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SUMMARY

Background: Automatic program repair aims to reduce costs associated with defect repair. The detection and
characterization of common bug-fix patterns in software repositories play an important role in advancing this
field. Aim: In this paper, we characterize the occurrence of known bug-fix patterns in Java repositories at
an unprecedented large scale. Furthermore, we propose a novel automatic technique for unveiling frequent
and isolated repair actions corresponding to realistic bug fixes in Java. Method: The study was conducted for
Java GitHub projects organized in two distinct data sets. The first data set (Boa) contains more than 4 million
bug-fix commits from 101,471 projects. The second data set (Defects4J) contains 369 real bug fixes from
five open-source projects. Results: We characterized the prevalence of the five most common bug-fix patterns
(identified in the work of Pan et al.) in those bug fixes. The combined results showed direct evidence that
developers often forget to add IF preconditions in the code. Conclusion: We discover a total of 155 repair
actions from Defects4J patches and discuss 10 pervasive repair actions that occur across all analyzed Java
projects. Moreover, the overall Precision and Recall values for the clustering approach were 0.62 and 0.64,
respectively. Copyright c© 2019 John Wiley & Sons, Ltd.
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1. INTRODUCTION

There are more bugs† in real-world programs than human programmers can realistically address
[1]. The battle against software bugs exists since software existed. Substantial effort is spent to
fix bugs. For instance, Kim and Whitehead [2] report that the median time for fixing a single bug
is about 200 days. Program evolution and repair are major components of software maintenance,
which consumes a daunting fraction of the total cost of software production. Research in automatic
program repair has focused on reducing defect repair costs. A family of techniques has been
developed around the idea of “test-suite based repair” [1]. The goal of test-suite based repair is
to generate a patch that makes failing test cases pass and keeps the other test cases satisfied [3].
Recent test-suite based repair approaches include the work by Le Goues et al. [1], Nguyen et al. [4],
Kim et al. [5].

The cost of debugging and maintaining software has been continuously increasing [6]. A 2013
study estimated the global cost of debugging at $312 billion, with software developers spending
half their time debugging [7]. Several recent studies have established the potential of automatic
program repair to reduce costs and improve software quality. The systematic study of GenProg is a
notable example, which measured cost reduction in actual dollars [1]. Currently, this recent research

∗Correspondence to: eduardocunha11@gmail.com, marcelo.maia@ufu.br
†In this paper, we use the terms “defect”, “error”, “fault”, and “bug” as synonyms.
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direction attracts much academic and industrial attention. Nonetheless, many people question the
positive results. For instance, Qi et al. [8] have shown that the evaluation of GenProg suffers from
a number of important issues, and call for more research on systematic evaluations of test-suite
based repair. Moreover, existing approaches (e.g., GenProg [1], PAR [5]) seem to be able to fix only
simple bugs, due to several limitations [9].

Evidence shows that not all statements are modified equally, and there are benefits from using
history-based data [5][10]. The fault localization process [11, 12] can benefit from assigning a higher
priority to the statements most commonly modified to fix bugs [13].

A key point of automated program repair research consists of decreasing the time to navigate
the repair search space [14]. Kim et al. [5] introduced PAR, an algorithm that generates program
patches using a set of 10 manually written fix templates. We share with PAR the idea of extracting
repair knowledge from human-written patches. However, the foundations of their approach contains
more manual work than ours because, in this paper, we devise an approach that can automatically
extract the fix templates that will serve as input to an automatic program repair technique instead of
manually extracting them.

Automatic program repair has shown promise for reducing the significant manual effort
debugging requires. However, there is a deficit of earlier evaluations of automatic program repair
techniques caused by repairing programs and evaluating generated patches’ correctness using the
same set of tests (i.e., the patches overfit to the training test suite) [15].

While automatic program repair shows great promise, it is far from being widely adopted, and
still many potential improvements remain to be made [6]. In a recent work, Martinez et al. [16]
assessed the effectiveness of different automatic repair approaches on the real-world Java bugs of
Defects4J [17]. They conducted a study with three automatic repair systems on 224 bugs present
in this data set: jGenProg, an implementation of GenProg [1] for Java; jKali, an implementation
of Kali [8] for Java; and NOPOL [3]. Their results showed that these repair systems together can
synthesize a patch for only 21% of these bugs.

Prior work already demonstrated how to extract recurring bug-fix patterns from commits (e.g.,
Pan et al. [18]). In fact, the work of Pan et al. [18] is closely related to ours. Below, we present the
main similarities and differences between the two works:

• We both identify automatically extractable repair actions of software;
• We both analyze software history data available in software configuration management

systems to find patterns in bug fix changes;
• We both compute the frequency of occurrence of each bug fix pattern across all Java projects;
• The main difference is that our repair actions are discovered fully automatically based on AST

differencing (there is no prior manual analysis to find them) and clustering. Pan and colleagues
manually analyzed part of the bug fix change history of five open source projects to define a
set of bug fix patterns. This analysis involved inspecting the bug hunks and the corresponding
fix hunks in the bug fix revisions, and classifying bug fix changes into different patterns (bug
types) based on the syntax component kinds in the hunk pairs and their containing program
context;

• Pan et al. [18] use the GNU diff (GNU 2003) tool to compute the changes to each file involved
in a bug fix revision. These changes represent the text difference of a file between the bug
version and the fix version. The main issue with text differencing algorithms is that they
cannot compute fine-grained differences (our repair actions are smaller and more atomic than
Pan et al.’s work [18]). Indeed in many languages (such as Java) a text line can contain many
programming constructs. Therefore, the bug fix patterns identified by Pan and colleagues are
coarse grained and do not reveal the root cause of the bugs;

• Although both works investigate bug fix patterns, they have different goals. While our work
aims to provide repair actions that can be used by some automatic program repair technique,
the work of Pan and colleagues aims to automatically classify bugs into specific bug types,
avoiding the traditional problems of human bug categorization.

In this paper, we study a much larger data set [19] than those two previous works with 101,471
Java projects and more than 4 million bug-fix commits. In order to make our results more
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dependable, we also conducted a qualitative analysis in the real-world Java bugs present in the
Defects4J data set [17].

This paper aims to confront the results of automatic detection of bug-fix patterns in the Boa data
set with the results of manual inspection of these same patterns in the Defects4J data set. This
confrontation is important for two reasons:

1. Find out if there is any bug-fix pattern that has high prevalence in both analyzed data sets.
In affirmative case, such a pattern would be a strong candidate to be investigated in future
automatic program repair techniques;

2. Assess the bias (i.e., noise) that can be introduced in a fully automated analysis in the Boa data
set, since the automatic detection of these bug-fix patterns depends directly on the correctness
of the Boa programs.

We analyzed the bug-fix commits of Java programs, taken from several million human-made
bug fixes from GitHub. This software repository contains an enormous collection of software and
information about software [19]. We used a domain-specific programming language called Boa [19]
to analyze ultra-large-scale data efficiently.

In a previous conference paper [20], we have shown that developers often forget to add IF
preconditions in the code. One evidence is that the bug-fix pattern that most appeared in the
analyzed bug-fix commits of both data sets (i.e., Boa and Defects4J) was IF-APC (Addition of
IF Precondition Check). Furthermore, we make observations to directly guide future research in
automatic repair of Java programs. For instance, our findings suggest that test-suite based program
repair may need to consider multi-language programming and bugs in non-source files. We have
extended that paper in the following main points:

1. We propose a novel automatic technique for unveiling the most prevalent and pervasive repair
actions in Java. Our approach includes a preprocessing step based on Locality-Sensitive
Hashing (LSH) to remove outliers from search space before clustering the data;

2. A novel technique for automatically learning bug fixing repair actions based on AST
differencing using the state-of-the-art AST diff tool GumTree [21];

3. An extensive analysis of the content of software bug-fix commits: our analysis is novel both
with respect of size (395 real bug fixes from six open-source Java projects present in Defects4J
data set [17]) and granularity (155 repair actions at the level of the AST).

In this paper, we use the terms “repair template” and “repair action” to refer to two different
concepts: a “repair template” may be caused by the combination of multiple factors and its fix may
require a certain sequence of “repair actions”. A software repair action is a kind of modification
on source code that is made to fix bugs. We can cite as examples: inserting a method invocation,
changing the condition of an IF statement, inserting a Catch clause for a Try statement, etc.

The remainder of this paper is organized as follows. Section 2 presents the data sets we use
to perform the three studies. Section 3 presents the research questions and the bug-fix patterns
considered in the studies. Section 4 details the studies and provides the results that are discussed in
Section 5. In Section 6, we distilled the threats to the validity of our paper. Related work is surveyed
and shown in Section 7. Section 8 concludes this paper and proposes future work.

2. DATA SETS AND CHARACTERISTICS

2.1. Boa data set

In this paper, we use the September 2015/GitHub data set offered by Boa [19], including 554,864
non-forked Java projects with 23,226,512 commits (i.e., during the construction of the Boa data set,
the authors of this data set excluded all Java projects that were forks). Boa identifies 4,590,405 as
bug-fix commits distributed among 101,471 Java projects (18.2875%). In other words, 81.7125%
of Java projects present in this data set do not have any bug-fix commit. In this paper, we focus our
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Figure 1. Querying number of bug-fix commits in Java GitHub projects using Boa language.

analysis on these 101,471 Java projects because our goal is to study bug fixes and patterns. Figure 1
shows a query written in Boa language that returns the number of bug-fix commits in Java GitHub
projects. The built-in function isfixingrevision (line 6) uses a list of regular expressions to
match against the revision’s log (i.e., commit’s log message). If there is a match, then the function
returns true indicating the log was for a commit fixing a bug.

Figure 2 shows the distribution of bug-fix commits among 101,471 Java projects: 81% of these
projects have 1 to 15 bug-fix commits, while only 9% of them have 51 or more bug-fix commits.
This bar chart shows that is not common to see open-source Java projects hosted on GitHub with a
large number of bug-fix commits (e.g., more than 50 bug-fix commits).

Figure 2. Distribution of bug-fix commits among Java GitHub projects.

Programming Language: Programming languages evolve over time to meet the needs of
developers. This evolution is necessary to simplify common tasks and make the language easier
to use [22]. The Java Language Specification (JLS) [23, 24, 25, 26] is the official specification for
Java. New editions of the specification (JLS2, JLS3, and JLS4) are released as the language evolves
to add new features (e.g., annotation use, enhanced-for loops, variables with generic types, etc.).
Note that new language features are purely additive (each edition is fully backwards compatible
with previous editions) [22].

The Java Language Specification, edition 2 (JLS2) [24] was a relatively minor update in terms of
new language features. This edition added one new language feature: assert statements.

The Java Language Specification, edition 3 (JLS3) [25] added several significant language
features, including: annotation types, enhanced-for loops, type-safe enumerations (enums), generic
types, and variable-argument methods (varargs).

The Java Language Specification, Java SE 7 edition (JLS4) [26] made several changes, including:
binary literals, a diamond operator for generic type inference, allowing catching multiple exception
types, suppression of varargs warnings, automatic resource management, and underscores in
literals.

As returned by Boa, the major language of a project is the one with the highest percentage of
source code, considering the files in the project. Figure 3 shows the distribution of the analyzed
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Figure 3. Number of programming languages in each Java project using GIT.

Table I. Types of changed files present in the Boa data set (JLS: Java Language Specification).

File Type Total Description
SOURCE JAVA JLS4 83,798 The file represents a Java source file that parsed without error

as JLS4
TEXT 541,023 The file represents a text file
BINARY 752,945 The file represents a binary file
SOURCE JAVA ERROR 2,073,558 The file represents a Java source file that had a parse error
SOURCE JAVA JLS2 2,607,413 The file represents a Java source file that parsed without error

as JLS2
XML 6,818,299 The file represents an XML file
SOURCE JAVA JLS3 15,748,967 The file represents a Java source file that parsed without error

as JLS3
UNKNOWN 23,426,568 The file’s type was unknown

projects per number of programming languages. As we can see, 56,414 out of 101,471 Java projects
(i.e., 55.5961%) use only one programming language (i.e., Java). However, 10,837 out of 101,471
Java projects (i.e., 10.6798%) use five or more programming languages.

Types of changed files: Table I shows the types and descriptions of changed files present in the
Boa data set and the number of changed files per file type. We consider a file changed if it is
new, modified, or deleted in a commit. In total, 52,052,571 files were changed. As shown in Table I,
the types of changed files SOURCE JAVA JLS2, SOURCE JAVA JLS3, and SOURCE JAVA JLS4
refer to the editions of the Java Language Specification (JLS). In our study, we decide to study
these java files separately in order to understand better which edition of the specification was often
changed to fix bugs.

2.2. Defects4J data set

In this paper, we also use Defects4J [17], a data set and extensible framework providing real bugs
to enable reproducible studies in software testing research. Currently, Defects4J contains 395 real
bugs from six open-source projects: JFreeChart ‡, Closure Compiler §, Commons Lang ¶, Commons
Math ‖, Mockito ∗∗ and Joda-Time ††. We do not use the JFreeChart project because the version
control system for this project is Apache Subversion (SVN) and we decided to study only projects

‡JFreeChart, http://jfree.org/jfreechart/
§Closure Compiler, http://code.google.com/closure/compiler/
¶Apache Commons Lang, http://commons.apache.org/lang
‖Apache Commons Math, http://commons.apache.org/math
∗∗Mockito, http://site.mockito.org/
††Joda-Time, http://joda.org/joda-time/
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hosted on GitHub repository. For these projects, the version control system is Git and they account
for a total of 369 bug fixes. Table II presents the main descriptive statistics of projects in Defects4J.

Table II. The main descriptive statistics of the considered bugs in Defects4J. The number of lines of code
and the number of test cases are extracted from the most recent version of each project.

Program #Bug Fixes Source Test #Test
KLOC KLOC Cases

Closure Compiler 133 306 179 16,998
Commons Lang 65 22 6 2,245
Commons Math 106 85 19 3,602
Joda-Time 27 28 53 4,130
Mockito 38 43 22 1,611
Total 369 484 279 28,586

Defects4J is a large, peer-reviewed and structured data set of real-world Java bugs. Each bug in
Defects4J comes with a test suite and at least one failing test case that triggers the bug. To our
knowledge, Defects4J is the largest open database of well-organized real-world Java bugs.

There are several advantages of using Defects4J for a study. Among them, we can highlight:

• Realism: It contains real bugs (as opposed to seeded bugs as in Nguyen et al. [4]; Kong et al.
[27]);

• Scale: It contains bugs that reside in large software projects (as opposed to bugs in student
programs as in Smith et al. [15]);

• Isolated Bugs: A fundamental challenge when collecting bugs is deciding what constitutes
a bug, and what does not [17]. When interacting with version control systems, developers
frequently group separate changes into a single commit. Herzig et al. [28] studied this
problem and named it as tangled code changes [29]. Fortunately, all bug fixes present in
the Defects4J data set do not include unrelated changes such as features or refactorings. The
authors of this data set manually reviewed the source code diffs of reproducible bugs to verify
that they did not include irrelevant changes (e.g., if necessary, they isolated the bug fix from
the source code diff).

3. METHODOLOGY

In this section, we present the research questions that we aim to answer in this work and the bug-fix
patterns investigated in our studies (i.e., Study I and II).

3.1. Bug-fix patterns

Pan et al. [18] identified 27 bug-fix patterns through manual inspection of the bug fix change history
of seven open-source Java projects. They found that the most common categories of bug-fix patterns
are Method Call and If-related. Moreover, Pan et al. conducted an analysis involving bugs injected
by the Eclipse developers and found that the most common bug injection patterns are: Change of
IF Condition Expression (IF-CC), Method Call with different actual parameter values (MC-DAP),
Method Call with different number of parameters or different types of parameters (MC-DNP),
Change of Assignment Expression (AS-CE), and Addition of IF Precondition Check (IF-APC).
Below we detail each one of these five bug-fix patterns:

1. Change of IF Condition Expression (IF-CC): The bug fix changes the condition expression
of an IF condition [18]. Example:

- if (listBox.getSelectedIndex() == 0)
+ if (listBox.getSelectedIndex() > 0)

Copyright c© 2019 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2019)
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2. Method Call with different actual parameter values (MC-DAP): The bug fix changes the
expression passed into one or more parameters of a method call [18]. Example:

- String.getBytes("UTF-8");
+ String.getBytes("ISO-8859-1");

3. Method Call with different number of parameters or different types of parameters (MC-
DNP): The bug fix changes a method call by using different number of parameters, or different
parameter types. This may be caused by a change of method interface, or use of an overloaded
method [18]. Example:

- getSolrQuery(f.getFilter());
+ getSolrQuery(f.getFilter(), analyzer);

4. Change of Assignment Expression (AS-CE): The bug fix changes the expression on the
right-hand side of an assignment statement. The expression on the left-hand side is the same
in both the buggy and fix versions [18]. Example:

- names[0] = person.getName();
+ names[0] = employees[0].getName();

5. Addition of IF Precondition Check (IF-APC): This bug fix adds an IF predicate to ensure
a precondition is met before an object is accessed or an operation is performed. Without the
precondition check, there may be a NullPointerException error caused by the buggy
code [18]. Example:

- repo.getFileContent(path);
+ if (repo != null && path != null)
+ repo.getFileContent(path);

3.2. Research Questions

This subsection presents the four research questions considered in the study about bug-fix patterns
and general features of bug-fix commits.

Motivation for RQ1: Current automatic program repair only modifies source files, but
some bugs do not reside in source files [30]. Moreover, some modified source files are in
programming languages other than Java because a project may be implemented in multiple
programming languages [30]. The results of this research question highlight the importance
of fixing bugs in multiple programming languages and in non-source files (e.g., configuration
files).

RQ1: Which file types are usually changed to fix a bug?

The Study I will be conducted to answer this research question. The results will provide insights
on how to improve existing automatic program repair approaches to achieve their best performance.

Motivation for RQ2: Current automatic program repair uses quite limited mutation operators
[30]. Although it is widely known that existing approaches use incomplete operators, it
is challenging to make improvements [30][31]. In this research question, we analyze the
statement types used to fix real bugs. The results of this research question provide insights
on designing more comprehensive operators.

Copyright c© 2019 John Wiley & Sons, Ltd. J. Softw. Evol. and Proc. (2019)
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RQ2: Which statement types are often added or deleted by developers to fix bugs?

The Study I will be conducted to answer this research question. The results will provide general
features of bug-fix commits and can be leveraged by automatic patch generation algorithms to
prioritize some types of statements relative to others, since some statements are more likely to
appear than others in a given patch.

Motivation for RQ3 and RQ4: We analyzed the same bug fix patterns studied by Pan et al.
[18] to investigate whether the frequency of occurrence of these 5 bug fix patterns persisted for
a larger sample of software projects (i.e., Pan et al. analyzed 6,978 bug-fix commits from seven
open source Java projects, while we investigated more than 4 million bug-fix commits from
101,471 open source Java projects). Our analysis revealed that the frequency of occurrence
of these bug fix patterns is not the same for a larger sample of projects. In our analysis, the
IF-APC pattern had the highest prevalence among these 5 patterns studied (29.2019%), while
this same bug fix pattern was neither pointed out by Pan et al. as one of the 3 most prevalent.
Moreover, although the IF-APC pattern is a common bug injection pattern, its prevalence in
hunk pairs of analyzed projects is low (please see Table 2 of Pan et al.’s paper for additional
details). Therefore, we have decided to study the prevalence of these bug fix patterns in a larger
data set.

RQ3: What is the prevalence of the 5 most common bug-fix patterns identified in the work of Pan
et al. [18] in the bug fixes present in the Boa data set?

The Study I will be conducted to answer this research question. The identification of these bug-fix
patterns is relevant to assist the researchers in the task of automatic generation of patches [5].

RQ4: What is the prevalence of the 5 most common bug-fix patterns identified in the work of Pan
et al. [18] in the bug fixes present in the Defects4J data set?

The research question RQ4 is similar to RQ3. The basic difference between them is: the answer
for RQ4 is based on manual inspection of real bug fixes from projects present in the Defects4J data
set, while the answer for RQ3 is based on automatic inspection of real bug fixes from projects
present in the Boa data set. Study II will be conducted to answer this last research question.
Moreover, the results obtained in this second study will be compared with the results from the
previous study (i.e., Study I).

Motivation for RQ5: The subfield of automatic program repair (APR) is concerned with
automatically fixing bugs, without human intervention. A family of techniques has been
developed around the idea of applying different repair actions to fix different kinds of bugs.
All previous automatic patch generation systems work with a set of manually crafted repair
actions [5, 32, 1, 33, 34, 35, 36, 37, 38] to patch bugs that fall within the scope of these repair
actions. Each repair action represents a common way to fix a bug. However, as emphasized
by Monperrus in [9], there is no apparent principle behind the collection of repair actions.
They have been collected by reading bug fixes and verifying whether they would fit in the
corresponding overall approach. This ad hoc strategy is error-prone and suffers from excessive
time and effort. Specifically, our work aims to propose an automatic and systematic approach
for unveiling fine-granularity fixing ingredients (e.g., expressions) in Java. Fixing ingredients
are those existing code elements reused to generate fixing patches [39]. Previous studies have
shown that good fixing ingredients exist more often at a finer granularity than that of statements
[39, 40]. Applying mutation operators with ingredients at a finer granularity increases the
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likelihood to include the correct patches in the search space [39, 40]. Therefore, our main
motivation is to contribute to the patch generation process of search-based APR approaches.

RQ5: What pervasive bug fix patterns exist in Java? How do we automatically discover them?

The Study III will be conducted to answer this research question. We investigated the Defects4J
data set to perform this study because it contains isolated bugs written in Java language. Recent
algorithms have been proposed based on tree structures (such as the AST) to address the challenges
of code differencing. GumTree [21] and ChangeDistiller [41] are examples of such algorithms which
produce edit scripts that detail the operations to be performed on the nodes of a given AST to
yield another AST corresponding to the new version of the code. In particular, in this work, we
build on GumTree’s core algorithms for preparing an edit script as a sequence of repair actions for
transforming an AST. Given a buggy version and a fixed version of a program, GumTree is claimed
to build in a fast, scalable and accurate way the sequence of AST-level repair actions (a.k.a edit
script) between the two associated AST representations of the program.

It is important to note that the research question RQ5 is not a duplicate of research question
RQ2 since the former works on a fine-granularity at the AST node level and the mutation operators
of the latter work at the Statement level, which are too coarse-grained to find the correct fixing
ingredients. Moreover, previous studies have shown that good fixing ingredients exist more often at
a finer granularity than that of statements [39, 40].

4. STUDIES AND RESULTS

In this section, we present the two studies we conducted to answer the four research questions
aforementioned. We performed one study per data set (i.e., Boa and Defects4J). Study I enabled
us to answer the research questions RQ1, RQ2, and RQ3, while Study II enabled us to answer
the research question RQ4. Finally, the realization of Study III allowed us to answer the research
question RQ5.

4.1. Study I: Bug fixes present in the Boa data set

We study bug-fix commits to Java programs, taken from several million human-made bug fixes from
GitHub. We analyzed the prevalence of the 5 most common bug-fix patterns identified in the work of
Pan et al. [18] in those bug-fix commits. Moreover, we investigated the nature of bug fixes in terms
of what file types are often changed to fix bugs or what types of statements are frequently added or
deleted to fix bugs. For this study, we considered the September 2015/GitHub data set offered by
Boa mentioned above in Subsection 2.1.

4.1.1. RQ1 : Figure 4 shows the number of bug-fix commits per file type. As shown in Figure
4, the 2 types of changed files that appear most frequently in those bug-fix commits are:
SOURCE JAVA JLS3 and UNKNOWN. The number of bug-fix commits related to these 2 types
of changed files are respectively, 2,341,344 and 2,212,030. Text and binary files are changed least
frequently. This is unsurprising, since such files are often documentation, and binaries should be
changed rarely. XML files in Java projects usually represent build files or configuration files (the
names of the most found configuration files end with “xml” or “properties” [30]); 17.55% of
analyzed bug-fix commits are related to changes in XML files. As these bugs are not related to
source files, they could not be fixed by current automatic program repair techniques [30]. Rather
more surprising is how frequently UNKNOWN files are changed. We deepen our analysis in these
committed UNKNOWN files and found that they are related to other programming languages like:
C++, C, JavaScript, Groovy, Scala, Python, etc. Although the analyzed projects were mainly written
in Java, 45,057 out of 101,471 Java projects (i.e., 44.40%) use 2 or more programming languages.
This results showed that 48.18% of bug-fix commits are related to changes in non-Java source files.
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Figure 4. Number of bug-fix commits per file type.

Some modified source files are in programming languages other than Java for two reasons. First,
a project may be implemented in multiple programming languages. For example, Cassandra is a
database, and its programmers implement a Python driver. A bug report ‡‡ says that the driver did
not parse queries correctly. To fix the bug, programmers modified one faulty line of the cursor.py
file [22]:

- 39:_cfamily_re = re.compile("...", re.I | re.M)
+ 39:_cfamily_re = re.compile("...", re.IGNORECASE | re.MULTILINE |

re.DOTALL)

Second, a project may implement an interface for a programming language. For example, Derby
is a database that supports queries in SQL, and its programmers use SQL queries as test cases [22].

Current automatic repair approaches have been evaluated on only a limited number of
programming languages, such as C and Java. However, a project may be implemented in multiple
programming languages and automatic program repair may require significant improvement to fix
bugs in other programming languages.

Summary of RQ1. We notice that many bugs reside in non-Java source files (e.g., source files of
different programming languages like Scala, Groovy, PHP, etc.) or non-source files (e.g., XML
files). Our results confirm the findings obtained by Zhong and Su [30] (please see the Findings 1,
2, 13, and 14 for more details). Many implementations of research techniques that automatically
repair software bugs target programs written in C language (e.g., Prophet [33], GenProg [1])
or Java language (e.g., NOPOL [3], PAR [5]). Thus existing approach may be insufficient in
fixing certain bugs. However, it is desirable to understand where such bugs reside, so we could
investigate their nature and explore corresponding repair approaches.

4.1.2. RQ2 : In order to find out which statement types appear more frequently in bug-fix commits,
we use Boa to compute the number of bug-fix commits that added/deleted a particular statement type
in order to solve the corresponding bug. We investigate the following 14 statement types present
in the Boa Programming Guide: ASSERT, BLOCK, BREAK, CATCH, CONTINUE, EXPRESSION,
FOR, IF, RETURN, SYNCHRONIZED, THROW, TRY, SWITCH, and WHILE. The statement type
BLOCK is somewhat different because it was designed by Boa inventors to characterize a statement

‡‡https://issues.apache.org/jira/browse/CASSANDRA-2993
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that contains a list with two or more statements within it (e.g., the statements in the method body).
Concerning the statement type EXPRESSION, it encompasses arithmetic or logical expressions,
expressions with binary operators, etc. For a complete list, please see the Section Expression
Kind present in the Boa Programming Guide.

We often need statement-level changes to understand bug fixes. For example, it requires different
knowledge to fix IF Statements and Return Statements, although modified internal code
elements are the same (e.g. variables) [30]. The repair actions on a code element typically increase
with its complexity. For example, in the Boa programming guide, there are 50 expression types.
In other words, the Expression node has a rich set of subclasses. METHODCALL is one of
its subclasses, and it may invoke complicated API methods. By definition, each Expression
Statement has at least an Expression node, and each Return Statement can have
an Expression node. Thus, Expression Statement is complicated, and we find many
API repair actions on this code element. In contrast, Break Statement and Continue
Statement are relatively simple compared to the Expression Statement since they do
not contain API elements. Thus, repair actions on these code elements are not related to APIs. All
the modifications of these last two statements are to move from one line to another, since they do
not have internal structures. Regarding the Block Statement, it refers to the statements in the
method body. Note that most methods (in C-like languages, such as Java) contain a single statement
of type BLOCK, which contains the list of statements within it. For instance, in the Boa programming
guide, there are 20 possible statement types that could appear in the Block Statement.

Concerning the IF statement, we investigate how many bug-fix commits added or deleted null
checks. The IFNULLCHECK statement is an IF statement where the boolean condition is of
the form: null == expr OR expr == null OR null != expr OR expr != null.
Basically, we build a query written in Boa language that counts how many null checks were
previously in the file (previous version of the file, if exists) and how many null checks are currently
in the file (actual version of the file). If there are more null checks than previously, the bug-fix
commit corresponds to an addition. However, if there are less null checks than previously, the bug-
fix commit corresponds to a removal. We performed this algorithm for all changed files and bug-
fix commits of our Boa data set (i.e., 52,052,571 and 4,590,405, respectively). Concerning the 14
statement types aforementioned, we performed a similar algorithm, but considering the number of
times each statement type appears in each version of a file (i.e., buggy and fix versions).

Summary of RQ2. This research question is important to investigate the nature of bug fixes
in terms of statement types that are added or deleted to fix a particular bug. For instance, we
can identify the prevalence of some statement types with respect to others. Figure 5 shows the
results we obtained. As shown in this figure, there is a prevalence of EXPRESSION, BLOCK,
IF, and RETURN statements with respect to the others. The median number of statements within
the BLOCK statement type is 6. This result clearly shows the limitations of current automatic
repair techniques, since many bug fixes involve adding code blocks (i.e., a list of statements).
However, the majority of fixes produced by GenProg [1] are “one-liners” (i.e., changes only one
line of code) [42]. As pointed out by Monperrus [9], many existing automatic program repair
approaches are effective only in fixing bugs that require simple changes.

4.1.3. RQ3 : Pan et al. [18] also discovered that there is a similarity of bug-fix patterns across
projects. This indicates that developers may have trouble with individual code situations, and that
frequencies of bug introduction are independent of application domain [18]. However, the main
drawback of the bug-fix patterns approach stems from its automation. We therefore automatically
detect these five bug-fix patterns, estimating their prevalence in the Boa data set presented in Section
2.

We use Boa language to detect common bug-fix patterns in the historical information of the
projects. Boa provides domain-specific language features for mining source code [19]. Boa’s
capabilities are powerful, but limited in the precision it enables in detection of the aforementioned
bug-fix patterns. For example, it cannot directly diff two files. Rather than finding exact counts of
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Figure 5. Number of Bug-Fix Commits that ADDED/DELETED each Statement Type.

bug-fix patterns, we approximate by processing pre- and post-fix files separately. Fortunately, these
five patterns can be detected by Boa, as we describe below. For each pattern, we create a query
written in Boa language. In the following paragraphs, we describe in natural language each of the
five algorithms designed to detect the five bug-fix patterns described in Section 3.

1. How many bug-fix commits change one or more IF Condition Expressions (IF-CC)?
To answer this question and to detect this pattern, for both pre- and post-fix versions of a
buggy file, we count how many IF conditions and expressions of these IF conditions appear.
Then, if the number of IF conditions is the same between these two versions of the file (to
ensure that it is a modification and not an addition or deletion), we check whether the number
of expressions of these IF conditions is different between these two versions of the file. If
it’s true, the pattern was detected and the bug-fix commit is recorded. For more information
of what expression types we consider, see the Section ExpressionKind of this page .
We found that 196,283 out of 4,590,405 (4.2759%) bug-fix commits change one or more IF
condition expressions.

2. How many bug-fix commits change the parameter values of the method calls (MC-
DAP)? To answer this question and to detect this pattern, for both pre- and post-fix versions
of a buggy file, we count how many method calls appear and we also built 2 strings (i.e., one
string for the pre-version and another string for the post-fix version of these file) containing
the parameter values (i.e., string literals) of all method calls. Then, if the number of method
calls is the same between these two versions of the file (to ensure that it is a modification),
we compare if the two strings are different. If it’s true, the pattern was detected and the bug-
fix commit is recorded. We found that 290,818 out of 4,590,405 (6.3353%) bug-fix commits
change the parameter values of the method calls.

3. How many bug-fix commits change the number or parameter types of the method calls
(MC-DNP)? To answer this question and to detect this pattern, for both pre- and post-fix
versions of a buggy file, we count how many method calls and method parameters appear.
Then, if the number of method calls is the same between these two versions of the file (to
ensure that it is a modification), we check if the number of method parameters is different.
If it’s true, the pattern was detected and the bug-fix commit is recorded. For this pattern, due
Boa limitations, it was not possible to identify the types of method parameters present in the

http://boa.cs.iastate.edu/docs/dsl-types.php (verified 03/08/2017)
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Figure 6. Number of bug-fix commits per bug-fix pattern.

method calls. We found that 192,375 out of 4,590,405 (4.1908%) bug-fix commits change the
number of parameters of the method calls.

4. How many bug-fix commits change one or more assignment expressions (AS-CE)? To
answer this question and to detect this pattern, for both pre- and post-fix versions of a buggy
file, we count how many assignment statements and expressions of these assignments appear.
Then, if the number of assignment statements is the same (to ensure that it is a modification),
we check if the number of expressions between these two versions of the file is different. If
it’s true, the pattern was detected and the bug-fix commit is recorded. For more information
of what expression types we consider, see the Section ExpressionKind of this page.
We found that 511,299 out of 4,590,405 (11.1384%) bug-fix commits change one or more
assignment expressions.

5. How many bug-fix commits added a null check precondition (IF-APC)? To answer this
question and to detect this pattern, for both pre- and post-fix versions of a buggy file, we count
how many null checks appear. Then, if the number of null checks in the current version of the
file is greater than in the previous version of these file, the pattern was detected and the bug-fix
commit is recorded. We found that 1,340,488 out of 4,590,405 (29.2019%) bug-fix commits
added an IF null check precondition.

Summary of RQ3. Figure 6 shows a bar chart with the number of bug-fix commits
distributed among the five studied bug-fix patterns. The bug-fix pattern that appears more
frequently is IF-APC (29.2019% of the analyzed bug-fix commits). Observe that several
bug-fix commits match this bug-fix pattern in order to avoid NullPointerException errors.

4.2. Study II: Bug fixes present in the Defects4J data set

In order to conduct the second study, we manually reviewed the source code diffs of reproducible
bugs present in the Defects4J data set to study the prevalence of the 5 most common bug-fix patterns
identified in the work of Pan et al. [18]. Moreover, we counted how many bugs are If-related or
Method call (the most common categories of bug-fix patterns identified in the work of Pan et al.
[18]). Table III shows the results we obtained for each program.

Table IV shows a summary of the results of RQ3 and RQ4. As shown in this table, there are
consistencies between the two data sets (i.e., Boa and Defects4J):

1. The IF-APC pattern is the most prevalent in both;
2. The MC-DNP pattern is the least prevalent in both;
3. In general, bug fixes related to the IF statement type are more frequent than those related to

API method calls in both.
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Table III. Programs and bug fixes per category (If-related and API Method Call) and per bug-fix pattern.

Program #Bug Fixes If-related API Call IF-CC MC-DAP MC-DNP AS-CE IF-APC
Closure 133 67 15 24 6 1 5 43
Lang 65 39 12 12 4 3 3 27
Math 106 31 11 9 4 1 16 22
Time 27 15 3 1 2 1 2 14
Mockito 38 14 6 1 1 3 1 13
Total 369 166/369 47/369 47 17 9 27 119

Table IV. Summary of the results of RQ3 and RQ4.

Bug-fix pattern Boa Defects4J
IF-CC 4.2759% 12.7371%
MC-DAP 6.3353% 4.6070%
MC-DNP 4.1908% 2.4390%
AS-CE 11.1384% 7.3170%
IF-APC 29.2019% 32.2493%
IF-related 33.4778% 44.9864%
API Method Call 10.5261% 12.7371%

We deepen our manual analysis in order to discover which types of addition are most common to
fix bugs. Table V shows the results of these analysis. As shown in this table, the addition types that
most appear to fix bugs are: Method Addition and Addition of Logical or Arithmetic Expression. For
more details, please see the columns “Method” and “Logic/Arithmetic Exp.” of Table V.

Table V. Manual analysis results: addition types to fix each bug per program.

Program Try/Catch Return Method Switch Case Logic/Arithmetic Exp. Class
Closure Compiler 1 1 8 7 6 0
Commons Lang 2 2 5 1 5 0
Commons Math 2 5 6 1 9 0
Joda-Time 2 0 0 0 0 0
Mockito 0 0 2 0 0 4
Total 7 8 21 9 20 4

Current automatic software repair approaches like GenProg [43] and PAR [5] were designed to
fix simple bugs. For instance, the majority of fixes produced by GenProg modify only one line
of code. A recent study on GenProg repairs [8] shows that seemingly complex repairs generated
from GenProg are in the overwhelming majority of cases in fact functionally equivalent to single
line modification. In other words, the majority of GenProg repairs avoid bugs simply by deleting
functionality [44]. Westley Weimer, one of the inventors of GenProg, said that the majority of fixes
produced by humans are quite simple [42]. To investigate better this affirmation, we performed
another qualitative analysis involving the human-written patches (i.e., bug fixes) present in the
Defects4J data set. Our goal was to study the size of those patches in terms of the number of
lines of code (LoC) that are added to fix a particular bug. Table VI shows the main descriptive
statistics of the considered patches. As shown in this table, although all considered projects have
at least one complex patch whose size is 26 lines of code or more, the median and mode of the
patches considering all projects are, respectively, 3 and 1 LoC. In general, the results of Table VI are
aligned with Weimer’s affirmation. Furthermore, recent research into the nature of software changes
[45] supports the following observation: Small changes to the repository such as one-line additions
often represent bug fixes. However, as previously discussed in RQ2, many bug fixes involve adding
code blocks (i.e., a list of statements). For these bugs, current automatic repair techniques are not
effective. Thus, greater effort is required in this direction.

Summary of RQ4. Table III shows the results we obtained for each program and per bug-fix
pattern. Our manual analysis showed that 45% of these bugs are If-related, 12.73% are Method
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Call, and 7.31% are related to assignment expressions. The remaining bugs (i.e., 34.96%) occur
due to different causes (e.g., missing a Try/Catch statement). In our work, the bug-fix pattern that
most appeared in both data sets was IF-APC (Addition of IF Precondition Check).

Table VI. The main descriptive statistics of the patches considered in Defects4J per program.

Patch size (LoC) Closure Lang Math Time Mockito All
Minimum 0 0 0 1 1 0
Median 3 3 3 7 4 3
Maximum 37 43 49 26 29 49
Variance 30.89 65.28 42.81 40.48 54.43 43.99
Mode 1 1 1 5 1 1
Average 4.82 6.359 5.533 8.346 7.108 5.794
Standard Deviation 5.558 8.08 6.543 6.362 7.378 6.632
Total 133 65 106 27 38 369

4.3. Study III: Automatic Discovery of Fine-grained Repair Actions in the Defects4J data set

The Study III of our work adopts one of the most popular algorithms for performing approximate or
exact Near Neighbor Search in high dimensional spaces based on the concept of Locality-Sensitive
Hashing (LSH) [46]. As previously stated, we use LSH to remove outliers from search space before
clustering the data. The next subsection motivates the use of LSH in this work.

4.3.1. Motivation for the use of Locality-Sensitive Hashing The problem of finding duplicate
documents in a list may look like a simple task - use a hash table, and the job is done quickly
and the algorithm is fast. However, if we need to find not only exact duplicates, but also documents
with differences such as typos or different words, the problem becomes much more complex. In
our case, each patch (a.k.a. repair) represents a document composed by fine-grained repair actions.
Thus, we have to exclude many repairs that are not repetitive across projects in order to reduce the
search space in which we look for frequently occurring bug patterns. In other words, because bug
patterns have consistent repairs, we can use LSH to measure the similarity between similar source
code changes in project histories.

A fundamental data-mining problem is to examine data for “similar” items. The problem of
finding textually similar documents can be turned into a set problem: it is possible to measure
the similarity of sets by looking at the relative size of their intersection. This notion of similarity is
called “Jaccard Similarity” [47]. An important class of problems that “Jaccard similarity” addresses
well is that of finding textually similar documents in a large corpus or a collection of patches. First,
let us observe that testing whether two documents are exact duplicates is easy; just compare the two
documents character-by-character, and if they ever differ then they are not the same. However, in
many applications, the documents are not identical, yet they share large portions of their text.

Another important problem that arises when we search for similar items of any kind is that there
may be far too many pairs of items to test each pair for their degree of similarity, even if computing
the similarity of any one pair can be made very easy. That concern motivates a technique called
“locality-sensitive hashing,” for focusing our search on pairs that are most likely to be similar (i.e.,
Near-Neighbor Search). We should understand that the aspect of similarity we are looking at here
is character-level similarity, not “similar meaning”, which requires us to examine the words in the
documents.

Let’s give an example to better motivate the use of the LSH technique in this paper. Suppose your
goal is to detect duplicate questions in a long list of questions. First, we need to define a method of
determining whether a question is a duplicate of another. For this, it will be necessary to use some
distance metric for strings. The Jaccard index performs sufficiently for this use case. This metric is
an intersection over a union. We count the amount of common elements from two sets, and divide
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by the number of elements that belong to either the first set, the second set, or both. For example,
assume that we have the two following questions:

1. “Who was the first ruler of Poland”;
2. “Who was the first king of Poland”;

The size of the intersection is 6, while the size of the union is 6 + 1 + 1 = 8, thus the Jaccard index
is equal to 6 / 8 = 0.75. We can conclude the more common words, the bigger the Jaccard index,
the more probable it is that the two questions are a duplicate.

The task of finding nearest neighbors is very common. Approximate algorithms to accomplish this
task has been an area of active research. LSH is one such algorithm and it has many applications,
including:

• Near-duplicate detection: LSH is commonly used to deduplicate large quantities of
documents, webpages, and other files;

• Genome-wide association study: Biologists often use LSH to identify similar gene
expressions in genome databases;

• Large-scale image search: Google used LSH along with PageRank [48] to build their image
search technology VisualRank [49];

• Audio/video fingerprinting: In multimedia technologies, LSH is widely used as a
fingerprinting technique A/V data.

In the next subsection, we give a background of LSH to understand better the workings of this
algorithm.

4.3.2. Background on Locality-Sensitive Hashing: LSH has been around for some time, dating
back as far as 1999 [50] exploring its use for breaking the “curse of dimensionality” in nearest
neighbor query problems. Since then, various applications of LSH have been proposed [47]. Figure
7 shows the overview of the preprocessing step of our approach (i.e., Locality-Sensitive Hashing of
Patch Code) to eliminate outliers before clustering the data.

Figure 7. Overview of the Locality-Sensitive Hashing of Patch Code.

LSH has been previously used for similarity search over Twitter data [51]. Specifically, the paper
applied LSH to Twitter data for the purpose of first story detection, i.e. those tweets that were
highly dissimilar to all preceding tweets. In this paper, we have applied LSH in patch code (more
specifically, we use LSH in the fine-grained source code changes that represent a patch).

Improved LSH algorithms [52] were proposed using a consistent weighted sampling method
“where the probability of drawing identical samples for a pair of inputs is equal to their Jaccard
similarity” [52]. The Jaccard similarity of sets S and T is the ratio of the size of the intersection of S
and T to the size of their union (Equation 1). This metric is used to measure the similarity between
two sets S and T (e.g., containing words from two documents).

Jaccard Sim(S, T ) =
|S ∩ T |
|S ∪ T |

(1)

The most effective way to represent documents as sets, for the purpose of identifying lexically
similar documents is to construct for the document the set of short strings that appear within it. A
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document is a string of characters. Define a k-shingle for a document to be any substring of length
k found within the document. Then, we may associate with each document the set of k-shingles
that appear one or more times within that document [47]. We can pick k to be any constant we
like. However, if we pick k too small (e.g., k = 1), then we would expect most sequences of k
characters to appear in most documents. In this work, our corpus of documents is based on repair
actions extracted from patches. Usually these documents are small. We note that each document
(i.e., a document represents a patch) has the average size of an email message without attachments
(≈ 59 kilobytes in size according to a 2003 study). We have adopted the same criterion followed
by Leskovec and Rajaraman [47] to define the shingle size, i.e., since our body of documents is as
small as a body of documents composed of emails, picking k = 5 for the shingle size is sufficient.

LSH is a technique for fitting very large feature spaces into unusually small places. Likewise even
smaller feature spaces can also benefit from the use of LSH by drastically reducing required search
times and disk space requirements. Instead of storing and searching against all available raw data or
even random samples of all raw data, we can use LSH techniques to create very compact signatures
which replace storing all of the features typically required for such searches. The important property
of signatures is that we can estimate the Jaccard similarity of two sets from the signatures alone.
Moreover, using the signatures produced by LSH exponentially reduces both storage space and
processing time requirements for similar item searches [47].

A form of LSH called Minhashing [53] was used to compute very compact signatures from the
documents. It reduces the feature space size using a family of random hashing functions to hash
each individual piece of raw input data retaining only the minimum values produced by each unique
hashing function. These signatures are computed for each document by Minhashing the document
a number of times. Given a word-document matrix in which each column represents a document
and each row indicates the presence/absence (1/0) of a word in a document; Minhashing would be
choosing for each column, from a permutation of the rows, the row number of the first row which
has a value 1 in that column, a process that is typically repeated a number of times. If we do this m
times, each with a different permutation, the size of the signature would be m (Fig. 7 (d)). To make
this practical, the random permutations of the matrix can be simulated by the use of m randomly
minhash functions (Fig. 7 (d)). Given a row r in the word-document matrix, we use hash function
h() to simulate the permutation of r to the position h(r). For example, let r be the third row, and let a
hash function be h(x) = 2x + 1 mod 5, then h(r) = 2 * 3 + 1 mod 5 = 2 (r is permuted to the second
row according to this hash function).

The original works on LSH were [50] and [54]. Andoni and Indyk [46] summarize proposals in
this field. To compare our documents for similarity using LSH, it was necessary to implement a
Minhashing approach. This approach is highly scalable and can be extended to much larger data
sets of bugs (e.g., thousands of software errors). We followed the five basic steps shown below to
implement such approach:

1. The first step is to create a family of m unique hashing functions. To accomplish this task, we
have used FNV (Fowler–Noll–Vo) hash [55], a hashing method which uses XOR bit shifting
to create the seeded hash values. This hashing method has a very low chance of collision;

2. Each word or text token identified during tokenization [56] will be hashed by each unique
hashing function. We use a technique called Shingling for text tokenization;

3. The minimum hash value produced by each unique hashing function for all words within
each document processed will be retained within a minimum hash signature representing the
unique characteristics of each document processed;

4. The minimum hash signatures for each document can be intersected to produce an accurate
approximation of Jaccard similarity [52][47];

5. Longer minimum hash signatures (i.e., additional unique hashing functions) will produce
more accurate approximations of Jaccard similarity [47].

LSH differs from conventional and cryptographic hash functions because it aims to maximize the
probability of a “collision” for similar items [47]. LSH hashes input items so that similar items map
to the same “buckets” with high probability [46]. Hence, LSH can detect similar or near-duplicate
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patches in a large data set of bug fixes. In our work, we used LSH to discard the patches that do not
occur repeatedly because they do not represent a pattern. This preprocessing step is critical to the
elimination of outliers from the data that will be clustered in the next step of our approach.

4.3.3. Methodology of Study III: In order to conduct the Study III, we performed five steps, which
are described below:

1. Reducing the Search Space: One way is to search for repair actions that are frequently
repaired by developers. This can be done by inspecting source code changes in project
histories. There is, however, a problem with this method. An inspection of all the bug repairs
in one project’s history by a human might take several days for a project with a few thousand
commits. This means a manual inspection of a sufficient set of projects representative for a
programming language is not feasible. We must therefore reduce the search space in which
we look for frequently occurring repair actions. Because some repair actions occur repeatedly
across projects, we can reduce the search space by grouping bug-fix commits based on their
repair actions. These actions can be observed automatically by extracting the source code
changes of a bug-fix commit [57]. We focus on bug-fix commits rather than bug reports
because developers often omit links from commits to bug reports or do not create bug reports
in the first place [58].

2. Removing Outliers from the Search Space: The search space should now exclude many
patches that are not repetitive across projects because they do not represent a frequent repair
action and they would include noise in the generated clusters. However, there may still
be many repair actions that do not occur frequently or related ones that are fragmented
throughout the search space, making manual inspection challenging. We used Locality-
Sensitive Hashing (LSH) to address this problem efficiently. In other words, we turned the
problem of textual similarity of documents into one of set intersection. We should understand
that the aspect of similarity we are looking at here is character-level similarity, not “similar
meaning”, which requires us to examine the words in the documents and their uses. However,
textual similarity also has important uses. Many of these involve finding duplicates or near
duplicates. We used a form of LSH called Minhashing [53] to compress large documents into
small signatures and preserve the expected similarity of any pair of documents. In our work, a
document represents a patch present in the Defects4J data set [17]. Each patch is composed by
repair actions (i.e., fine-grained source code changes extracted using the state-of-the-art AST
diff tool GumTree [21]). We use this tool because it implements an efficient AST differencing
algorithm that takes into account move actions. With the use of this state-of-the-art AST diff
tool, we extract all fine-grained source code changes that occur in a given patch. To be more
precise, source code changes at the level of AST nodes: inserting nodes, removing them,
moving them or updating their value. These fine-grained changes provide an additional level
of precision compared to traditional, more coarse-grained, line-based diffs [59]. The main
advantage in using the AST granularity is that the edit script directly refers to the structure of
the code [21]. Thus, all displayed text tokens (i.e., repair actions) sampled from a document
now become a small collection of integers (i.e., a signature) which will be stored and used
for all subsequent similar patch comparisons. As stated earlier in Section 4.3.2, LSH hashes
input items so that similar items map to the same “buckets” with high probability [54]. We
can say two patches (i.e., documents) are similar if their sets of repair actions have a high
Jaccard similarity [47] (i.e., a similarity above 80% in our case). The idea is that most of the
dissimilar pairs (i.e., outliers) will never hash to the same “bucket”, and therefore they will be
discarded. In our study, 23 out of 395 (5.8227%) patches were considered outliers;

3. Grouping Cross-project Repair Actions: Our interest in this work lies in repair actions that
are detectable across multiple projects. We use the following definition in this paper:

Definition 1 (Cross-project Repair Action). An action in source code that fixes incorrect
behavior, has a consistent repair, and occurs across multiple projects.
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Our goal is to group bug-fix commits with the same repair action. Because we do not have
a prior knowledge about what common repair actions exist, to achieve this goal we perform
cluster analysis using machine learning. The challenge we face is selecting the best feature
vector and clustering algorithm such that (1) the number of bug-fix commits a human must
inspect is minimized and (2) the number of repair actions recalled by an inspection of the
clusters is maximized. Ideally, each cluster would contain all instances of one repair action
(perfect recall) and only instances of one repair action (perfect precision).

4. Extracting Basic Repair Actions: For a changed file, the state-of-the-art AST diff tool
GumTree [21] compares the ASTs before and after the changes to derive the fine-grained
changes. We build a Python script to extract the URLs that contain the buggy and fixed
versions of a file for all bug-fix commits present in the Defects4J data set [17]. Our Python
script and the presentation URLs are publicly available. In other words, for each bug-fix
commit (c) in a project’s history (C), we obtain the set of all modified source code files in the
bug-fix commit. This gives us a set F = {f b1, fr1}. . . {f bn, frn} of n {buggy file, repaired
file} pairs. For each pair in F, we compute basic repair actions that were made to the source
code using Abstract Syntax Tree (AST) differencing [21]. Because it considers the program
structure when computing the changes between f b and fr, AST differencing is more accurate
than line level differencing. It also computes fine-grained changes by labeling each node in
the AST; this fine granularity is useful for learning basic repair actions. The product of AST
differencing is an AST for f b (ASTb) and an AST for fr (ASTr). For each {ASTb, ASTr}
pair, we extract the repair actions made to source code that occur in ASTb, but do not occur in
ASTr, and vice versa. Algorithm 1 is the pseudo-code for extracting basic repair actions from
a set of bug-fix commits. The output of Algorithm 1 is a set of repair actions that occurred in
patches belonging to Defects4J projects. Each repair action present in this set is converted to
a feature (a.k.a.. attribute), while each bug-fix commit is converted to an instance of a feature
vector in the ARFF file [60]. For each bug-fix commit, Algorithm 2 computes the basic repair
actions as well as the number of times each repair action occurs in a given patch (i.e., the
frequency of the repair action). The outputs of Algorithms 1 and 2 are used as inputs for the
Algorithm 3. Algorithm 3 is the pseudo-code for generating the ARFF file. Figure 8 shows an
overview of the steps followed to generate an instance of a feature vector in the WEKA file.

ALGORITHM 1: Basic Repair Action Extraction
Input: C (bug-fix commits);
Output: allRepairActions : Set < RepairAction >;
allRepairActions← new HashSet < RepairAction > ();
repairActionsPerDiff : Set < RepairAction >;
generator : ActionGenerator;
foreach c ∈ C do

F←ModifiedF iles(c);
foreach {fb, fr} ∈ F do
{AST b, AST r} ← ASTDiff(fb, fr);
generator ← new ActionGenerator(AST b, AST r);
repairActionsPerDiff ← generator.getRepairActions();
foreach repairAction ∈ repairActionsPerDiff do

allRepairActions.add(repairAction);

5. Clustering and Ranking: Our goal is to discover what common repair actions exist given
a set of bug-fix commits. Depending on the problem, we can have a much larger number of
bug-fix commits. Because we do not have a priori knowledge about what repair actions exist,
we perform cluster analysis using machine learning to achieve this goal. Thus, we group bug-
fix commits with the same repair action by clustering the WEKA file obtained in Step 4. The
used clustering algorithm is DBSCAN [61], because (1) it is a density-based algorithm, i.e.,
it groups feature vectors that are closely related, and (2) unlike other clustering algorithms,
it does not require the number of clusters to be provided in advance as an input. The WEKA
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ALGORITHM 2: Frequency of Repair Actions Per Patch
Input: C (bug-fix commits);
Out: patches : Map < Integer,Map < RepairAction, Integer >>;
patches←new HashMap <> ();
actionFreqMap : Map < RepairAction, Integer >;
repairActionsPerDiff : Set < RepairAction >;
generator : ActionGenerator;
patchId← 0;
frequencyAction← 0;
foreach c ∈ C do

actionFreqMap←new HashMap <> ();
patchId← patchId+ 1;
F←ModifiedF iles(c);
foreach {fb, fr} ∈ F do
{AST b, AST r} ← ASTDiff(fb, fr);
generator ← new ActionGenerator(AST b, AST r);
repairActionsPerDiff ← generator.getActions();
foreach repairAction ∈ repairActionsPerDiff do

frequencyAction← Frequency(repairAction);
actionFreqMap.put(repairAction, frequencyAction);

patches.put(patchId, actionFreqMap);

ALGORITHM 3: Generation of ARFF File
Input: allRepairActions : Set < RepairAction >;
patches : Map < Integer,Map < RepairAction, Integer >>;
PATH : String;
fileName : String;
Output: WEKA File (Attribute-Relation File Format);
writer : FileWriter;
writer ← new FileWriter(PATH);
actionFreqMap : Map < RepairAction, Integer >;
qtyRepairActions← allRepairActions.size();
count← 0;
frequency ← 0;
writer.write(′@RELATION ′ + fileName);
foreach repairAction ∈ allRepairActions do

writer.write(′@ATTRIBUTE′ + repairAction + ′REAL′);
writer.write(NEW LINE);

writer.write(′@DATA′);
writer.write(NEW LINE);
foreach patchId ∈ patches do

count← 0;
actionFreqMap← patches.get(patchId);
foreach repairAction ∈ allRepairActions do

if actionFreqMap.containsKey(repairAction) then
frequency ← actionFreqMap.get(repairAction);
writer.write(frequency);

else
writer.write(′0′);

if count 6= (qtyRepairActions− 1) then
writer.write(′,′ );

count← count+ 1;
writer.write(NEW LINE);

writer.close();

software contains a basic implementation of DBSCAN that runs in quadratic time and linear
memory. We use Manhattan distance as our distance function, because it computes shorter
distances between bug-fix commits with the same basic repair actions. Repair actions are
ranked by the number of times that they occurred in each bug-fix commit, considering all
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Figure 8. Overview of the steps followed to generate an instance of a feature vector in the ARFF file.

bug-fix commits belonging to Defects4J projects. In total, we discover 155 repair actions
from those bug-fix commits.
In order to remove infrequent repair actions (i.e., noise features), we performed Feature
Selection for Clustering to select important features for the underlying clusters [62]. In this
paper, we use a filter method available on WEKA software to evaluate feature subsets and
choose the best subset for clustering by considering their effect on the underlying clusters [62].
A filter method, by definition, is independent of clustering algorithms, and thus completely
avoids the issue about lack of unanimity in the choice of clustering criterion [62]. The filtering
process selected 114 attributes (41 attributes were considered irrelevant to the clustering
process). The WEKA file used in this study is available online.
After this pre-processing step, we cluster the WEKA file aforementioned to obtain all
instances for a given repair action. DBSCAN [61] is a density-based algorithm which
discovers clusters with arbitrary shape. However, it requires the specification of two input
parameters which are hard to guess [63]: epsilon, which specifies how close points (i.e., in
our case a point corresponds to a bug-fix commit) should be to each other to be considered a
part of a cluster; and minPoints, which specifies how many neighbors a point should have to be
included into a cluster. Both parameters have a significant influence on the clustering results.
We combined Binary Differential Evolution [64] and DBSCAN algorithm to simultaneously
quickly and automatically specify appropriate parameter values [65]. For the parameter
values, epsilon = 0.9 and minPoints = 6, DBSCAN yields a clustering comprising 10 clusters.
The total of clustered and unclustered instances were respectively, 318 and 54.

4.4. Study III: Cluster Evaluation and Results

External evaluation measures try capture the extent to which points from the same partition appear
in the same cluster, and the extent to which points from different partitions are grouped in different
clusters [66].

As the name implies, external measures assume that the correct or ground-truth clustering is
known a priori. The true cluster labels play the role of external information that is used to evaluate
a given clustering [66]. The ground-truth clustering is given as T = {T 1, T 2, . . . , T k}, where the
cluster T j consists of all the points with label j. For clarity, henceforth, we will refer to T as the
ground-truth partitioning (a.k.a. ground-truth classification), and to each T j as a partition.

We assume that the ground truth clustering is given by the 10 most frequent AST-level repair
actions occurring in 395 bug fixes from Defects4J data set before running the clustering algorithm.
Thus, all repair actions are ranked by the number of times that they occurred in each bug-fix commit,
considering all bug-fix commits belonging to Defects4J projects. In total, we discover 155 repair
actions from those bug-fix commits. Table VII shows the 10 most frequent AST-level repair actions.
The column “Number of Patches” of Table VII shows, for each repair action, the number of analyzed
patches that it appears.

For clustering evaluation, we use a metric called Precision (a.k.a.. Purity) [67]. It is an external
evaluation criterion of cluster quality and represents the percent of the total number of objects (data
points) that were classified “correctly”, in the unit range [0..1]. In our context, this metric represents
the number of bug-fix commits associated with the most frequent repair action in a cluster divided
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Table VII. The 10 most frequent AST-level repair actions occurring in 395 real bug fixes.

Repair Action Number of Patches
INSERT Simple Name 349
INSERT Method Invocation 264
INSERT Infix Expression 228
INSERT Block 207
INSERT IF Statement 190
INSERT Expression Statement 125
INSERT Number Literal 122
INSERT Variable Declaration Fragment 111
INSERT Return Statement 98
DELETE Method Invocation 91

by the cluster size. The overall precision (Equation 2) of the clustering solution is obtained by taking
a weighted sum of the individual cluster purities:

Precision =
1

N

k∑
i=1

max
j
|Ci ∩ Tj | (2)

where N = number of objects (data points), k = number of clusters, Ci is a cluster in C, and Tj is
the classification which has the maximum count for cluster Ci. In general, the larger the values of
purity, the better the clustering solution is.

When we say “correctly” that implies that each cluster Ci has identified a group of objects as the
same class that the ground-truth T has indicated. We use the ground-truth classification Ti of those
objects as the measure of assignment correctness, however to do so we must know which cluster
Ci maps to which ground-truth classification Ti. If it were 100% accurate then each Ci would map
to exactly one Ti, but in reality our Ci contains some points whose ground-truth classified them as
several other classifications. Naturally then we can see that the highest clustering quality will be
obtained by using the Ci to Ti mapping which has the most number of correct classifications i.e.
Ci ∩ Ti. That is where the max comes from in the Equation 2.

The Recall of cluster Ci [67] (Equation 3) is defined as:

Recall =
ni

|Tj |
=

ni

mj
(3)

where: ni = number of elements within the cluster Ci, mj = |Tj | (i.e., number of elements within
the ground-truth classification). It measures the fraction of point in ground-truth classification Tj

shared in common with cluster Ci.
The F-measure (a.k.a. F1 score or F-score) is the harmonic mean of the precision and recall

values for each cluster Ci [67]. This metric reaches its best value at 1 (perfect precision and recall)
and worst at 0. The F-measure for cluster Ci (Equation 4) is therefore given below:

F −measure =
2 · precisioni · recalli
precisioni + recalli

(4)

We have created a confusion matrix (a.k.a. matching matrix) [68] to calculate the values for
Precision, Recall, and F-Measure. This can be done by looping through each cluster Ci and
counting how many objects were classified as each class Ti. Table VIII shows the confusion matrix
obtained.

Table IX shows the evaluation summary for those clusters. The column “Precision” of Table IX
shows the individual purities obtained for each cluster. As shown in this table, the overall Precision
and Recall values were 0.62 and 0.64, respectively. Ideally, each cluster would contain all instances
of one repair action (perfect recall = 1) and only instances of one repair action (perfect precision =
1).

As shown in Table IX, we found a most prevalent repair action for each cluster. However, these
clusters also contain more than one repair action.
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Table VIII. Confusion Matrix for Clustering Solution. T1: Delete Method Invocation, T2: Insert Infix
Expression, T3: Insert IF Statement, T4: Insert Simple Name, T5: Insert Return Statement, T6: Insert
Variable Declaration Fragment, T7: Insert Method Invocation, T8: Insert Number Literal, T9: Insert Block,
T10: Insert Expression Statement, ni: Number of elements within the cluster Ci, mj : Number of elements

within the ground-truth classification Tj .

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 ni
C1 0 78 0 0 0 0 145 0 0 0 223
C2 0 0 15 0 0 0 0 3 0 10 28
C3 0 0 0 0 0 0 1 2 0 3 6
C4 0 7 0 0 0 0 0 1 0 0 8
C5 0 0 7 0 0 0 0 9 2 0 18
C6 0 0 3 0 0 0 0 0 3 2 8
C7 0 0 0 6 0 0 2 0 0 0 8
C8 3 0 0 0 1 0 0 0 0 2 6
C9 0 3 0 0 3 0 0 0 0 0 6
C10 0 0 0 0 3 4 0 0 0 0 7
mj 3 88 25 6 7 4 148 15 5 17 n = 318

Table IX. Evaluation Summary. Total = Number of instances within the cluster; Instances = Number of
instances within the cluster associated with the repair action; Precision = Percentage of instances within the
cluster associated with the most frequent repair action; Recall = Percentage of instances within the cluster

associated with a repair action in relation to the total number of instances for this same repair action.

Cluster Total Instances Precision Recall F-Measure Repair Action
C1 223 145 0.65 0.97 0.77 INSERT Method Invocation
C2 28 15 0.53 0.60 0.56 INSERT IF Statement
C3 6 3 0.50 0.17 0.25 INSERT Expression Statement
C4 8 7 0.87 0.07 0.13 INSERT Infix Expression
C5 18 9 0.50 0.60 0.54 INSERT Number Literal
C6 8 3 0.375 0.60 0.46 INSERT Block
C7 8 6 0.75 1.00 0.85 INSERT Simple Name
C8 6 3 0.50 1.00 0.66 DELETE Method Invocation
C9 6 3 0.50 0.43 0.46 INSERT Return Statement
C10 7 4 0.57 1.00 0.72 INSERT Variable Declaration Fragment
Overall 318 198 0.62 0.64 0.54

1. INSERT Method Invocation: The bug fix inserts a new (API) method call. The listing below
shows an insertion of the API method call Math.max in JFreeChart-13 snippet:

- new Range(0.0, constraint.getWidth() - w[2])
+ new Range(0.0, Math.max(constraint.getWidth() - w[2], 0.0))

2. INSERT IF Statement: This bug fix adds an IF predicate to ensure a precondition is met
before an object is accessed or an operation is performed. Without the precondition check,
there may be a NullPointerException error caused by the buggy code or invalid
operation execution [18]. The listing below shows this repair action occurring in Time-27
snippet:

+ if (sep.iAfterParser == null && sep.iAfterPrinter == null)

3. INSERT Expression Statement: This bug fix inserts an expression statement. The listing
below shows this repair action occurring in Closure-133 snippet:

+ unreadToken = NO_UNREAD_TOKEN;

4. INSERT Infix Expression: This bug fix inserts an infix expression (e.g., comparison operator
within an IF condition). The listing below shows this repair action occurring in Math-48
snippet:

+ if (x == x1) {
+ throw new ConvergenceException();
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+ }

5. INSERT Number Literal: This bug fix inserts a number literal (e.g., a number in an
arithmetic expression). The listing below shows this repair action occurring in Time-9 snippet:

- int hoursInMinutes = FieldUtils.safeMultiply(hoursOffset, 60);
+ int hoursInMinutes = hoursOffset * 60;

6. INSERT Block: This bug fix inserts a list of statements (e.g., a case in Switch Statement).
The listing below shows this repair action occurring in Closure-3 snippet:

+ case Token.NAME:
+ Var var = scope.getOwnSlot(input.getString());
+ if (var != null && var.getParentNode().isCatch()) {
+ return true;
+ }

7. INSERT Simple Name: This bug fix inserts a simple name (e.g., changing the order of a field
in the constructor of a class). The listing below shows this repair action occurring in Time-4
snippet:

- Partial newPartial = new Partial(iChronology, newTypes,
newValues);

+ Partial newPartial = new Partial(newTypes, newValues,
iChronology);

8. DELETE Method Invocation: This bug fix deletes a method call. The listing below shows
this repair action occurring in Mockito-38 snippet:

- return StringDescription.toString(m).equals(arg.toString());
+ return StringDescription.toString(m).equals(arg == null? "null"

: arg.toString());

9. INSERT Return Statement: This bug fix inserts a return statement. The listing below shows
this repair action occurring in Math-13 snippet:

+ if (m instanceof DiagonalMatrix) {
+ final int dim = m.getRowDimension();
+ final RealMatrix sqrtM = new DiagonalMatrix(dim);
+ for (int i = 0; i < dim; i++) {
+ sqrtM.setEntry(i,i,FastMath.sqrt(m.getEntry(i, i)));
+ }
+ return sqrtM;

10. INSERT Variable Declaration: This bug fix declares a new variable. The listing below shows
this repair action occurring in Math-40 snippet:

- targetY = -REDUCTION_FACTOR * yB;
+ final int p = agingA - MAXIMAL_AGING;
+ final double weightA = (1 << p) - 1;
+ final double weightB = p + 1;
+ targetY = (weightA * yA - weightB * REDUCTION_FACTOR * yB) /

(weightA + weightB);

Summary of RQ5. We performed the five steps aforementioned in Subsection 4.3.3 to
automatically discover pervasive bug fix patterns in Java. Thus, we discover a total of 155 repair
actions from patches and discuss 10 pervasive repair actions that occur across all analyzed Java
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projects. Moreover, the overall Precision and Recall values for the clustering approach were 0.62
and 0.64, respectively. Due to the fact that the repair actions are fine-grained source code changes,
they would be suitable for automatic program repair techniques. For instance, the most popular
repair actions could be used to improve automated patch generation techniques.

5. DISCUSSION OF STUDIES

In this section, we discuss the lessons learned in the three studies.

5.1. Lessons learned about Studies I and II:

The findings of our paper provide useful insights for automatic program repair tools in Java. It
suggests that patterns proposed by the state-of-the-art approaches for Java are insufficient to cover
the extent of bug fixes in the analyzed data sets mentioned above in Section 2. Our findings suggest
that test-suite based program repair may need to consider addition of method or logic/arithmetic
expressions to achieve human-comparability in patches. Our results showed that developers often
forget to add IF preconditions in the code. Evidence of this is that the bug-fix pattern that most
appeared in the analyzed bug-fix commits of both data sets (i.e., Boa and Defects4J) was IF-APC
(Addition of IF Precondition Check). To the best of our knowledge, few works have addressed this
“defect class” [9] (i.e., NOPOL [3], SPR [34]). However, a recent work showed that NOPOL can
automatically fix only 35 out of 224 bugs present in the Defects4J data set [16]. Moreover, patches
by SPR only contain primitive values and do not contain object-oriented expressions (e.g., fields
and method calls) [3].

Another interesting aspect concerns the importance of fixing bugs in multiple programming
languages or in non-source files (the same results were obtained by Zhong and Su [30]). As
automatic program repair has been evaluated on only a limited number of programming languages,
such as C and Java, it may require significant improvement to fix bugs in other programming
languages. Concerning bugs in non-source files (e.g., configuration files like XML or properties),
future research in software fault localization needs to be performed. Current fault localization
approaches can deal with 30% of source files at the most [30].

5.2. Lessons learned about Study III:

Although our approach does not always produce high-purity clusters (i.e, clusters that clearly refer
to a repair action), we obtained a high degree of purity for cluster C1 (77% F-measure for “Insert
Method Invocation” repair action). Moreover, we have shown that the bug-fix pattern that most
appeared in the analyzed bug-fix commits of both data sets (i.e., Boa and Defects4J) was “Addition
of IF Precondition Check (IF-APC)” (a.k.a. “Insert IF Statement”). Our results are in line with the
results achieved by Yue and colleagues [69]. They found that 72% of manually inspected repeated-
fix groups focused on bugs in if-statements or if-conditions, meaning that if-statement is one of
the biggest software pitfall.

One interesting question is, of the frequent repair actions we identify, which are currently handled
by existing automatic repair tools? To the best of our knowledge, very few. For instance, NOPOL
[3] targets the “INSERT IF Statement” repair action. NOPOL addresses IF conditional bugs (i.e.,
if-then-else statements). It repairs programs by either modifying an existing IF condition
or adding a precondition (a.k.a.. a guard) to any statement or block in the code. The modified or
inserted condition is synthesized via input-output based code synthesis with SMT [70] and predicate
switching [71]. For other repair actions like “INSERT Method Invocation” or “INSERT Return
Statement”, there is a lack of tool support. Therefore, our results unveiled the need to support fixes
like adding method invocations to automated program repair tools. In this paper, we have only
presented a few of the more common repair actions in Java. Many more exist, although building a
generic tool to look for some of them might be prohibitively difficult because of their project-specific
characteristics.
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We compared the most common repair actions that we found with the bug-fix patterns revealed
by Pan et al. [18]. Table X shows the intersection or disjoint sets between those patterns. As shown
in this table, our repair actions can be mapped to 8 out of 27 bug-fix patterns (29.6296%) studied by
Pan et al and shown in Table 2 of their paper.

Table X. Mapping between the bug-fix patterns discovered in our study and those revealed by Pan et al.

Pervasive Repair Action Corresponding Pan et al.’s bug-fix pattern
INSERT Method Invocation Addition of a method declaration (MD-ADD)
INSERT IF Statement Addition of precondition check (IF-APC),

Addition of Precondition Check with Jump (IF-APCJ),
Addition of Post-condition Check (IF-APTC)

INSERT Expression Statement No corresponding bug-fix pattern
INSERT Infix Expression No corresponding bug-fix pattern
INSERT Number Literal No corresponding bug-fix pattern
INSERT Block Addition of operations in an operation sequence of field settings

(SQ-AFO),
Addition of operations in an operation sequence of method calls to
an object (SQ-AMO)

INSERT Simple Name No corresponding bug-fix pattern
DELETE Method Invocation Removal of a method declaration (MD-RMV)
INSERT Return Statement No corresponding bug-fix pattern
INSERT Variable Declaration Fragment Addition of a class field (CF-ADD)

6. THREATS TO VALIDITY

In this section we discuss the limitations of our studies. Concerning the Study III, a bug somewhere
in the implementation may invalidate our results. Another threat is that we only inspect repairs
which appear in a commit. Bugs that are repaired before a commit is merged into the main branch
are not captured by our method. Moreover, there is risk that our data set of six open-source projects
is not representative of Java software as a whole. Also, our results may not generalize to other
programming languages. Concerning the Studies I and II, the following threats were identified:

1. Tangled code changes in bug-fix commits. Although the Boa data set is representative and
contains a multitude of real-world Java bugs, the respective bug-fix commits may suffer from
tangled code changes [28][29] (i.e., unrelated or loosely related code changes committed by
developers in a single transaction). To mitigate this threat, we conducted a qualitative analysis
in the real-world Java bugs present in the Defects4J data set [17]. One of the advantages of
using this data set is that it contains isolated bugs (i.e., the bug fixes do not contain unrelated
code changes such as addition of features or refactorings).

2. Correctness of Boa programs. The correctness of our automated analysis in the Boa data set
depends on both our Boa programs and its Domain-Specific Language (DSL). For example,
we rely on Boa to identify bug-fix commits. However, precisely accomplishing this is an open
problem and some false positives (i.e., commits that are not related to bug fixes and have been
erroneously classified as being) may have been included in our automated analysis. We have
conducted a manual analysis on the real and isolated bug fixes present in the Defects4J data
set to assess this problem. Moreover, we released our Boa programs to mitigate the risk of
implementation errors. Because Boa does not provide an easy mechanism to identify precise,
statement-level diffs between commits, our template matching and analysis of code changes
(by counting each statement type or expression type) only provide estimates of behavior. We
consider our results as informative approximations;

3. Systems are all open-source. All systems examined in this paper are developed as open-
source. Furthermore, most GitHub repositories are personal (i.e., 71.6% of the repositories
have only one committer: its owner) and have very low activity [72, 73]. Hence they might
not be representative of closed-source development since different development processes
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could lead to different bug-fix patterns. Despite being open-source, several of the analyzed
projects have substantial industrial participation;

4. Bug-fix patterns have incomplete coverage of bug fixes. Concerning the coverage of bug
fixes by bug-fix patterns, only 55.1423% and 59.3495% of bug fixes (belonging to Boa and
Defects4J data sets, respectively) contain at least one identifiable bug-fix pattern, and hence
there are many bug fix changes that are not accounted for by one of the five bug-fix patterns
mentioned above in Subsection 3.1.

5. False positives in bug identification. The built-in function isfixingrevision identifies
bug-fix commits by using a list of regular expressions to match against the revision’s log (i.e.,
commit’s log message). There is a limitation in this approach: it only uses the change log
information, and change logs of some non-bug-fix changes may also match these list of regular
expressions. A more precise way for identifying bugs is to use bug tracking information
together with change logs. Due Boa’s design, it was not possible to use the bug tracking
information. This paper only used change logs for identifying bug-fix commits, which may
cause some false positives in bug identification.

7. RELATED WORK

Empirical Studies on Repeated Code Changes. Researchers have observed that developers apply
repeated code changes [74, 59, 69, 75, 76, 77, 78]. Such a group of similar code changes [74],
can be performed for several reasons: fixing multiple occurrences of the same bug, adapting code
to a changed API, migrating to a different library/framework, refactoring, performing routine code
maintenance tasks, etc. For instance, Pan et al. [18] automatically extracted 27 repair templates on
Java software, and observed that if-condition changes are the most frequently applied bug fixes.
They use line level differencing to extract and reason about repair patterns for automated program
repair. The repair patterns they identify are coarse grained and do not identify the root cause of
the bugs. Campos and Maia [79] designed Boa programs [19] that automatically detect the five
most common repair templates identified in the work of Pan et al. [18]. They found that the repair
template that most appeared in the analyzed bug-fix commits of both data sets (i.e., Boa [19] and
Defects4J [17]) was IF-APC (Addition of IF Precondition Check). Nguyen et al. [76] found that
17-45% of bug fixes were recurring. They extracted related objects’ API usage in modified code
before and after each fix, and clustered bug fixes based on the graphical representation of API usage
modification. In this paper, our focus is not just to demonstrate the existence of repeated fixes.
Instead, compared with all prior studies, we provide an automatic approach to discover frequently
occurring and isolated repair actions in Java. These patterns are expressed in a finer granularity than
Pan et al.’s work [18] and are more suitable to be used in an automatic program repair technique
because they are fine granularity source code changes [14].

Mining change types. Hanam et al. [80] proposed a novel technique called BugAID, for
discovering the most prevalent and detectable repair templates in JavaScript language. In our work,
an approach similar to BugAID [80] was adopted (i.e., based on unsupervised machine learning
and AST differencing of bug fixes in the code using the GumTree tool). However, our approach
was designed for Java language rather than JavaScript language. Because each approach was
designed to find bug-fix patterns for a particular programming language, it does not make much
sense to compare the editing scripts between them. These two languages are syntactically different.
Moreover, our approach differs from theirs since it includes a preprocessing step based on Locality-
Sensitive Hashing to remove outliers from search space before clustering the data. Long et al. [81]
proposed Genesis, the first system to automatically infer patch generation transforms or candidate
patch search spaces from previous successful patches. Genesis was designed for three classes of
defects in Java programs: null pointer (NP), out of bounds (OOB), and class cast (CC) defects.
By automatically inferring transforms from successful human patches, Genesis makes it possible
to leverage the combined expertise and patch generation strategies of developers worldwide to
automatically patch bugs in new applications. Fluri et al. [82] use hierarchical clustering to discover
unknown change types in three Java applications. This approach is similar to ours, however, the
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basic change types they use are limited to 41 basic change types identified in [83]. In our work,
we use density-based spatial clustering and considered 155 basic change types (i.e., repair actions).
Livshits and Zimmermann [84] discover application-specific repair templates (methods that should
be repaired but are not) by using association rule mining on two Java projects. Kim et al. [5]
introduced PAR, an algorithm that generates program patches using a set of ten manually written
fix templates. Martinez and Monperrus [14] analyzed the links between the nature of bug fixes and
automatic program repair. They give extensive empirical results on the nature of human bug fixes at
a large scale and a fine granularity with abstract syntax tree differencing using ChangeDistiller [82].
They mined repair models from manual fixes, and the mined repair models improve random search.
Our work also investigates the nature of human bug fixes at a large scale and a fine granularity with
abstract syntax tree differencing. However, we use the state-of-the-art AST diff tool GumTree [21].

Automatic program repair. The subfield of automatic program repair is concerned with
automatically fixing bugs, without human intervention. Since 2009, interest in this subfield has
grown substantially, and currently there are at least twenty projects involving some form of program
repair (e.g., AE [85], AutoFix-E [86], ClearView [87], GenProg [43], Kali [8], NOPOL [3],
PACHIKA [88], PAR [5], Prophet [33], SPR [34], RSRepair [35], Semfix [4], TrpAutoRepair [89],
etc.).

NOPOL [3] targets a specific fault class: IF conditional bugs (i.e., if-then-else statements).
It repairs programs by either modifying an existing IF condition or adding a precondition (a.k.a.. a
guard) to any statement or block in the code. The modified or inserted condition is synthesized via
input-output based code synthesis with SMT [70] and predicate switching [71]. The evaluation was
done on 22 real-world bugs from two large open-source projects.

Empirical Knowledge on Automatic Program Repair. Zhong and Su [30] designed and
developed BugStat, a tool that extracts and analyzes bug fixes. They conducted an empirical study
on more than 9,000 real-world bug fixes from six popular Java projects. Their results provide useful
guidance and insights for improving the state-of-the-art of automatic program repair. We study a
much larger data set [19] with 101,471 Java projects. Moreover, we designed Boa programs that
automatically detect the five most common bug-fix patterns identified in the work of Pan et al. [18].

Martinez and Monperrus [14] analyzed the links between the nature of bug fixes and automatic
program repair. Below, we present the main similarities and differences between the two works:

• We both share the idea that one can mine repair actions from software repositories. In other
words, one can learn from past bug fixes the main repair actions (e.g., adding a method call);

• We both share the idea that repair actions are meant to be generic enough to be independent
of the kinds of bug and the software domains;

• We both extract repair actions automatically based on AST differencing;
• Martinez and Monperrus [14] mined repair models (i.e., a repair model consists of a set of

repair actions) from past bug fixes to guide the repair process. In contrast, we propose a
novel automatic technique for unveiling frequent and isolated repair actions corresponding to
realistic bug fixes in Java;

• From the external validity viewpoint, there is risk that the dataset of 14 Java projects used by
Martinez and Monperrus [14] is not representative of Java software as a whole. Unlike their
work, our work does not suffer from this problem because it was conducted on a large scale
with 101,471 Java projects;

• There may be some bug fix changes that do not recur very often across projects. Since
these bug fix changes are not repetitive, they do not constitute bug fix patterns and should
be eliminated from the search space. For this, a pre-processing step was performed using
Locality-Sensitive Hashing to eliminate these non-repetitive bug fixes before clustering them
and revealing the bug fix patterns. On the contrary, Martinez and Monperrus [14] did not take
this threat into account and did not perform any pre-processing step on bug fix changes.

Soto et al. [90] conducted a large-scale study of bug-fix commits in Java projects. Their findings
provide useful insights for automatic program repair tools in Java. They created Boa programs to
detect the PAR’s bug-fix patterns [5] and provided an informative approximation of their prevalence
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in the Boa data set. We used the same data set in our study but we created Boa programs to detect
the five most common bug-fix patterns identified in the work of Pan et al. [18]. Moreover, we do not
limit our study to bug-fix patterns. We also investigated other aspects related to human-made bug
fixes such as the statement types that appear more frequently in bug-fix commits and the file types
that are usually changed to fix a bug.

8. CONCLUSION AND FUTURE WORK

In this paper, we have presented the idea that one can mine repair actions from bug-fix commits. In
other words, one can learn from past bug fixes the main repair actions (e.g., adding a method call).
Those repair actions are independent of the kinds of bug and the software application domains.
We considered 395 real bugs from six open-source Java projects present in Defects4J data set. We
discovered 155 AST-level repair actions and 10 frequent and isolated cross-project repair actions in
Java language.

The repair actions extracted from existing human-written patches could be leveraged to improve
automated patch generation techniques. Our findings are useful for improving tools and techniques
to prevent common bugs in Java, making developers aware of common mistakes involved with this
programming language.

Moreover, this paper explored the underlying patterns in bug fixes mined from software project
change histories. We rely on Boa to automatically identify bug-fix commits and to detect the five
most common bug-fix patterns identified by Pan et al. [18]. The findings of our study provide useful
insights for automatic repair tools in Java.

Our future work will concentrate on the following topics:
Automatic repair systems. An example of follow-up work would be to propose an approach to

automatic repair IF null check preconditions (i.e., IF-APC bug-fix pattern). There are a number of
program repair techniques (e.g., [43]) but not one of them is dedicated to fix null pointer exceptions.

Additional bug-fix patterns. We could conduct a more sophisticated analysis to discover
additional bug-fix patterns, thereby increasing coverage of bug fixes by bug-fix patterns and
potentially altering the observed pattern frequencies.

Bug localization techniques. We can explore how to locate bugs in non-source files (e.g.,
configuration files) or source files of different programming languages present in a Java project
and how to fix them with advanced techniques.
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Appendices
Table XI shows code examples for each statement type (investigated in RQ2) that Boa language
can identify.
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Statement Type Code Example
ASSERT

private Value getConstantNumber() {
assert (isToken(Token.NUMERIC));
return _scanner.getNumber();

}

private boolean isToken(Token token) {
return peek() == token;

}

BLOCK

Boolean isOtherAttachmentsExists = false;
AttachedFileDataType attachedFileDataType;
ProjectNarrativeAttachments projectNarrativeAttachments =

ProjectNarrativeAttachments.Factory.newInstance();
AbstractAttachments abstractAttachments =

AbstractAttachments.Factory.newInstance();

BREAK

private boolean checkBishopMoves(boolean isWhite) {
byte i = 1;
for (i = 1; (posY + i < BOARD_SIZE) && (posX + i <

BOARD_SIZE); i++){
attack = board[posY+i][posX+i];
if (attack != ’.’) {

if (isEnemyKing(attack, isWhite)) return true;
break;

}
}
...

}

CATCH

try {
performDirectCodeGen(inputArgs1);
Assert.fail("Expected an Exception of type: " +

CodeGenFailedException.class.getName());
} catch (CodeGenFailedException e) {

String expected1 = "Properties file not found in the
location";

Assert.assertThat(e.getMessage(),
containsString(expected1));

}
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CONTINUE

for (String line: lines) {
Matcher keyMatch = keyPat.matcher(line);
if (keyMatch.matches()) {

foundInfo(f);
declaredKeys.add(keyMatch.group(1));
continue;

}
...

}

EXPRESSION

TextMessagePerf textMessage = new TextMessagePerf();
textMessage.msgId = meta.getId();
textMessage.fromuid = meta.getFrom();
textMessage.time = (long) meta.getTime() * 1000;

FOR

Collection<Alarm> list = alamsControler.getAlarmsList();
log.info("Alarm collection size is " + list.size());
for (Alarm elem : list) {

log.info(elem.toString());
}
alamsControler.flush();

IF

if (budgetLASalaryTempKey.equals(budgetLASalaryKey)) {
if (startDate.after(tempReportTypeVO.getStartDate())) {

startDate = tempReportTypeVO.getStartDate();
}

}

RETURN

final String zuctw = qncName.trim().toUpperCase();
if (zuctw.length() == 0) return null;
try {

return Charset.forName(zuctw);
} catch (final UnsupportedCharsetException exUC) {

return null;
}
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SYNCHRONIZED

public void commandReceived(Object message) {
private final Object mutex = new Object();
log.info("Message received by session");
synchronized (mutex) {

response = message;
mutex.notify();

}
}

THROW

public void setRegion(int left, int top, int width, int
height) {
if (top < 0 || left < 0) {
throw new IllegalArgumentException("Left and top

must be nonnegative");
}
if (height < 1 || width < 1) {
throw new IllegalArgumentException("Height and

width must be at least 1");
}

}

TRY

Map<String, Object> args = new HashMap<String, Object>();
APICall task = new APICall();
ArrayList<String> responses = null;
try {

responses = task.execute(args).get();
} catch (InterruptedException e) {

e.printStackTrace();
} catch (ExecutionException e) {

e.printStackTrace();
}

SWITCH

public void handleMessage(Message msg) {
switch (msg.what) {
case 1: rolateHandler.sendEmptyMessage(2);

break;
case 2:

if (count < getDegree()) {
rolateHandler.sendEmptyMessage(2);

} else {
isFinish = true;

}
break;

case 3: BeginRolate(matrix, (XbigY ? count : 0));
break;

}
}
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WHILE

while (rowsLeft > 0) {
nRows = Math.min(32767 / (this.width *

(this.bytesPerPixel + 1)), rowsLeft);
int[] pixels = new int[this.width * nRows];
pg = new PixelGrabber(this.image, 0, startRow,

this.width, nRows, pixels, 0, this.width);
pg.grabPixels();

}

Table XI. Code Examples that Boa language can identify for each Statement Type.
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