rep-
resents this type (Scattered, Tentacled, or No Pattern). The type
Wrapped is not listed in the table, because the results shows the

11

Figure 15: Effects on Co-change Bursts

coefficients of other types compared to the Wrapped. We de-
cided to compared with Wrapped cluster because they are, by
hypothesis, considered to have the lowest level of activity, so
we compare the others with Wrapped to identify and quantify
the increase in activity, if any. The idea is to analyze which
type of commit has more impact on the variable of response
(activity). As clusters with greater sizes tend to have more ac-
tivity, we included the size variable, as a control variable in the
model because some co-change patterns tend to follow a par-
ticular structure concerning their size. For instance, Tentacled
Clusters have more source code files than the others. Note that
in this model, we do not include age, because the the unit of
experimentation is the cluster, and not the system as in the pre-
vious question.

Table 7: NBR model for number of commits per cluster. S - Scattered Clusters,
NP - Clusters with no Pattern, T - Tentacled Clusters

Estimate Std. Error z value Pr(> |z|)
(Intercept) 4.7181253 0.0426703 110.572 < 2e-16 ***
size 0.0212170 0.0002399 88.448 < 2e-16 ***
factor(S) 0.9521920 0.0989228 9.626 < 2e-16 ***
factor(NP) 0.4957564 0.1300395 3.812 0.000138 ***
factor(T) 1.0119010 0.0580520 17.431 < 2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

The result shows that compared to the Wrapped Clusters,
the other clusters have higher activity level. For instance, the
Tentacled Clusters increase the intercept (Wrapped Clusters) in
1.0119010 and the Scattered Clusters in 0.9521920. This means
that the intercept for Wrapped Clusters is e4.7181253 ≈ 112; for
Tentacled Clusters is e4.7181253+1.0119010 ≈ 308, and for Scattered
Clusters is e5.67 ≈ 290. Figure 16 shows that Wrapped Clusters
have much lower level of activity than the other kind of clusters.

Moreover, in Figure 17, we observe some variability between
clusters activity in different programming languages. However,
ANOVA shows no statistically significant difference in the ef-

Figure 16: Effects on Activity of Clusters. W - Wrapped, S - Scattered, T -
Tentacled, and NP - Clusters with no Pattern

fect that would result in the programming language being a
significant factor. We can also observe that activity is mostly
stable across different domains, although being less stable in
Scattered Clusters, which indeed have lower prevalence. In ad-
dition, ANOVA shows no evidence for the overall effect of the
domain on the clusters activity. Interestingly, Wrapped Clus-
ters consistently have lower activity level compared to Tenta-
cled and Scattered Clusters, as already shown in Table 7. For
Java and Ruby, Scattered and Wrapped present lower differ-
ence, which is also explained by the higher variability and lower
prevalence of Scattered Clusters.

Table 8 shows that size variable accounts for the majority
explained deviance. In the analysis of deviance, we see that
the factor pattern of clusters on the system accounts for 9.11%
of the total explained deviance, i.e., pattern divided by the
sum of the Deviance columns. Therefore, the results presented
in Table 7 show that Tentacled and Scattered Clusters are
statistically significant with an important effect.

12

Figure 17: Effects of Domain and Language on Activity of Clusters.

There is a moderate and significant relationship between
clusters of a given co-change pattern and the level of ac-
tivity on the clusters. Tentacled Clusters have a greater
association with the activity level than Scattered Clusters,
i.e., Tentacled have more changes than Scattered. Tenta-
cled and Scattered Clusters have the activity level substan-
tially higher than Wrapped Clusters, with the exception
for Scattered Clusters in Java and Ruby. In other words,
Wrapped Clusters are the ones with the lowest level of
changes. These findings is similar to the ones in the pre-
vious RQ. If developers work to limit the occurrences of
Tentacled and Scattered clusters, they would likely pro-
mote less commits in the system. This somehow converge
with the idea that if commits are more localized in classes
in Wrapped packages one would perform more complete
changes avoiding commits to fix ripple effects.

Table 8: Deviance table for NBR model on the number of commits per cluster
Df Deviance Res. Df Res. Dev. Pr(>Chi)

NULL 1801 5008.3
size 1 2616.93 1800 2391.4 < 2.2e-16 ***
pattern 3 262.42 1797 2128.9 < 2.2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

RQ #3: How do specific patterns of co-change clusters relate
to the number of developers per cluster?

Table 9: NBR model for number of developers per cluster
Estimate Std. Error z value Pr(> |z|)

(Intercept) 2.6240082 0.0387607 67.698 < 2e-16 ***
size 0.0074887 0.0002114 35.420 < 2e-16 ***
factor(S) 0.6793003 0.0887683 7.653 1.97e-14 ***
factor(NP) 0.4141105 0.1170532 3.538 0.000403 ***
factor(T) 0.7448908 0.0523115 14.240 < 2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

To answer this RQ, we analyzed the number of develop-
ers who changed classes in each cluster. Table 9 details the
NBR model for number of developers per cluster. The size
variable is included as a control factor in the model for the
same reason as in RQ #2. The result shows that compared to
the Wrapped Clusters, the other clusters have more developers
working on. For instance, Tentacled Clusters increase the inter-
cept (Wrapped Clusters) in 0.7448908. This means that the in-
tercept for Wrapped Clusters is e2.6240082 ≈ 14 and the intercept
for Tentacled Clusters is e2.6240082+0.7448908 ≈ 29. As another
example, the intercept for Scattered Clusters is e3.303 ≈ 27. Fig-
ure 18 depicts the difference among the cluster patterns con-
cerning number of developers. Wrapped Clusters usually have
much less developers than in other patterns.

Similar to RQ #2, Table 10 shows that the size variable ac-
counts for the majority of explained deviance. Furthermore,
the pattern factor of clusters accounts for 10.73% of the total
explained deviance, i.e., pattern divided by the sum of the De-
viance column. Therefore, Tentacled and Scattered Clusters are

13

Figure 18: Effects on Number of Developers of Clusters. W - Wrapped, S -
Scattered, T - Tentacled, and NP - No Pattern

Table 10: Deviance table for NBR model for number of developers per cluster
Df Deviance Res. Df Res. Dev. Pr(>Chi)

NULL 1801 3636.7
#classes 1 1458.17 1800 2178.5 < 2.2e-16 ***
pattern 3 175.21 1797 2003.3 < 2.2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

statistically significant with important effect.

There is a moderate and significant relationship between
co-change pattern and number of developers per cluster.
Tentacled Clusters usually have more developers work-
ing on them than Scattered Clusters. Wrapped Clusters
are usually the ones with the lowest number of develop-
ers. This finding reinforces the idea that because Tenta-
cled clusters have more activity, they require more people
working on them.

RQ #4. How do specific patterns of clusters relate to different
number of commits of the cluster’s owner?

We also analyze owners of the co-change clusters per pat-
tern. Table 11 details the NBR model for number of commits
related to cluster’s owner. We include two control variables:
number of commits and number of developers. Number of com-
mits provide information concerning the frequency of changes
in a cluster, i.e., the more commits in a cluster, the more its
owner is likely to commit. Additionally, number of developers
in a cluster may have some influence on the likelihood of the

Table 11: NBR model for commit number of cluster’s owner
Estimate Std. Error z value Pr(> |z|)

(Intercept) 3.005e+00 5.778e-02 52.006 <2e-16 ***
#commits 1.413e-04 5.393e-06 26.198 <2e-16 ***
log #devs 4.772e-01 2.081e-02 22.933 <2e-16 ***
factor(S) 1.524e-01 8.545e-02 1.784 0.0745 .
factor(NP) 1.158e-01 1.116e-01 1.038 0.2991
factor(T) 8.472e-01 5.227e-02 16.207 <2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

owner to commit. They have shown to explain most of the vari-
ance in the model as shown in Table 12. As we can observe
in Table 11, in Tentacled Clusters the clusters’ owner are more
important, i.e., concentrate more commits than Wrapped Clus-
ters. Interestingly, Scattered Clusters do not show a significant
difference from Wrapped Clusters, defined by non-significant
p-value. Tentacled Clusters increase the intercept (Wrapped
Clusters) in 0.847 and Scattered Clusters increase the inter-
cept only in 0.152. This means that the intercept for Wrapped
Clusters is e3.005 ≈ 20; the intercept for Scattered Clusters is
e3.005+0.152 ≈ 23.5, and the intercept for Tentacled Clusters is
e3.005+0.8472 ≈ 47. In other words, the commits performed by
the owner have higher importance in Tentacled Clusters than in
Wrapped Clusters, also illustrated in Figure 19. To define the
notion of ownership, we rely on the committer. The committer
is the person who last applied the patch, whereas the author is
the person who originally wrote the patch. So, it may be the
case that core developers are committers for other authors. In
our data, we tend to credit core developers to be the owners,
even though, they maybe were not actually the authors.

Figure 19: Effects on Commits of Owners. W - Wrapped, S - Scattered, T -
Tentacled, and NP - Clusters with no Pattern

Table 12 shows that variables and pattern factor are signifi-
cant. The number of commits in a cluster accounts for the ma-
jority of explained deviance. The pattern factor of clusters on
the system accounts for 10.61% of the total explained deviance,
i.e., pattern divided by the Deviance column.

There is a moderate and significant relationship between
co-change patterns and commits performed by the clus-
ters’ owner. Tentacled Clusters usually have more com-
mits related to cluster’s owner than the remaining clusters.
In contrast, Wrapped and Scattered Clusters have no sig-
nificant difference concerning number of commits. A pos-
sible rationale on these numbers is that Tentacled clusters
tend to require a broader touching in the system because

Table 12: Deviance table for NBR model on the commit number of cluster’s
owner

Df Deviance Res. Df Res. Dev. Pr(>Chi)
NULL 1801 4662.8
#commits 1 1695.39 1800 2967.4 < 2.2e-16 ***
log #devs 1 654.89 1799 2312.5 < 2.2e-16 ***
pattern 3 274.83 1796 2037.6 < 2.2e-16 ***
*** p < 0.001, ** p < 0.01, * p < 0.05, . p < 0.1

14

of the tentacles. Thus, owners play an important in cop-
ing with the dependencies on those tentacles. Crosscut-
ting would also display such behavior, but maybe because
of their low prevalence, simple crosscutting commits, such
as simple refactoring, can be carried by non-owners.

6. Qualitative and Semantic Analysis

In this part of our work we focus on co-change cluster anal-
ysis in a qualitative perspective. Our goal is to investigate clus-
ters which have source code files massively changed, i.e., co-
change clusters with high level of activity. We analyze natural
language topics in log messages of commits aiming at retriev-
ing conceptual information to describe activities frequently per-
formed on co-change clusters and key words that may reveal
their concerns. For this purpose, we apply topic model tech-
nique to automatically infer the rationale behind a co-change
pattern classification. Specifically, we use topic modeling (Blei
et al., 2003; Griffiths and Steyvers, 2002; Rosen-Zvi et al.,
2004) to gain sense of what semantic meaning co-change clus-
ters present and what maintenance activity type had been ap-
plied frequently. We intend to comprehend whether the main-
tenance tasks differ in clusters with distinct patterns.

6.1. Cluster Selection Process

For each pattern, we rank the 10 most massively changed
clusters detected for 123 projects in GitHub. Table 13 describes
the systems which contains such clusters. We apply some pre-
processing steps, such as lowercase, tokenize, stopwords re-
moval, and punctuation removal. To search the number of top-
ics threshold, we explore the range of values from 5 to 45 and
analyze how the text messages break down.5 The number of
topics which better organizes the text messages ranges from 20
to 40. Small number of topics end up in generic topics, i.e,
they do not describe enough detailed information to compre-
hend cluster’s semantics. In contrast, large number of topics
result in null topics and very similar ones.

Table 13: The projects with the most massively changed clusters
System Description
Haml Markup Language
Git Version Control System
Odoo ERP and CRM System
Pandas Python Data Analysis Lib.
Homebrew Apple App Installation
Celery Distributed Task Queue
PHP-src Scripting Language
Twitter Ruby Interface to the Twitter API
Linux Operational System
Webscalesql-5.6 Relational Database Management System
V8 JavaScript Compiler
Ruby Programming Language
WordPress Content Management System
JQuery JavaScript Library
io.js NPM Compatible Platform
Beets Music Media Organizer

6.2. Topic Extraction
Wrapped Clusters: Table 14 shows the 10 most massively
changed clusters classified as Wrapped. We rely on the num-
ber of commits per file and cluster size to rank such clusters,
i.e., #commits divided by cluster size. The column score in the
table shows the ranking of the clusters, e.g., the highest score
is the first top ten. The column Co-change Pattern describes
the fine-grained pattern for each Wrapped Cluster, i.e., clusters
classified as Encapsulated or Well-Confined. We can observe
that 80% of the clusters are Encapsulated. The table also re-
ports key words retrieved from topics to describe clusters se-
mantically. To comprehend the meaning of these clusters, we
analyzed the summary of the topics and inspected their distribu-
tion maps. We could easily detect the concerns implemented by
the clusters. For example, the Haml cluster describes engines
of templates (Haml and Sass) for HTML and CSS documents. As
another example, in Odoo, the listed key words for the cluster
describes user interface requirements of the system associated
to Kanban view and web graph. Moreover, Homebrew’s clus-
ter describes formulas for database management systems and
programming language, such as Postgresql and Python. Simi-
larly, the cluster PHP (score 117) is encapsulated in the direc-
tory ext.phar. The phar is an extension in the PHP system
responsible to wrap entire PHP projects into a single phar file
(PHP archive) for helping in the distribution and installation.
Furthermore, the source code files in this directory describe
compressing format, such as zip and tar.
Scattered Clusters: Table 15 shows the 10 most massively
changed clusters with crosscutting behavior. The table also re-
ports the number of commits per file, cluster size, co-change
pattern, and key words retrieved from topics to describe clusters
semantically. The column score in the table shows the rank-
ing of the clusters, e.g., the highest score is the first top ten.
The column Co-change Pattern describes the fine-grained pat-
tern for each Scattered Cluster, i.e., clusters classified as Cross-
cutting or Black Sheep. We can observe that 90% of the clus-
ters are Crosscutting. As can be observed in Table 15, V8 sys-
tem contains four Scattered Clusters in the ranking list. This
system compiles JavaScript to specific machine code, such as
arm and MIPS. Specifically, the first three clusters in the ta-
ble present similar behavior. They touch directories contain-
ing machine-independent (src) and machine-dependent (arm,
arm64, x64, ia32, and mips) source code files. We analyzed
distribution maps of these clusters, extracted topics, and in-
spected the source code files to ease the comprehension about
their concepts. For example, the first V8 cluster has source files
to generate code in different platforms. The second V8 cluster
has files of the machine-independent optimizer (hydrogen) and
the low-level machine-dependent optimizer (lithium). Simi-
larly, the third V8 cluster contains files responsible for code
stub generation. Particularly, the specific architecture directo-
ries confine source code files concerning lithium optimizer
and generators of stub and code. In contrast, the directory

5To extract and evaluate topics, we relied on the Mallet topic model package
and guidelines, http://mallet.cs.umass.edu/topics.php.

15

Table 14: Ranking of Wrapped Clusters

Score System Co-change # Commits Size Topic SummaryPattern per File
148 Haml Encapsulated 1,477 10 rails sass haml html engine
129 Odoo Encapsulated 7,733 60 kanban view addon web graph
126 Homebrew Well-Confined 884 7 pypy python mongodb postgresql formula
117 PHP-src Encapsulated 2,346 20 phar zip zlib tar stream
112 PHP-src Encapsulated 5,935 53 mysql mysqli mysqlnd libmysql ext
101 Linux Encapsulated 811 8 net emulex driver ethtool pci
100 Homebrew Well-Confined 697 7 mysql mariadb pcre lua tools

85 PHP-src Encapsulated 340 4 pcntl process control support signal
84 Linux Encapsulated 839 10 staging xgi chipsets driver video
80 PHP-src Encapsulated 5,872 73 extension library libgd ibase odbc xmlwriter

Table 15: Ranking of Scattered Clusters

Score System Co-change # Commits Size Topic SummaryPattern per File
334 V8 Crosscutting 4,009 12 mips arm ast code generator
253 V8 Crosscutting 9,877 39 arm lithium allocation hydrogen instructions
194 V8 Crosscutting 3,107 16 generate code stub arm hydrogen
158 WordPress Crosscutting 4,596 29 theme admin user customizer props
143 io.js Crosscutting 4,446 31 node stream child process dns
112 Git Crosscutting 8,106 72 sha gitweb git gui daemon
104 Twitter Crosscutting 1,452 14 middleware development dependency gemspec version
92 V8 Black Sheep 1,746 19 log cpu profiler generator utils
90 Pandas Crosscutting 454 5 plot series boxplot dataframe hist
89 Celery Crosscutting 627 7 platform canvas log built task

src contains source code concerning hydrogen, lithium, and
generators. Apparently, the design decision to decompose the
system in directories by hardware architecture scattered these
concerns over the directories. Thus, if requirements related to
these concerns change, the several directories may have to be
updated. Instead, if concerns were centralized in their respec-
tive directories, the change would be confined in one location.

Tentacled Clusters: Table 16 shows the 10 most massively
changed clusters classified as Tentacled. The table also reports
the number of commits per file, cluster size, co-change pat-
tern, and key words retrieved from topics to describe clusters
semantically. The column score in the table shows the rank-
ing of the clusters. The column Co-change Pattern describes
the fine-grained pattern for each Tentacled Cluster, i.e., clusters
categorized as Octopus or Squid. We can observe that all the
top ten clusters are categorized as Octopus. The top one Ten-
tacled Cluster was detected in WebscaleSQL system and the
second and third positions are WordPress’ clusters. We ana-
lyzed their distribution maps, the extracted topics, source code,
and documentation to understand which concerns these clusters
implements. Their concerns are presented as follow:

• In WebscaleSQL’s cluster most part of its body is cen-
tered on the core folder (sql). The body implements
low level functionality, such as the parser, statement rou-
tines, global schema lock for ndb and ndbcluster in
mysqld (MySQL embedded), binary log, and the opti-
mizer code. The tentacles touch low level routines for
file access, performance schema (private interface for the
server), MySQL binary log (file reading), and client-server
protocol (libmysql).

• WordPress’s cluster (score 226) the body is the core which
implements the WordPress frontend (themes, comments,
post) and the tentacles are utility and admin functions.

• WordPress’s cluster (score 215) the body defines plugins
and themes. Specifically, the body implements the de-
fault theme for WordPress in 2015 (Twenty Fifteen theme)
and the tentacles are administration APIs (post, template,
scheme, dashboard widget, media).

6.3. Historical Analysis
We also analyze the evolution of the top one cluster for each

pattern in terms of maintenance activities from 2008 to 2014
(6.5 years). The three clusters contain a collection of 1,168
(Haml), 1,602 (V8), and 16,737 (Webscalesql-5.6) commits.
We consider the time frame of six months for all three clus-
ters and extract the most frequent topic (mode statistics mea-
surement) in each semester. This allows us to observe which
maintenance activities are most common in each cluster and
how they evolve over time.

Wrapped Cluster (or Encapsulated)- Haml project. Table 17
shows the timeline of the Wrapped Cluster with the most fre-
quent topics by semester. In this co-change cluster, the source
code files had improvement tasks, such as dead code removal,
testing, and updating. As this cluster contains engines of tem-
plate, we can observe in Table 17 topics describing the cluster
concern and maintenance tasks. The topic “Haml docs yard fix
sass” appears in three semesters as the most frequent topic in
the whole year 2009 and in 1-2010. We inspected the log mes-
sages and changes applied concerning this topic to understand
whether the key word fix is associated with bug fixing. Only
4% of topic’s commits applied changes which modify the sys-
tem behavior. The remaining (96%) just change comments in
source code files, e.g, the log message “Fix a minor anchor er-
ror in the docs”.

Scattered Cluster (or Crosscutting) - V8 project. Table 18
shows the timeline of the Scattered Cluster with the most fre-
quent topics by semester. In this co-change cluster, the source

16

Table 16: Ranking of Tentacled Clusters

Score System Co-change # Commits Size Topic SummaryPattern per File
255 Webscalesql-5.6 Octopus 42,680 167 ndb ndbcluster binlog table mysql
226 WordPress Octopus 10,184 45 blog comment theme login post
215 WordPress Octopus 14,021 65 twenty fifteen theme css menu
210 Ruby Octopus 24,570 117 bignum time strftime sprintf encoding
189 JQuery Octopus 3,036 16 ajax xhr attribute css core
176 PHP Octopus 20,839 118 zend api library zval class
144 V8 Octopus 9,217 64 regexp bit assembler debug simulator
138 Beets Octopus 2,913 21 album art fetchart lastgenre logging
127 Pandas Octopus 8,636 68 timedelta dataframe series groupby sql
123 PHP Octopus 22,910 186 ext zend openssl pcre zlib libmagic stream

Table 17: Timeline for the top one Wrapped (Encapsulated) Cluster
Period Wrapped Topics (Freq %)
2-2008 Method Add Option Util 16
1-2009 Haml docs Yard Fix Sass 34
2-2009 Haml docs Yard Fix Sass 16
1-2010 Rails Make Test 21
2-2010 Haml docs Yard Fix Sass 12
1-2011 Rails Make Test 17
2-2011 Sass Rails Support Update Add 29
1-2012 Remove Code Unused Dead 28
2-2012 Method Add Option Util 20
1-2013 Version Bump Beta 4
2-2013 Rails Preserve Check Find Automatically 22
1-2014 Method Add Option Util 38
2-2014 HTML Escape Strings foo Character 17

Table 18: Timeline for the top one Scattered (Crosscutting) Cluster
Period Scattered Topics (Freq %)
2-2008 fix bug error 17
1-2009 Code review chromium 27
2-2009 ast node expression 27
1-2010 Code review chromium 21
2-2010 Code review chromium 18
1-2011 Fix bug error 10
2-2011 Compile mips crankshaft 11
1-2012 Remove mips profiler 10
2-2012 Remove array descriptor 12
1-2013 Add arm type feedback 11
2-2013 Revert mode stub 9
1-2014 Fix type feedback 8
2-2014 Add mips support 21

code files had different maintenance tasks, such as code review,
new feature, and removal functionality. This cluster had fre-
quent commits associated to bugs only in its initial semester (2-
2008) and in (1-2011). However the absolute number of com-
mits fixing bugs in these two semesters is quite small, only 27
commits. Finally, we analyzed the log messages related to the
topic “Fix type feedback” to check if the term fix was related to
some commits associated to bug fixing. We could observe there
are no commits associated to bug correction.

Tentacled Cluster (or Octopus) - Webscalesql-5.6 project.
Specifically, the topic model technique used in this work ex-
tracted 30 topics from all cluster’s log messages and 19 topics

Table 19: Timeline for the top one Tentacled (Octopus) Cluster
Period Tentacled Topics (Freq %)
2-2008 fix bug warning build 12
1-2009 fix bug warning build 15
2-2009 mysql backport revno timestamp 15
1-2010 join table outer pushed 11
2-2010 fix bug warning build 10
1-2011 ndb ndbcluster remove binlog 13
2-2011 fix merge bug post 10
1-2012 bug log binlog transaction 9
2-2012 bug select result fix 9
1-2013 bug select result fix 16
2-2013 slave log master bug 11
1-2014 slave log master bug 15
2-2014 slave log master bug 19

describe bug fixing. An amount of 12,742 (76%) commits in
this cluster were classified to topics concerning bug fixing. We
grouped these topics by semester to comprehend the concen-
tration of bug fixing tasks. Table 19 shows the timeline of the
Tentacled Cluster with the most frequent topics by semester. In
contrast to the other clusters, topics which dominate the time-
line of the most changed cluster are concerning to bugs (10
out of 13 semesters). Our results suggested that concerns im-
plemented by Tentacled Clusters tend to be difficult to local-
ize changes. To comprehend the findings, a deep investiga-
tion is needed to analyze whether the high occurrence of bugs
comes from the complexity of these concerns and their imple-
mentation. More specifically, if their complexities increase the
difficult to maintain and evolve, consequently, increasing the
chances to insert bugs. A possible solution to answer this ques-
tion, it would be to define a method for detecting whether these
bugs are concerning changes applied between body and tenta-
cles or between tentacles.

7. Threats to Validity

First, we evaluated 123 distinct projects implemented in dif-
ferent languages, with a large variety regarding size and do-
mains. Despite attempts to cover several variables which may
impact our conclusions, we may not generalize to other systems
even for those implemented in programming languages consid-
ered in our study (external validity). Second, there are some
factors that could influence our results and they are directly re-
lated to the threshold settings used in the experiment (internal

17

validity). For co-change clusters and patterns, we reused thresh-
olds defined in our previous work due to the extensive investi-
gation to define them. As another internal threat to validity is
the threshold set to define the number of topics. To tackle this
problem, we followed the guidelines suggested by Mallet tool’s
documentation6. Third, there are also some possible threats
due to imprecision of the co-change relation measurements per-
formed in our study (construct validity). More specifically, our
technique relies on pre and pos processing steps of commits to
build co-change graphs. For the time window frame parameter,
we performed the calibration in all projects used in our study to
compute co-change bursts (see Section 4.3).

8. Related Work

In a previous work, we investigate experts’ perception of six
oriented-object systems about co-change clusters (Silva et al.,
2015b). However, we limited our study on three co-change
patterns that cover around 52% of the clusters (Encapsulated,
Crosscutting, and Octopus). In this study, we classify co-
change clusters into six patterns and conduct a series of em-
pirical studies in a large corpus with different languages. In
summary, with additional co-change patterns presented in this
work, we could increase the coverage to 95% of clusters.

Co-change relations are mined from version history to sup-
port on several aspects in software evolution and maintenance
such as, bad smell detection (Palomba et al., 2013), improve-
ment of defect detection techniques (D’Ambros et al., 2009b),
program omprehension (Beyer and Noack, 2005; D’Ambros
et al., 2009a), logical dependence detection (Alali et al., 2013;
Oliva et al., 2011), and recommendation of changes (Zimmer-
mann et al., 2005; Robillard and Dagenais, 2010).

Ball et al. (1997) introduce co-change graphs and later,
(Beyer and Noack, 2005) propose a visualization technique
which reveals clusters of co-change artifacts. Similar to our
work, software artifacts are represented by vertices in the
graphs. While they cluster all software artifacts, we follow
a cleaning step to select the relevant source code files during
dataset setting, co-change graph building, and co-change clus-
ter detection phases. Finally, our goal is not propose software
visualization but detecting co-change patterns from clusters to
support modularity assessment.

Mondal et al. (2013) and Gı̂rba et al. (2007) define co-
change patterns to investigate software evolution. Similar to our
goal, both use co-change patterns to detect hidden dependencies
among different parts of the system. Specifically, Mondal et
al. detect a single method co-change pattern to support on the
identification of methods logically coupled with several other
methods. They apply constraints on association rules mined
from version history to identify the pattern. Despite the idea of
using co-change patterns is similar to ours, their work is cen-
tered on association rules at method-level while we focus on
clustering of code files. Gı̂rba et al. use concept analysis to

6http://programminghistorian.org/lessons/topic-modeling-

and-mallet.

identify co-change patterns which affect several entities in the
same time. However, their proposed patterns differ from ours
because they extract complexity of methods, shotgun surgery
bad-smell, and number of children in the classes. In contrast
to both approaches, we detect patterns which represent com-
mon instances from co-change clusters concerning encapsula-
tion, ripple-effect, and crosscutting behavior.

Vanya et al. (2008) use co-change clusters to decrease cou-
pling between parts of a system. First, they recover informa-
tion from version history on a higher abstraction level (direc-
tories) for clustering phase. Then, co-change clusters are as-
sociated with the current partition of the software. Although
their goal on the usage of co-change clusters is similar to ours,
we can highlight substantial differences: (a) we apply several
preprocessing and post-processing phases and after extracting
co-change clusters to filter out noises; (b) we focus on file level
instead of directories; (c) we aim to guide developers on modu-
larity analysis according to co-change patterns.

Beck et al. (2016) introduce a visualization approach cen-
tered on clustering for structuring and re-modularizing soft-
ware. The authors consider different data such as, structural
dependencies, semantic information, and logical information to
use coupling concepts associated with distinct modularization
criteria (Beck and Diehl, 2011). In summary, their approach
compares the current modularization in package to a set of clus-
tering results. As opposed to our work, their visualization en-
ables users to identify modularization patterns that may suggest
the criteria applied for a module construction, while co-change
patterns can reveal design anomalies.

Zimmermann et al. (2005) proposed an approach that relies
on association rule mining on version histories to suggest pos-
sible future changes. Their approach differs from ours because
they rely on association rules to recommend further changes
(e.g., if class A usually co-changes with B, and a commit only
changes A, a warning is given suggesting to check whether B
should be modified too). On the other hand, we do not aim to
recommend co-changes, but to assess modularity, using distri-
bution maps to compare and contrast co-change clusters with
the current package decomposition of a system.

In a recent work, Moonen et al. (2016) extract association
rules from change histories to derive practical guidelines for
change recommendation. Specifically, they assess how different
parameters of the mining algorithm and characteristics of soft-
ware changes impact the quality of change recommendations.
Palomba et al. (2013) also mine association rules from version-
ing systems but they focus on source code smell detection. They
identify five smells and define different heuristics for which his-
torical data can support in the discovery process. There are two
key differences between our study and those works. First, co-
change clusters are coarser-grained structures than set of classes
in association rules. Thus, developers can reduce the effort on
program comprehension activities. Secondly, we aim to detect
co-change patterns for supporting on change propagation anal-
ysis among modules.

Nguyen et al. (2016) propose TasC, a technique centered on
task context to recommend source code changes. TasC per-
forms LDA on changed code fragments extracted from version

18

Table 20: Comparison with related work
Technique Study Goal Results
Semantic clustering Santos et al. (2014) Software remodularization Distribution maps of semantic clusters

Co-change clustering
Beyer and Noack (2005) Software visualization Clusters of co-change artifacts
Vanya et al. (2008) Software remodularization Logical coupling between modules

Change clustering Robillard and Dagenais (2010) Support change tasks Clusters matching a query (e.g., method name)

Association rules

Zimmermann et al. (2005) Predict co-changes Warn about unchanged files
D’Ambros et al. (2009a) Co-change visualization Logical coupling between modules
Palomba et al. (2013) Identify code smells Detection of five types of code smells
Gı̂rba et al. (2007) Detect bad smells and hidden depend. Co-change patterns
Mondal et al. (2013) Detect logically coupled methods Detection of one method co-change pattern

RTM Bavota et al. (2014) Software remodularization Candidates to move class refactoring
Scattering changes Nucci et al. (2018) Improve bug prediction models Structural and semantic scattering changes

histories and outputs a ranked candidate list. In contrast, our
goal is not change recommendation but using co-change pat-
terns to support modularity analysis.

Closely related to a part of our experiment, Kouroshfar
(2013) investigates the impact of co-change dispersion on soft-
ware quality. They conduct a small experiment and present
some evidence that co-changes localized in the same subsys-
tem involve fewer bugs than co-changes crosscutting distinct
subsystems. Such result also arises in our findings. Specif-
ically, we observe that changes with body and arms—Squid
and Octopus—have the number of bug fixing tasks significantly
higher than changes confined in modules.

Beck and Diehl (2010, 2013) compare and combine the evo-
lutionary and structural dependencies to recover modular de-
signs. They perform clustering experiments to extract the ar-
chitecture of Java projects. Their result reveal that clustering
approaches based on logical dependencies succeed only when
substantial data is available. In this work, we conduct a large
scale study and consider more than 2 million of commits.

Kawrykow and Robillard (2011) investigate the frequency of
non-essential changes, which are changes that affect the source
code of an entity without changing its behaviour, such as re-
naming a local variable or even adding or removing whites-
paces. By evaluating seven software systems, they report that
up to 15.5% of the changes to methods are non-essential. How-
ever, these changes are not a major threat to our co-change clus-
tering approach, since not necessarily all detected non-essential
changes are part of co-change relations. In other words, the
effect of non-essential changes in our results is less than 15.5%.

Nucci et al. (2018) use the scattering of changes performed
by developers to improve bug prediction models. Therefore, in-
stead of assessing modularity, they intend to evaluate whether
developers responsible for scattered changes tend to introduce
more bugs. They rely on two specific measures of change scat-
tering: structural scattering (the number of structural depen-
dencies that connect two changed components) and semantic
scattering (the semantic similarity of the vocabulary used in the
source code of two changed components).

Finally, Table 20 summarizes the aforementioned works to
make their differences more clear regarding the approach eval-
uated in this paper for assessing software modularity using co-
change clusters.

9. Conclusion

In this paper, we conduct a large-scale study with GitHub
projects to evaluate their modularity using the co-change clus-
tering technique (Silva et al., 2014, 2015a). We studied projects
implemented in different languages, size, and domains, aiming
to increase the generalization of our findings. In summary, our
findings and the implications of our study are as follows:

• Wrapped Clusters (i.e., Encapsulated and Well-confined)
tend to implement well-defined concerns, which confirms
the results of our previous work (Silva et al., 2015b). Fur-
thermore, the most frequent maintenance activities in such
clusters are associated to improvements and new features.
Therefore, the number and proportion of wrapped clusters
tends to be a proxy for well-modularized systems (Impli-
cation #1).

• Scattered Clusters (i.e., Crosscutting and Black Sheep)
also tend to implement a single concern, but this imple-
mentation crosscuts many directories. In addition, most
activities performed by developers in such clusters are also
related to improvements and new features. However, it is
not straightforward to move these files to a single direc-
tory. For example, the first V8 cluster in Table 15 includes
classes that support code generation in different platforms
(each platform has its classes in a directory). As a second
example, the second V8 cluster is responsible for compiler
optimization techniques (each technique is implemented n
a different directory). We found that changes that crosscut
such directories are common, leading to scattered clus-
ters. Therefore, tools and techniques for physical (e.g.,
aspect-oriented programming (Kiczales et al., 1997)) or
virtual separation of concerns (e.g., CIDE (Kästner et al.,
2008)) can help developers to reason and understand these
clusters, before performing maintenance tasks (Implica-
tion #2).

• Tentacled Clusters are associated to rippling effects, den-
sity of activity, diversity in the development teams, and
ownership. Moreover, they also differ from the other
clusters in terms of maintenance activities. We observed
in the timeline of the most changed Tentacled Clusters

19

that they are generated by bug fixing tasks (76% of com-
mits). Therefore, we claim that quality assurance practices
(e.g., testing, code reviews, static analyzers etc) can help
to avoid the appearance of such clusters (Implication #3).

As future work, we plan to perform a follow up study with
GitHub developers, similar to our previous study with Pharo
and Java developers (Silva et al., 2015b), but including other
programming languages and more systems, as we have ana-
lyzed in this paper.

Acknowledgments

This research is supported by grants from FAPEMIG,
CAPES, and CNPq.

References

Adams, B., Jiang, Z. M., Hassan, A. E., 2010. Identifying crosscutting concerns
using historical code changes. In: Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1. ICSE ’10.
ACM, pp. 305–314.

Aggarwal, K., Singh, Y., 2005. Software Engineering. New Age International.
Alali, A., Bartman, B., Newman, C. D., Maletic, J. I., 2013. A preliminary

investigation of using age and distance measures in the detection of evolu-
tionary couplings. In: 10th Working Conference on Mining Software Repos-
itories (MSR). pp. 169–172.

Almeida, H., Guedes, D., Meira, W., Zaki, M. J., 2011. Is there a best quality
metric for graph clusters? In: European Conference on Machine Learning
and Knowledge Discovery in Databases - Volume Part I. pp. 44–59.

Ball, T., Porter, J. K. A. A., Siy, H. P., 1997. If your version control system could
talk ... In: ICSE Workshop on Process Modeling and Empirical Studies of
Software Engineering.

Bavota, G., Gethers, M., Oliveto, R., Poshyvanyk, D., de Lucia, A., 2014. Im-
proving software modularization via automated analysis of latent topics and
dependencies. ACM Transactions on Software Engineering and Methodol-
ogy (TOSEM) 23 (1), 1–33.

Beck, F., Diehl, S., 2010. Evaluating the impact of software evolution on
software clustering. In: 17th Working Conference on Reverse Engineering
(WCRE). pp. 99–108.

Beck, F., Diehl, S., 2011. On the congruence of modularity and code coupling.
In: 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering (ESEC/FSE). pp. 354–364.

Beck, F., Diehl, S., 2013. On the impact of software evolution on software
clustering. Empirical Software Engineering 18 (5), 970–1004.

Beck, F., Melcher, J., Weiskopf, D., 2016. Identifying modularization patterns
by visual comparison of multiple hierarchies. In: 24th International Confer-
ence on Program Comprehension (ICPC). pp. 1–10.

Beyer, D., Noack, A., 2005. Clustering software artifacts based on frequent
common changes. In: 13th International Workshop on Program Compre-
hension (IWPC). pp. 259–268.

Bird, C., Nagappan, N., Murphy, B., Gall, H., Devanbu, P., 2011. Don’t touch
my code!: Examining the effects of ownership on software quality. In: 19th
ACM SIGSOFT Symposium and the 13th European Conference on Foun-
dations of Software Engineering (ESEC/FSE). pp. 4–14.

Blei, D. M., Ng, A. Y., Jordan, M. I., Mar. 2003. Latent dirichlet allocation. The
Journal of Machine Learning Research 3, 993–1022.

Borges, H., Valente, M. T., 2018. What’s in a github star? understanding repos-
itory starring practices in a social coding platform. Journal of Systems and
Software 146, 112–129.

Chidamber, S., Kemerer, C., 1991. Towards a metrics suite for object oriented
design. In: 6th Object-oriented programming systems, languages, and appli-
cations Conference (OOPSLA). pp. 197–211.

Cohen, J., Cohen, P., West, S. G., Aiken, L. S., 2003. Applied Multiple Regres-
sion/Correlation Analysis for the Behavioral Sciences. Lawrence Erlbaum.

Couto, C., Pires, P., Valente, M. T., Bigonha, R., Anquetil, N., 2014. Predicting
software defects with causality tests. Journal of Systems and Software, 1–38.

D’Ambros, M., Lanza, M., Lungu, M., 2009a. Visualizing co-change informa-
tion with the evolution radar. IEEE Transactions on Software Engineering
35 (5), 720–735.

D’Ambros, M., Lanza, M., Robbes, R., 2009b. On the relationship between
change coupling and software defects. In: 16th Working Conference on Re-
verse Engineering (WCRE). pp. 135–144.

Ducasse, S., Gı̂rba, T., Kuhn, A., 2006. Distribution map. In: 22nd IEEE Inter-
national Conference on Software Maintenance (ICSM). pp. 203–212.

Fox, J., 2003. Effect displays in r for generalised linear models. Journal of Sta-
tistical Software 8 (15), 1–27.

Gı̂rba, T., Ducasse, S., Kuhn, A., Marinescu, R., Daniel, R., 2007. Using con-
cept analysis to detect co-change patterns. In: 9th International Workshop
on Principles of Software Evolution: In Conjunction with the 6th ESEC/FSE
Joint Meeting (IWPSE). pp. 83–89.

Griffiths, T., Steyvers, M., 2002. A probabilistic approach to semantic repre-
sentation. In: 24th annual Conference of the Cognitive Science Society. pp.
381–386.

Haney, F. M., 1972. Module connection analysis: A tool for scheduling soft-
ware debugging activities. In: Proceedings of the Fall Joint Computer Con-
ference, Part I. AFIPS (Fall, part I). ACM, pp. 173–179.

Kagdi, H., Gethers, M., Poshyvanyk, D., 2013. Integrating conceptual and log-
ical couplings for change impact analysis in software. Empirical Software
Engineering (EMSE) 18 (5), 933–969.

Karypis, G., Han, E.-H. S., Kumar, V., 1999. Chameleon: hierarchical cluster-
ing using dynamic modeling. Computer 32 (8), 68–75.

Kästner, C., Apel, S., Kuhlemann, M., 2008. Granularity in software product
lines. In: 30th International Conference on Software Engineering (ICSE).
pp. 311–320.

Kawrykow, D., Robillard, M. P., 2011. Non-essential changes in version histo-
ries. In: 33rd International Conference on Software Engineering (ICSE). pp.
351–360.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.-
M., Irwin, J., 1997. Aspect-oriented programming. In: 11th European Con-
ference on Object-Oriented Programming (ECOOP). Vol. 1241 of LNCS.
Springer Verlag, pp. 220–242.

Kouroshfar, E., 2013. Studying the effect of co-change dispersion on software
quality. In: 35th International Conference on Software Engineering (ICSE).
pp. 1450–1452.

Maletic, J., Marcus, A., 2000. Using latent semantic analysis to identify sim-
ilarities in source code to support program understanding. In: 12th IEEE
International Conference on Tools with Artificial Intelligence. pp. 46–53.

Mondal, M., Roy, C. K., Schneider, K. A., 2013. Insight into a method co-
change pattern to identify highly coupled methods: An empirical study. In:
21st International Conference on Program Comprehension (ICPC). pp. 103–
112.

Moonen, L., Alesio, S. D., Binkley, D., Rolfsnes, T., 2016. Practical guidelines
for change recommendation using association rule mining. In: 31st Interna-
tional Conference on Automated Software Engineering (ASE). pp. 732–743.

Nagappan, N., Zeller, A., Zimmermann, T., Herzig, K., Murphy, B., 2010.
Change bursts as defect predictors. In: 21st International Symposium on
Software Reliability Engineering (ISSRE). pp. 309–318.

Nguyen, H. A., Nguyen, A. T., Nguyen, T. N., 2016. Using topic model to
suggest fine-grained source code changes. In: International Conference on
Software Maintenance and Evolution (ICSME). pp. 200–210.

Nucci, D. D., Palomba, F., Rosa, G. D., Bavota, G., Oliveto, R., Lucia, A. D.,
2018. A developer centered bug prediction model. IEEE Transactions on
Software Engineering 44 (1), 5–24.

Oliva, G. A., Santana, F. W., Gerosa, M. A., de Souza, C. R. B., 2011. Towards
a classification of logical dependencies origins: a case study. In: 12th Inter-
national Workshop on Principles of Software Evolution and the 7th annual
ERCIM Workshop on Software Evolution (EVOL/IWPSE). pp. 31–40.

Palomba, F., Bavota, G., Penta, M. D., Oliveto, R., de Lucia, A., Poshyvanyk,
D., 2013. Detecting bad smells in source code using change history informa-
tion. In: 28th IEEE/ACM International Conference on Automated Software
Engineering (ASE). pp. 11–15.

Parnas, D. L., 1972. On the criteria to be used in decomposing systems into
modules. Communications of the ACM 15 (12), 1053–1058.

Robillard, M. P., Dagenais, B., 2010. Recommending change clusters to sup-
port software investigation: An empirical study. Journal of Software Main-
tenance and Evolution: Research and Practice 22 (3), 143–164.

Rosen-Zvi, M., Griffiths, T., Steyvers, M., Smyth, P., 2004. The author-topic

20

model for authors and documents. In: 20th Conference on Uncertainty in
Artificial Intelligence. pp. 487–494.

Santos, G., Valente, M. T., Anquetil, N., 2014. Remodularization analysis using
semantic clustering. In: 1st CSMR-WCRE Software Evolution Week. pp.
224–233.

Silva, L. L., Valente, M. T., Maia, M., 2014. Assessing modularity using co-
change clusters. In: 13th International Conference on Modularity. pp. 49–
60.

Silva, L. L., Valente, M. T., Maia, M., 2015a. Co-change clusters: Extraction
and application on assessing software modularity. Transactions on Aspect-
Oriented Software Development (TAOSD), 1–37.

Silva, L. L., Valente, M. T., Maia, M., Anquetil, N., 2015b. Developers’ percep-
tion of co-change patterns: An empirical study. In: 31st IEEE International
Conference on Software Maintenance and Evolution (ICSME). pp. 21–30.

Stevens, W. P., Myers, G. J., Constantine, L. L., Jun. 1974. Structured design.
IBM Systems Journal 13 (2), 115–139.

Vanya, A., Hofland, L., Klusener, S., van de Laar, P., van Vliet, H., 2008. As-
sessing software archives with evolutionary clusters. In: 16th IEEE Interna-
tional Conference on Program Comprehension (ICPC). pp. 192–201.

Walker, R. J., Rawal, S., Sillito, J., 2012. Do crosscutting concerns cause mod-
ularity problems? In: Proc. of the ACM SIGSOFT 20th International Sym-
posium on the Foundations of Software Engineering. FSE ’12. ACM, New
York, NY, USA, pp. 49:1–49:11.

Wen, Z., Tzerpos, V., 2004. An effectiveness measure for software clustering
algorithms. In: 12th IEEE International Workshop on Program Comprehen-
sion. pp. 194–203.

Zimmermann, T., Premraj, R., Zeller, A., 2007. Predicting defects for Eclipse.
In: 3rd International Workshop on Predictor Models in Software Engineer-
ing. p. 9.

Zimmermann, T., Weissgerber, P., Diehl, S., Zeller, A., 2005. Mining version
histories to guide software changes. IEEE Transactions on Software Engi-
neering 31 (6), 429–445.

21

